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Figure 4.1 The basic structure of a vector architecture, RV64V, which includes a RISC-V scalar architecture. There are also
32 vector registers, and all the functional units are vector functional units. The vector and scalar registers have a significant number
of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these
ports to the inputs and outputs of the vector functional units.
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Mnemonic  Name Description
vadd ADD Add elements of V[rs1] and V[rs2], then put each result in V[rd]
vsub SUBtract Subtract elements of V([rs2] frpm V[rs1], then put each result in V[rd]
vmul MULtiply Multiply elements of V[rs1] and V([rs2], then put each result in V[rd]
vdiv DIVide Divide elements of V[rs1] by V[rs2], then put each result in V[rd]
vrem REMainder Take remainder of elements of V[rs1] by V[rs2], then put each result in V([rd]
vsqrt SQuare RooT Take square root of elements of V[rs1], then put each result in V[rd]
vsll] Shift Left Shift elements of V[rs1] left by V[rs2]. then put each result in V[rd]
vsrl Shift Right Shift elements of V([rs1] right by V[rs2], then put each result in V[rd]
vsra Shift Right Shift elements of V[rs1] right by V[rs2] while extending sign bit, then put each result in
Arithmetic V[rd]
vxor XOR Exclusive OR elements of V[rs1] and V[rs2], then put each result in V[rd]
vor OR Inclusive OR elements of V[rs1] and V[rs2], then put each result in V[rd]
vand AND Logical AND elements of V[rs1] and V[rs2], then put each result in V[rd]
vsgnj SiGN source Replace sign bits of V[rs1] with sign bits of V[rs2], then put each result in V(rd]
vsgnjn Negative SiGN Replace sign bits of V[rs1] with complemented sign bits of V([rs2], then put each result
source in V[rd]
vsgnjx Xor SiGN Replace sign bits of V[rs1] with xor of sign bits of V[rs1] and V[rs2], then put each
source result in V[rd]
vld Load Load vector register V[rd] from memory starting at address R[rs1]
vids Strided Load Load V[rd] from address at R[rs1] with stride in R[rs2] (i.c.. R[rs1]+i x R[rs2])
vidx Indexed Load Load V[rs1] with vector whose elements are at R[rs2]+ V[rs2] (i.e., V[rs2] is an index)
(Gather)
vst Store Store vector register V([rd] into memory starting at address R[rs1]
vsts Strided Store Store V([rd] into memory at address R[rs1] with stride in R[rs2] (i.e., R[rs1]+i x R[rs2])
vstx Indexed Store Store V[rs1] into memory vector whose elements are at R[rs2]+ V[rs2] (i.e., V[rs2] is
(Scatter) an index)
vpeq Compare = Compare elements of V([rs1] and V([rs2]. When equal, put a I in the corresponding 1-bit
element of p[rd]; otherwise, put 0
vpne Compare != Compare elements of V[rs1] and V[rs2]. When not equal, put a 1 in the corresponding
1-bit element of p[rd]; otherwise, put 0
vplt Compare < Compare elements of V[rs1] and V[rs2]. When less than, puta I in the corresponding 1-
bit element of p[rd]; otherwise, put 0
vpxor Predicate XOR Exclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]
vpor Predicate OR Inclusive OR 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]
vpand Predicate AND Logical AND 1-bit elements of p[rs1] and p[rs2], then put each result in p[rd]
setvl] Set Vector Set vl and the destination register to the smaller of mvl and the source regsiter

Length

Figure 4.2 The RV64V vector instructions. All use the R instruction format. Each vector operation with two operands is shown
with both operands being vector (. vv), but there are also versions where the second operand is a scalar register (.vs) and, when it
makes a difference, where the first operand is a scalar register and the second is a vector register (. sv). The type and width of the
operands are determined by configuring each vector register rather than being supplied by the instruction. In addition to the vector
registers and predicate registers, there are two vector control and status registers (CSRs), v1 and vctype, discussed below. The
strided and indexed data transfers are also explained later. Once completed, RV64 will surely have more instructions, but the ones

in this figure will be included.
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Integer 8, 16, 32, and 64 bits Floating point 16, 32, and 64 bits

