
Project 1 Pointers

CSE490-590 Spring 2024

Source: From Prior semesters of CSE490/590 offerings

Project 1

Design an 8-bit microprocessor using Verilog HDL by using Structural Verilog

modelling.

The individual components can be designed using behavioral modelling

Brief Overview

• Verilog control flow keywords are always @(...), begin/end, case/endcase,

initial, if/else, and assign

• Verilog datatypes can be declared as input/output, reg/wire, array with

[MSB:LSB]

• Modules in Verilog can be created by declaring a module with a port list of inputs and

outputs.

• Behavioral Verilog is used to describe a module at a high level (think of writing a

program in C).

• Structural Verilog is used to describe a module at a low level by using primitive types

(and/or/not...) and can be used to connect modules together.

• The datapath of a MIPS CPU is described in detail here.

Verilog Resources

- A verilog guide is given in Class webpage

(https://cse.buffalo.edu/~rsridhar/cse490-590/lec/verilog_manual.pdf)

- "Digital Systems Design Using Verilog" by Charles Roth , Lizy K. John, Byeong

Kil Lee

- IEEE Standard Verilog Hardware Description Language (Manual for Verilog)

(https://ieeexplore-ieee-

org.gate.lib.buffalo.edu/stamp/stamp.jsp?tp=&arnumber=954909)

- Piazza/ Office hours

https://cse.buffalo.edu/~rsridhar/cse490-590/lec/verilog_manual.pdf
https://ieeexplore-ieee-org.gate.lib.buffalo.edu/stamp/stamp.jsp?tp=&arnumber=954909

Important Verilog Keywords/ Concepts / Usages

● always @

● assign

● case

● reg

● wire

● initial

● if else

● arrays

● Blocking vs non-blocking

● Module instantiations

● Port connections

Control Flow: always@

If there is any change in the sensitivity list (event) the code inside the block will be

executed. Code inside an always block is executed sequentially.

Syntax:

always@(<sensitivity list>)
begin

// code to be executed

end

Control Flow: assign
An assign statement can drive wires or other similar wire data-types

continuously with a value. However, the assign statement can’t assign value to

reg data-types.

Syntax:

assign <signal> = <expression of different signals or constant value>

Control Flow: case

The case statement is similar to the if-else statement; it will check if the value

of the expression matches one of the case items in the list. The statement in the

matched expression will be executed.

Syntax:

case(<expression>)
<case item1>: <statement>
<case item2>: <statement>
default: <statement>

endcase

Control Flow: initial
There are 2 types of procedural blocks: always and initial. Statements in both

these types of blocks are executed sequentially. However, unlike the always

block, statements in the initial block will only execute once.

The initial block will be executed sequentially.

Eventually reg_a = 3’b001

Control Flow: if-else

Similar to other programing languages.

Syntax:

if (<conditional statement>) begin

……;

end

else if (<conditional statement>) begin

……;

end

else begin

……;

end

Data Types: reg

reg is the most common variable data type, it stores information.

A reg type cannot be used for inputs to a module A reg type can be used for the outputs of module

a reg type on the left-hand side (LHS) of an assignment is only legal in always and initial blocks:

Data Types: reg (Continued)

a reg type on the LHS not legal in an assign statement (continuous assignment):

a reg type on the Right Hand Side (RHS)

is legal in an assign statement

Data Types: wire

wire can used to connect the input ports and output ports between different

modules.

wire can be used with both the inputs

and outputs of a module

wire is the only legal type on the LHS in an assign
statement

Data Types: wire (Continued)

wire is stateless and doesn’t store data

Mostly used in combinational logic design

Data Types: Arrays

Syntax:

Declare an array:

<data-type> <array>[<range>]

Update an element:

<array>[<index>] = <new value>

Access an element

<array>[<index>]

Data Types: Arrays (continued)

Other types of array indexing:

reg [7:0] memory [0:3]; // declare of an array with length of 4 and 8-bit width

Mostly used for holding values:

memory[0] = 8’hA0; // assign hex-value 0xA0

memory[1] = 8’b10001000; // assign binary value 1000 1000

……

Note: [0:7] (0 to 7) and [7:0] (7 down to 0). Both can hold 8-bit width data, but

the indices order are different.

