
CSE490/590, Spring 2025 Homework 4 (not graded) Solution

1.
(a) Schedule the following instruction sequence for dual-issue MIPS. Consider one

ALU/branch instruction and one load/store instruction can be executed in parallel
when there are no data dependencies:

Loop: lw $t0, 0($s1) // $t0=array element
 add $t0, $t0, $s2 // add scalar in $s2
 sw $t0, 0($s1) // store result
 addi $s1, $s1,–4 // decrement pointer
 add $s4, $s5, $s4 // update $s4
 bne $s1, $zero, Loop // branch when $s1!=0

 ALU/Branch Load/Store Cycle
Loop: add $s4, $s5, $s4 lw $t0, 0($s1) 1
 addi $s1, $s1, -4 nop 2
 add $t0, $t0, $s2 nop 3

 bne $s1, $zero, Loop sw $t0, 4($s1) 4
 5
 6

a. Compute the IPC in part (a)

IPC = 6/4 = 1.5

2.
Assume a MIPS 5-stage pipelined processor without forwarding, show loop unrolling so that
there are four copies of the loop body for the following instruction sequence. Schedule the
instructions to avoid stalls.

Loop: lw $s0, 0($t0)
 addi $t2, $t2, $s0 // $t2 contains the sum of the array
 addi $t0, $t0, 4
 bne $t0, $t1, Loop

The above code iterates over an array of integers and computes its sum.
Assume that $t0 contains the address of the first word, ($t1 - 4) is the address of last word,
and that the difference between the addresses in $t0 and $t1 is a multiple of 16.
Eliminate any obviously redundant computations. Assume registers $s0 to $s7 and $t3 to $t9
are free to use for any purpose.

Fewer instructions solution (causes unnecessary stalls, still
acceptable answer):
Loop: lw $s0, 0($t0)
 addi $t2, $t2, $s0

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

 lw $s0, 4($t0)
 addi $t2, $t2, $s0
 lw $s0, 8($t0)
 addi $t2, $t2, $s0
 lw $s0, 12($t0)
 addi $t2, $t2, $s0
 addi $t0, $t0, 16
 bne $t0, $t1, Loop

Time-efficient solution (avoids stalls in loop body when possible):
 // Load all the values needed from memory
Loop: lw $s0, 0($t0) // lw instructions are bunched together so that
 lw $s1, 4($t0) // their corresponding addi instructions are
 lw $s2, 8($t0) // separated to avoid stalls
 lw $s3, 12($t0)
 addi $t0, $t0, 16 // addi needs to be at least 3 instructions
 // before the bne to avoid a stall
 // Compute all the partial sums for this iteration
 addi $s4, $s4, $s0
 addi $s5, $s5, $s1 // Partial sum registers are needed to help
 addi $s6, $s6, $s2 // avoid stalls (each addi writes to a
 addi $s7, $s7, $s3 // different register)
 bne $t0, $t1, Loop
 // Compute the final sum from all the partial sums
 add $t3, $s4, $s5
 add $t4, $s6, $s7 // Last instruction stalls but that’s ok
 add $t2, $t3, $t4 // since it is not part of the loop

3. For the code sequence shown below
loop:

 l.d $f12, 0($f5)
 add.d $f6, $f6, $f12
 daddui $f5, $f5, -8
 bne $f5, $f9, loop // $f9 holds the address of the last value to be operated on.
a) Show loop unrolling so that there are four copies of the loop body Assume $f5, $f9
(that is, the size of the array) are initially a multiple of 32, which means that the number of loop
iterations is a multiple of 4. Eliminate any obviously redundant computations and do not reuse
any of the registers.
l.d $f12, 0($f5)
add.d $f7, $f7, $f12
l.d $f13, -8($f5)
add.d $f8, $f8, $f13
l.d $f14, -16($f5)
add.d $f10, $f10, $f14
l.d $f15, -24($f5)