Figure 4.3 Data sizes supported for RV64V assuming it also has the single- and double-precision floating-point extensions
RVS and RVD. Adding RVV to such a RISC-V design means the scalar unit must also add RVH, which is a scalar instruction
extension to support half-precision (16-bit) IEEE 754 floating point. Because RV32V would not have doubleword scalar operations, it
could drop 64-bit integers from the vector unit. If a RISC-V implementation didn’t include RVS or RVD, it could omit the vector

floating-point instructions.
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Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction, C=A + B. The
vector processor (A) on the left has a single add pipeline and can complete one addition per clock cycle. The vector processor (B)
on the right has four add pipelines and can complete four additions per clock cycle. The elements within a single vector add
instruction are interleaved across the four pipelines. The set of elements that move through the pipelines together is termed an
element group. Reproduced with permission from Asanovic, K., 1998. Vector Microprocessors (Ph.D. thesis). Computer Science
Division, University of California, Berkeley.
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Figure 4.5 Structure of a vector unit containing four lanes. The vector register memory is divided across the lanes, with each
lane holding every fourth element of each vector register. The figure shows three vector functional units: an FP add, an FP multiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipelines, one per lane, which act in concert to
complete a single vector instruction. Note how each section of the vector register file needs to provide only enough ports for
pipelines local to its lane. This figure does not show the path to provide the scalar operand for vector-scalar instructions, but the
scalar processor (or Control Processor) broadcasts a scalar value to all lanes.
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Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but the first are of length MVL, utilizing the full
power of the vector processor. In this figure, we use the variable m for the expression (n % MVL). (The C operator % is modulo.)
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Operations executed Operations executed Speedup

Benchmark in vector mode, in vector mode, from hint
name compiler-optimized with programmer aid optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 91.5% 88.7% N/A
ARC3D 91.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 94.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 215

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when executed on the Cray Y-MP (Vajapeyam, 1991).
The first column shows the vectorization level obtained with the compiler without hints, and the second column shows the results
after the codes have been improved with hints from a team of Cray Research programmers.
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Instruction category Operands

Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit
Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide operations. Note that the IEEE 754-2008 floating-
point standard added half-precision (16-bit) and quad-precision (128-bit) floating-point operations.
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AVX instruction Description

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, ...
VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-double for 256-
bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it is increasingly important to add
data permutation instructions that allow combinations of narrow operands from different parts of the wide registers. AVX includes
instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a 256-bit register. For example, BROADCAST replicates a 64-bit
operand four times in an AVX register. AVX also includes a large variety of fused multiply-add/subtract instructions; we show just two
here.
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Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run the program divided by the
number of bytes accessed in main memory (Williams et al., 2009). Some kernels have an arithmetic intensity that scales with
problem size, such as a dense matrix, but there are many kernels with arithmetic intensities independent of problem size.
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Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore computer with
SIMD extensions on the right (Williams et al., 2009). This Roofline is for unit-stride memory accesses and double-precision
floating-point performance. NEC SX-9 is a vector supercomputer announced in 2008 that cost millions of dollars. It has a peak DP
FP performance of 102.4 GFLOP/s and a peak memory bandwidth of 162 GB/s from the Stream benchmark. The Core i7 920 has a
peak DP FP performance of 42.66 GFLOP/s and a peak memory bandwidth of 16.4 GB/s. The dashed vertical lines at an arithmetic
intensity of 4 FLOP/byte show that both processors operate at peak performance. In this case, the SX-9 at 102.4 FLOP/s is 2.4 x
faster than the Core i7 at 42.66 GFLOP/s. At an arithmetic intensity of 0.25 FLOP/byte, the SX-9 is 10 x faster at 40.5 GFLOP/s
versus 4.1 GFLOP/s for the Core i7.
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Official