Blocking and Non-Blocking Assignments

Syntax:

● In blocking, the statements are executed sequentially.

● In non-blocking, the statements are executed simultaneously

● For example:

initially: a = 1, b = 0

run: a <= a + 2

b <= a

We have a = 3, and b = 1. Each operation takes two steps to finish.

1. Compute the RHS

2. Assign value of LHS to RHS

In both a and b, the statements compute the RHS simultaneously, and assign the RHS value to

LHS simultaneously.

Blocking Non-blocking

A = 1 A <= 1

Blocking and Non-Blocking Assignments (continued)

Consider the following set up:

Initially a = 1, b = 2, c = 3. Execute the following statements twice:

Result:

Blocking Non-blocking

a = c, b = a, c = b a <= c, b <= a, c <= b

Blocking Initial 1st 2nd

a 1 3 3

b 2 3 3

c 3 3 3

Non-blocking Initial 1st 2nd

a 1 3 2

b 2 1 3

c 3 2 1

Modules: Instantiation

Instantiating another module inside

a module by connecting their

interfaces with wires.

This hierarchy structure allows the

outer module to pass through

input(s) to the inner module and to

get output(s) from it.

Modules: Instantiation (continued)

Inner module(left) and outer module(right).

There are two instantiation methods:

1. by position(above): corresponding variables must be at the correct positions.

2. by name: positions doesn’t matter. Different syntax.

inner_module IM(.input1(in1), .input2(in2), .out_put(out))

Modules: Port Connections

Recall from the last section, multiple modules can be instantiated in the same

module.

Modules have input and output interfaces. Different modules can be connected

by linking the interfaces with wires.

Once you have finished designing and implementing all the modules, you need to

connect them together to simulate the MIPS processor.

Modules: Port Connections (continuous)

Using the example in module instantiations section with 2 additional inner modules.

For simplicity, these two are the same as the first module but with different names.

1. module 1 and module 2 take inputs

in1 and in2

2. module 3 takes output from module

1 and module 2, producing the

output for the outer module

We need 2 wires to connect module 3’s

input ports with module 1’s and 2’s

output port, which is IM1_output and

IM2_output in the code.

Modules: Port Connections (continued)

You can use the function ‘open elaborated design’ in the Vivado IDE

navigator window to view your schematic and compare it with your project

design.

Behavioral vs Structural Verilog

Behavioral Verilog
module mux_4to1 (a, b, c, d, s0, s1, out);

input wire a, b, c, d;

input wire s0, s1;

output reg out;

always @ (a or b or c or d or s0, s1)

begin

case (s0 | s1)

2'b00 : out <= a;

2'b01 : out <= b;

2'b10 : out <= c;

2'b11 : out <= d;

endcase

end

endmodule

Structural Verilog

module mux_4to1(out, a, b, c, d,

s0, s1);

output out;

input a, b, c, d, s0, s1;

wire s0bar, s1bar, T1, T2, T3;

not u1(s1bar, s1);

not u2(s0bar, s0);

and u3(T1, a, s0bar, s1bar);

and u4(T2, b, s0, s1bar);

and u5(T3, c, s0bar, s1);

and u6(T4, d, s0, s1);

or u7(out, T1, T2, T3, T4);

endmodule

Datapath Diagram

MIPS Datapath: add

MIPS Datapath: lw

MIPS Datapath: sw

Design Ideas of Individual Components

DATAPATH

DATAPATH

DATAPATH

$s0

$s1

Given: 2 Registers $s0 ,

$s1 (each 8 bits)

Register File

Sign Extension

MUX

DATAPATH

2 Modes – Read from Memory (lw)

– Write into Memory (sw)

DATAPATH

CONTROL UNIT

3’b010://add

Where to Start

● Refer to FAQ in project description

● Partial Credits – Individual Modules will be graded

○ Test each module

● Start with PC, ALU and build from there

● Attend TA Office Hours

● DO NOT COPY!!!

○ We have access to src code from previous years, Github and other online

materials as well

○ We use multiple plagiarism check resources, such as MOSS to check for

academic integrity violations

General Pointers

● Look out for Submission Instructions on Piazza

● Attend Office hours and post on Piazza to clarify your doubts

● Read the piazza posts related to Project. It may help you with the design

● Include any reference that you used in your report