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

add.d $f11, $f11, $f15
daddui $f5, $f5, -32 ; -32 to account for 4 copies in the loop
bne $f5, $f9, loop
add.d $f16, $f7, $f8
add.d $f17, $f10, $f11
add.d $f18, $f16, $f17

b) Compute the number of cycles needed for 4 iterations

1. l.d $f12, 0($f5)
2. stall
3. add.d $f7, $f7, $f12
4. l.d $f13, -8($f5)
5. stall
6. add.d $f8, $f8, $f13
7. l.d $f14, -16($f5)
8. stall
9. add.d $f10, $f10, $f14
10. l.d $f15, -24($f5)
11. stall
12. add.d $f11, $f11, $f15
13. daddui $f5, $f5, -32 ;double add ALU with bne not given; assumed a 1 cycle latency
14. stall
15. bne $f5, $f9, loop
16. add.d $f16, $f7, $f8
17. add.d $f17, $f10, $f11
18. stall
19. stall
20. stall
21. add.d $f18, $f16, $f17

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

4. Consider the following code sequence.
 I1: lw $s4, 0($s1)
 I2: or $s2, $s4, $s1
 I3: and $s6, $s5, $s3
 Highlight the Hazard and discuss how out of order processor will help when lw $s4, 0($s1)
encounters a cache miss?

I1: lw $s4, 0($s1)
I2: or $s2, $s4, $s1
I3: and $s6, $s5, $s3
I3 can execute and wait for write back stage until the data is loaded in $s4 in I1 and eventually
forwarded to I2

5. In the following instruction sequence, find the hazards. Rename the registers to eliminate
the anti and output dependences

div.s r1,r2,r3
mult.s r4,r1, r5
add.s r1 ,r3, r6
sub.s r3,r1, r4

div.s r1,r2,r3
mult.s r4,r1, r5 // instr1 instr2 r1→ RAW (Data Dependence)
add.s r1 ,r3, r6 // instr1 instr3 r1 → WAW (Output Dependence)
sub.s r3,r1, r4 // instr2 instr4 r4 → RAW (Data Dependence), instr3 instr4 r3 → WAR
 // instr1 instr4 r3 → Output Dependence (Can be WAR)
After Register Renaming:
div.s r1,r2,r3
mult.s r4,r1, r5
add.s r8 ,r3, r6
sub.s r9,r8, r4

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

6. Consider the following instruction sequence (floating point) on a processor (shown
below) which uses Tomasulo’s algorithm to dynamically schedule instructions (dual issue
per cycle - no speculation)

The processor has the following non-pipelined execution units:
A 2-cycle, FP add unit
A 3-cycle, FP multiply unit
Assume instructions can begin to execute in the same cycle as soon as its dispatched and resides
in Reservation Stations
Trace the execution by showing Reservation Stations and FP Registers at the end of cycles#
1,2,3,5 and 6

Reservation Station of Multiplier/Divider is numbered as 4 and 5 as opposed to 1 and 2 as
shown in the processor diagram above FP Registers
Busy -> Denotes if the operand is used in other operations or if it’s ready
Tag -> Denotes the reservation station number that uses the operand
Reservation Stations
S1, S2 -> Denotes the source operands used in the instruction sequence
Tag1 -> 0 indicates the values is available and can be dispatched to the ALU unit if its free

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

-> Any other number indicates if the value is dependent on the completion of the specific
instruction in the reservation station
[Tag, tag1 and Busy bits are just added for explanation purposes. You can ignore those if you
find them confusing]

Cycle# 1:

Cycle# 2:

Cycle#3:
After 2 cycles, the ADD instruction (w) computes a value by 6.0 + 7.8 = 13.8 for register R4. The value is then
forwarded to reservation stations that are waiting for value of R4.

Cycle#5:
After 2 cycles, the ADD instruction (y) computes 13.8 + 7.8 = 21.6 for register R4. This R4 value is broadcasted to all
the reservation stations waiting for R4. Since no prior values for R4 remain pending, the FP registers are updated
immediately.

CSE490/590, Spring 2025 Homework 4 (not graded) Solution

Cycle#6:
Starting of cycle 3, MUL instruction (x) had all the registers to start multiplication. It computes the multiplication of R0
and R4 6.0 * 13.8 = 82.8 in Register R2. Result is broadcasted and updated in FP registers accordingly after 3 more
cycle from 3rd cycle (i.e. 6th cycle).

More details: Solution for 1-9 cycles:

Similarly, in the 9th cycle, according to instruction (z), R8 is calculated as 21.6 * 82.8 = 1788.48 and updated in the
FP registers accordingly.