Descriptive Closest old term  CUDA/NVIDIA
Type name outside of GPUs ~ GPU term Short explanation
Vectorizable Vectorizable Loop ~ Grid A vectorizable loop, executed on the GPU, made up
Loop of one or more Thread Blocks (bodies of vectorized
Z loop) that can execute in parallel
S
g Body of Body of a (Strip-  Thread Block A vectorized loop executed on a multithreaded
g Vectorized Mined) SIMD Processor, made up of one or more threads of
< Loop Vectorized Loop SIMD instructions. They can communicate via local
£ memory
a3
g Sequence of One iteration of a ~ CUDA Thread A vertical cut of a thread of SIMD instructions
QE_ SIMD Lane Scalar Loop corresponding to one element executed by one SIMD
Operations Lane. Result is stored depending on mask and
predicate register
3] A Thread of Thread of Vector ~ Warp A traditional thread, but it only contains SIMD
% SIMD Instructions instructions that are executed on a multithreaded
g Instructions SIMD Processor. Results stored depending on a per-
£ element mask
=
E] SIMD Vector Instruction  PTX A single SIMD instruction executed across SIMD
= Instruction Instruction Lanes
Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes threads of
SIMD Vector Processor Multiprocessor ~ SIMD instructions, independent of other SIMD
2 Processor Processors
ES Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of
g Scheduler Engine vectorized loop) to multithreaded SIMD Processors
=
on SIMD Thread Thread Scheduler ~ Warp Hardware unit that schedules and issues threads of
? Scheduler in a Multithreaded ~ Scheduler SIMD instructions when they are ready to execute:
8 CPU includes a scoreboard to track SIMD Thread
3_? execution
SIMD Lane Vector Lane Thread A SIMD Lane executes the operations in a thread of
Processor SIMD instructions on a single element. Results
stored depending on mask
GPU Memory Main Memory Global DRAM memory accessible by all multithreaded
Memory SIMD Processors in a GPU
g Private Memory  Stack or Thread Local Memory  Portion of DRAM memory private to each SIMD
2 Local Storage Lane
] (0S)
g‘ Local Memory Local Memory Shared Fast local SRAM for one multithreaded SIMD
g Memory Processor, unavailable to other SIMD Processors
= SIMD Lane Vector Lane Thread Registers in a single SIMD Lane allocated across a
Registers Registers Processor full Thread Block (body of vectorized loop)
Registers

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four groups cluster
these 11 terms. From top to bottom: program abstractions, machine objects, processing hardware, and memory hardware. Figure
4.21 on page 312 associates vector terms with the closest terms here, and Figure 4.24 on page 317 and Figure 4.25 on page 318
reveal the official CUDA/NVIDIA and AMD terms and definitions along with the terms used by OpenCL.
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Al 0 ]1=B[ 0 J1=*c[ 0 1]
SiMp [A[L 1 1= 1 .1 *cl ]
Threadd | = | .
Al 311=8B[ 31 ]*cC[ 31 ]
Al 321=B[ 32 ]*C[ 32 ]
ssmp | Al 33 1=8B[ 33 1*c[ 33 ]
Threag [TRCRAI [
Block Al 63 1=8B[ 63 1 *C[ 63 ]
0 A[ 64 1=B[ 64 ] *C[ 64 ]
Am[ 4;9] =B [ 479 ] :c[ 479 ]
Al 4801 -=B[ 480 ] * C[ 480 ]

SIMD = *
SIMD AL 4817 -8 [ 481 1 * C[ 481 ]
A[ 5111 =B[ 511 ] * C[ 511 ]
A[ 5121 =B[ 512 ] * C[ 512 ]
Grid
A[ 76791 =B [7679 1 * C[ 7679 ]
A[ 7680] =B [7680 ] * C[ 7680 ]
SIMD | AL 76811 =B [ 7681 ] * C[ 7681 ]
Thread0 |
A[ 7711] =B [ 7711 ] * C[ 7711 ]
Al 77121 =B [7712 ] * C[ 7712 ]
SIMD | AL 77131 =B [7713 ] * C[ 7713 ]
Thread [Nl . . . . . .
Block A[ 77431 =B [7743 ] * C[ 7743 ]
15 AL 77441 =B [ 7744 ] * C[ 7744 ]
AL 81597 = B [8159 ] * C[ 8159 ]
A[ 8160] = B [ 8160 ] * C[ 8160 ]

SIMD = *
SIMD AL 81611 - B [8161 ] * C[ 8161 ]
A[ 8191] =B [8191 ] * C[ 8191 ]

Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD instructions
to a vector-vector multiply, with each vector being 8192 elements long. Each thread of SIMD instructions calculates 32
elements per instruction, and in this example, each Thread Block contains 16 threads of SIMD instructions and the Grid contains 16
Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks to multithreaded SIMD Processors, and the hardware
Thread Scheduler picks which thread of SIMD instructions to run each clock cycle within a SIMD Processor. Only SIMD Threads in
the same Thread Block can communicate via local memory. (The maximum number of SIMD Threads that can execute

simultaneously per Thread Block is 32 for Pascal GPUs.)
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Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. It has 16 SIMD Lanes. The SIMD Thread Scheduler
has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters (PCs). Note that each
lane has 1024 32-bit registers.
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Figure 4.15 Full-chip block diagram of the Pascal P100 GPU. It has 56 multithreaded SIMD Processors, each with an L1 cache
and local memory, 32 L2 units, and a memory-bus width of 4096 data wires. (It has 60 blocks, with four spares to improve yield.) The
P100 has 4 HBM2 ports supporting up to 16 GB of capacity. It contains 15.4 billion transistors.
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Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a ready thread of SIMD instructions and issues an
instruction synchronously to all the SIMD Lanes executing the SIMD Thread. Because threads of SIMD instructions are independent,
the scheduler may select a different SIMD Thread each time.
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Group Instruction Example Meaning Comments
arithmetic .type = .s32, .u32, .f32, .s64,
add.type add.f32d, a. b d=a+b;
sub.type sub.f32d.,a. b d=a-b;
mul.type mul.f32d,a, b d=a*b;
mad.type mad.f32d, a, b, d=a*b+c; multiply-add
div.type div.f32d.a. b d=a/b; multiple microinstructions
rem.type rem.u32d, a, b d=a%b; integer remainder

i abs.type abs.f32d, a d=|a|;

neg.type neg.f32d, a d=0-a;:
min.type min.f32d,a, b d=(a<b)?a:b; floating selects non-NaN
max.type max.f32d, a, b d=(a>Db)?a:b; floating selects non-NaN
setp.cmp.type setp.1t.f32p.a. b p=(a<b): compare and set predicate
numeric ,cmp =eq, ne, 1t, le, gt, ge; unordered cmp = equ, neu, Ttu, leu, gtu, geu, num, nan
mov.type mov.b32d, a d=a; move
selp.type selp.f32d.a.b.p d=p?a:b: select with predicate
cvt.dtype.atype cvt.f32.532d, a d=convert(a); convert atype (o dtype
special .type = .f32 (some .f64)
rcp.type rcp.f32d, a d=1/a; reciprocal
sqrt.type sqrt.f32d, a d=sqgrt(a); square root
rsqrt.type rsqrt.f32d, a d=1/sqrt(a); reciprocal square root

Special function — — -
sin.type sin.f32d, a d=sin(a); sine
cos.type cos.f32d, a d=cos(a): cosine
192.type 192.f32d, a d=1og(a)/l0g(2) binary logarithm
ex2.type ex2.f32d, a d=2%*a; binary exponential
logic.type = .pred,.b32, .b64
and.type and.b32d, a, b d=akb;
or.type or.b32d, a, b
xor.type xor.b32d, a. b

Logical
not.type not.b32d, a, b one’s complement
cnot.type cnot.b32d, a, b C logical not
shl.type sh1.b32d,a. b shift left
shr.type shr,s32d, a, b shift right
memory.space = .global, .shared, .local, .const; .type=. .b32, .b64
1d.space. type 1d.global.b32 d, [a+off] d=*(a+off); Joad from memory space
st.space.type st.shared.b32 [d+off], a *(dtoff) =a; store (0 memory space

Memory access  tex.nd.dtyp.btype tex.2d.v4.f32.f32d, a. b d=tex2d(a, b); texture lookup
atom.spc.op.type atom.global.add.u32d.[al. b atomic [ d=*a; atomic read-modify-write

atom.global.cas.b32d,(a), b, c *a=op(*a, b): | operation

atom.op =and, or, xor, add, min, max, exch, cas; .spc=.global: .type=.b32
branch @p bra target if (p) goto target; conditional branch
call call (ret), func, (params) ret = func(params); call function

Control flow ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit exit exit; terminate thread execution

Figure 4.17 Basic PTX GPU thread instructions.
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CUDA thread
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Sequence

GPU memory

Figure 4.18 GPU memory structures. GPU memory is shared by all Grids (vectorized loops), local memory is shared by all threads
of SIMD instructions within a Thread Block (body of a vectorized loop), and private memory is private to a single CUDA Thread.
Pascal allows preemption of a Grid, which requires that all local and private memory be able to be saved in and restored from global
memory. For completeness sake, the GPU can also access CPU memory via the PCle bus. This path is commonly used for a final
result when its address is in host memory. This option eliminates a final copy from the GPU memory to the host memory.
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SIMD thread scheduler SIMD thread scheduler

Instruction dispatch unit

Instruction dispatch unit

SIMD thread 8 instruction 11 SIMD thread 9 instruction 11

SIMD thread 2 instruction 42 SIMD thread 3 instruction 33

SIMD thread 14 instruction 95 SIMD thread 15 instruction 95

Time

SIMD thread 8 instruction 12 SIMD thread 9 instruction 12

SIMD thread 14 instruction 96 SIMD thread 3 instruction 34

SIMD thread 2 instruction 43 SIMD thread 15 instruction 96

Figure 4.19 Block diagram of Pascal’s dual SIMD Thread scheduler. Compare this design to the single SIMD Thread design in
Figure 4.16.
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Texture / L1 Cache
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Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes (cores) has a
pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these units, and a queue
for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP units) that perform 64-bit floating-point arithmetic,
16 load-store units (LD/STs), and 16 special function units (SFUs) that calculate functions such as square roots, reciprocals, sines,

and cosines.
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Closest CUDA/NVIDIA
GPU term

Comment

Grid

Concepts are similar, with the GPU using the less descriptive term

Because a vector instruction (PTX instruction) takes just 2 cycles
on Pascal to complete, a chime is short in GPUs. Pascal has two
execution units that support the most common floating-point
instructions that are used alternately, so the effective issue rate is 1
instruction every clock cycle

PTX Instruction

A PTX instruction of a SIMD Thread is broadcast to all SIMD
Lanes, so it is similar to a vector instruction

Global load/store (1d.
global/st.global)

All GPU loads and stores are gather and scatter, in that each SIMD
Lane sends a unique address. It’s up to the GPU Coalescing Unit to
get unit-stride performance when addresses from the SIMD Lanes
allow it

Predicate Registers and
Internal Mask Registers

Vector mask registers are explicitly part of the architectural state,
while GPU mask registers are internal to the hardware. The GPU
conditional hardware adds a new feature beyond predicate registers
to manage masks dynamically

Multithreaded SIMD
Processor

These are similar, but SIMD Processors tend to have many lanes,
taking a few clock cycles per lane to complete a vector, while
vector architectures have few lanes and take many cycles to
complete a vector. They are also multithreaded where vectors
usually are not

Thread Block Scheduler

The closest is the Thread Block Scheduler that assigns Thread
Blocks to a multithreaded SIMD Processor. But GPUs have no
scalar-vector operations and no unit-stride or strided data transfer
instructions, which Control Processors often provide in vector
architectures

System Processor

Because of the lack of shared memory and the high latency to
communicate over a PCI bus (1000s of clock cycles), the system
processor in a GPU rarely takes on the same tasks that a scalar
processor does in a vector architecture

SIMD Lane

Very similar; both are essentially functional units with registers

SIMD Lane Registers

The equivalent of a vector register is the same register in all 16
SIMD Lanes of a multithreaded SIMD Processor running a thread
of SIMD instructions. The number of registers per SIMD Thread is
flexible, but the maximum is 256 in Pascal, so the maximum
number of vector registers is 256
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Figure 4.21 GPU equivalent to vector terms.
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Feature Multicore with SIMD GPU
SIMD Processors 4-8 8-32
SIMD Lanes/Processor 24 up to 64
Multithreading hardware support for SIMD Threads 2-4 up to 64
Typical ratio of single-precision to double-precision performance 21 2:1
Largest cache size 40 MB 4 MB
Size of memory address 64-bit 64-bit
Size of main memory up to 1024 GB up to 24 GB
Memory protection at level of page Yes Yes
Demand paging Yes Yes
Integrated scalar processor/SIMD Processor Yes No
Cache coherent Yes Yes on some systems

© 2019 Elsevier Inc. All rights reserved.

Figure 4.23 Similarities and differences between multicore with multimedia SIMD extensions and recent GPUs.
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More Official
descriptive CUDA/
name used in  NVIDIA Short explanation and AMD and
Type this book term OpenCL terms Official CUDA/NVIDIA definition
Vectorizable Grid A vectorizable loop, executed on the A Grid is an array of Thread Blocks
loop GPU, made up of one or more “Thread  that can execute concurrently,
Blocks” (or bodies of vectorized loop)  sequentially, or a mixture
that can execute in parallel. OpenCL
name is “index range.” AMD name is
“NDRange”
é Body of Thread A vectorized loop executed on a A Thread Block is an array of CUDA
B Vectorized Block multithreaded SIMD Processor, made Threads that execute concurrently
g loop up of one or more threads of SIMD and can cooperate and communicate
< instructions. These SIMD Threads can ~ via shared memory and barrier
=] communicate via local memory. AMD  synchronization. A Thread Block has
§a and OpenCL name is “work group” a Thread Block ID within its Grid
E Sequence of CUDA A vertical cut of a thread of SIMD A CUDA Thread is a lightweight
SIMD Lane Thread instructions corresponding to one thread that executes a sequential
operations element executed by one SIMD Lane. program and that can cooperate with
Result is stored depending on mask. other CUDA Threads executing in
AMD and OpenCL call a CUDA Thread  the same Thread Block. A CUDA
a “work item” Thread has a thread ID within its
Thread Block
A thread of Warp A traditional thread, but it contains just A warp is a set of parallel CUDA
s SIMD SIMD instructions that are executed ona  Threads (e.g., 32) that execute the
%. instructions multithreaded SIMD Processor. Results ~ same instruction together in a
= are stored depending on a per-element multithreaded SIMT/SIMD
,_;:E mask. AMD name is “wavefront” Processor
3 SIMD PTX A single SIMD instruction executed A PTX instruction specifies an
= instruction instruction  across the SIMD Lanes. AMD name is  instruction executed by a CUDA

“AMDIL” or “FSAIL” instruction

Thread

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL names are given

in the book’s definitions.
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More

Short explanation and AMD and
OpenCL terms

Official CUDA/NVIDIA definition

Multithreaded SIMD Processor that
executes thread of SIMD
instructions, independent of other
SIMD Processors. Both AMD and
OpenCL call it a “compute unit.”
However, the CUDA programmer
writes program for one lane rather
than for a “vector” of multiple SIMD
Lanes

A streaming multiprocessor (SM) is
a multithreaded SIMT/SIMD
Processor that executes warps of
CUDA Threads. A SIMT program
specifies the execution of one
CUDA Thread, rather than a vector
of multiple SIMD Lanes

Assigns multiple bodies of
vectorized loop to multithreaded
SIMD Processors. AMD name is
“Ultra-Threaded Dispatch Engine”

Distributes and schedules Thread
Blocks of a grid to streaming
multiprocessors as resources
become available

Hardware unit that schedules and
issues threads of SIMD instructions
when they are ready to execute;
includes a scoreboard to track SIMD
Thread execution. AMD name is
“Work Group Scheduler”

A warp scheduler in a streaming
multiprocessor schedules warps for
execution when their next
instruction is ready to execute

Hardware SIMD Lane that executes
the operations in a thread of SIMD
instructions on a single element.
Results are stored depending on
mask. OpenCL calls it a “processing
element.” AMD name is also “SIMD
Lane”

A thread processor is a datapath and
register file portion of a streaming
multiprocessor that executes
operations for one or more lanes of a
warp

DRAM memory accessible by all
multithreaded SIMD Processors in a
GPU. OpenCL calls it “global
memory”

Global memory is accessible by all
CUDA Threads in any Thread Block
in any grid; implemented as a region
of DRAM, and may be cached

Portion of DRAM memory private
to each SIMD Lane. Both AMD and
OpenCL call it “private memory™

Private “thread-local” memory for a
CUDA Thread; implemented as a
cached region of DRAM

Fast local SRAM for one
multithreaded SIMD Processor,
unavailable to other SIMD
Processors. OpenCL calls it “local
memory.” AMD calls it “group
memory”

Fast SRAM memory shared by the
CUDA Threads composing a Thread
Block, and private to that Thread
Block. Used for communication
among CUDA Threads in a Thread
Block at barrier synchronization
points

descriptive Official
name used in  CUDA/

Type this book NVIDIA term
Multithreaded ~ Streaming
SIMD multiprocessor
processor
Thread Block  Giga Thread

?';f Scheduler Engine

E3

E

=

_E_" SIMD Thread ~ Warp

;ﬁ) scheduler scheduler
SIMD Lane Thread

processor
GPU Memory  Global
memory

Private Local memory
memory

E

-5 Local memory  Shared

= memory

jrd

S

£

L

=
SIMD Lane Registers
registers

Registers in a single SIMD Lane
allocated across body of vectorized
loop. AMD also calls them
“registers”

Private registers for a CUDA
Thread; implemented as
multithreaded register file for certain
lanes of several warps for each
thread processor

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our descriptive
terms “local memory” and “private memory” use the OpenCL terminology. NVIDIA uses SIMT (single-instruction multiple-thread)
rather than SIMD to describe a streaming multiprocessor. SIMT is preferred over SIMD because the per-thread branching and

control flow are unlike any SIMD machine.
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NVIDIA Tegra 2

NVIDIA Tesla P100

Market

Automotive, Embedded,
Console, Tablet

Desktop, server

System processor

Six-Core ARM (2 Denver2

Not applicable

+4 A57)
System interface Not applicable PCI Express x 16 Gen 3
System interface Not applicable 16 GB/s (each direction),
bandwidth 32 GB/s (total)
Clock rate 1.5 GHz 1.4 GHz
SIMD multiprocessors 2 56
SIMD Lanes/SIMD 128 64

multiprocessor

Memory interface

128-bit LP-DDR4

4096-bit HBM2

Memory bandwidth 50 GB/s 732 GB/s
Memory capacity up to 16 GB up to 16 GB
Transistors 7 billion 15.3 billion
Process TSMC 16 nm FinFET TSMC 16 nm FinFET
Die area 147 mm? 645 mm>
Power 20W 300 W

Figure 4.26 Key features of the GPUs for embedded clients and servers.
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Core i7-960 GTX 280 Ratio 280/i7
Number of processing elements (cores or SMs) 4 30 75
Clock frequency (GHz) 3.2 1:3 0.41
Die size 263 576 22
Technology Intel 45 nm TSMC 65 nm 1.6
Power (chip, not module) 130 130 1.0
Transistors 700 M 1400 M 2.0
Memory bandwidth (GB/s) 32 141 4.4
Single-precision SIMD width 4 8 2.0
Double-precision SIMD width 2 1 0.5
Peak single-precision scalar FLOPS (GFLOP/S) 26 117 4.6
Peak single-precision SIMD FLOPS (GFLOP/S) 102 311-933 3.0-9.1
(SP 1 add or multiply) N.A. 311) 3.0)
(SP 1 instruction fused multiply-adds) N.A. (622) (6.1)
(Rare SP dual issue fused multiply-add and multiply) N.A. (933) ©.1)
Peak double-precision SIMD FLOPS (GFLOP/S) 51 78 1:5

Figure 4.27 Intel Core i7-960 and NVIDIA GTX 280. The rightmost column shows the ratios of GTX 280 to Core i7. For single-
precision SIMD FLOPS on the GTX 280, the higher speed (933) comes from a very rare case of dual issuing of fused multiply-add
and multiply. More reasonable is 622 for single fused multiply-adds. Note that these memory bandwidths are higher than in Figure
4.28 because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark
program. From Table 2 in Lee, W.V, et al., 2010. Debunking the 100 x GPU vs. CPU myth: an evaluation of throughput computing

on CPU and GPU. In: Proc. 37th Annual Int'l. Symposium on Computer Architecture (ISCA), June 19-23, 2010, Saint-Malo, France.
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Figure 4.28 Roofline model (Williams et al. 2009). These rooflines show double-precision floating-point performance in the
top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also in the bottom row to give
perspective.) The Core i7 920 on the left has a peak DP FP performance of 42.66 GFLOP/s, a SP FP peak of 85.33 GFLOP/s,
and a peak memory bandwidth of 16.4 GB/s. The NVIDIA GTX 280 has a DP FP peak of 78 GFLOP/s, SP FP peak of 624
GFLOP/s, and 127 GB/s of memory bandwidth. The dashed vertical line on the left represents an arithmetic intensity of 0.5
FLOP/byte. It is limited by memory bandwidth to no more than 8 DP GFLOP/s or 8 SP GFLOP/s on the Core i7. The dashed
vertical line to the right has an arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/s and
64 SP GFLOP/s on the Core i7 and to 78 DP GFLOP/s and 512 DP GFLOP/s on the GTX 280. To hit the highest computation
rate on the Core i7, you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX
280, you need to use fused multiply-add instructions on all multithreaded SIMD Processors.
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Kernel Application SIMD TLP Characteristics
SGEMM (SGEMM) Linear algebra ~ Regular Across 2D Compute bound after tiling
tiles
Monte Carlo (MC) Computational ~ Regular Across Compute bound
finance paths
Convolution (Conv) Image analysis ~ Regular Across Compute bound; BW bound for small filters
pixels
FFT (FFT) Signal Regular Across Compute bound or BW bound depending
processing smaller on size
FFTs
SAXPY (SAXPY) Dot product Regular Across BW bound for large vectors
vector
LBM (LBM) Time migration  Regular Across BW bound
cells
Constraint solver (Solv)  Rigid body Gather/ Across Synchronization bound
physics Scatter constraints
SpMV (SpMV) Sparse solver Gather Across BW bound for typical large matrices
nonzero
GJK (GJK) Collision Gather/ Across Compute bound
detection Scatter objects
Sort (Sort) Database Gather/ Across Compute bound
Scatter elements
Ray casting (RC) Volume Gather Across 4-8 MB first level working set; over
rendering rays 500 MB last level working set
Search (Search) Database Gather/ Across Compute bound for small tree, BW bound at
Scatter queries bottom of tree for large tree
Histogram (Hist) Image analysis ~ Requires Across Reduction/synchronization bound
conflict pixels
detection
Bilateral (Bilat) Image analysis ~ Regular Across Compute bound
pixels

Figure 4.29 Throughput computing kernel characteristics. The name in parentheses identifies the benchmark name in this
section. The authors suggest that code for both machines had equal optimization effort. From Table 1 in Lee, W.V., et al., 2010.
Debunking the 100 x GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proc. 37th Annual Int’l.

Symposium on Computer Architecture (ISCA), June 19-23, 2010, Saint-Malo, France.
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GTX 280/

Kernel Units Core i7-960 GTX 280 i7-960
SGEMM GFLOP/s 94 364 39
MC Billion paths/s 0.8 1.4 1.8
Conv Million pixels/s 1250 3500 2.8
FFT GFLOP/s 714 213 3.0
SAXPY GB/s 16.8 88.8 5.3
LBM Million lookups/s 85 426 5.0
Solv Frames/s 103 52 0.5
SpMV GFLOP/s 4.9 9.1 1.9
GJK Frames/s 67 1020 15.2
Sort Million elements/s 250 198 0.8
RC Frames/s 5 8.1 1.6
Search Million queries/s 50 90 1.8
Hist Million pixels/s 1517 2583 1.7
Bilat Million pixels/s 83 475 5.7

Figure 4.30 Raw and relative performance measured for the two platforms. In this study, SAXPY is used only as a measure of
memory bandwidth, so the right unit is GB/s and not GFLOP/s. Based on Table 3 in Lee, W.V., et al., 2010. Debunking the 100 x
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proc. 37th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 19-23, 2010, Saint-Malo, France.
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Xeon Platinum 8180 P100 Ratio P100/Xeon

Number of processing elements (cores or SMs) 28 56 2.0
Clock frequency (GHz) 2.5 13 0.52
Die size N.A. 610 mm? -

Technology Intel 14 nm TSMC 16 nm 1.1
Power (chip, not module) 80W 300 W 3.8
Transistors N.A. 153B -

Memory bandwidth (GB/s) 199 732 3.7
Single-precision SIMD width 16 8 0.5
Double-precision SIMD width 8 4 0.5
Peak single-precision SIMD FLOPS (GFLOP/s) 4480 10,608 24
Peak double-precision SIMD FLOPS (GFLOP/s) 2240 5304 24

Figure 4.31 Intel Xeon ?? and NVIDIA P100. The rightmost column shows the ratios of P100 to the Xeon. Note that these memory
bandwidths are higher than in Figure 4.28 because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors
as measured by a benchmark program.

© 2019 Elsevier Inc. All rights reserved.



GTX 280/i7-

Kernel Units Xeon Platinum 8180 P100  P100/Xeon 960
SGEMM GFLOP/s 3494 6827 2.0 3.9
DGEMM  GFLOP/s 1693 3490 2.1 —
FFT-S GFLOP/s 410 1820 44 3.0
FFT-D GFLOP/s 190 811 4.2 —
SAXPY GB/s 207 544 2.6 53
DAXPY GB/s 212 556 2.6 —

Figure 4.32 Raw and relative performance measured for modern versions of the two platforms as compared to the relative
performance of the original platforms. Like Figure 4.30, SAXPY and DAXPY are used only as a measure of memory bandwidth,
so the proper unit is GB/s and not GFLOP/s.

© 2019 Elsevier Inc. All rights reserved.
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Figure 4.33 Roofline models of older and newer CPUs versus older and newer GPUs. The higher roofline for each computer is

single-precision floating-point performance, and the lower one is double

precision performance.

34

© 2019 Elsevier Inc. All rights reserved.



Minimum rate for Maximum rate for Harmonic mean of all
Processor any loop (MFLOPS) any loop (MFLOPS) 24 loops (MFLOPS)

MIPS M/ 0.80 3.89 1.85
120-5
Stardent- 0.41 10.08 1.72
1500

Figure 4.34 Performance measurements for the Livermore Fortran kernels on two different processors. Both the MIPS
M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-
1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the minimum rate) of the MIPS
M/120-5, which uses the MIPS R2010 FP chip. The vector processor is more than a factor of 2.5 x faster for a highly vectorizable
loop (maximum rate). However, the lower scalar performance of the Stardent-1500 negates the higher vector performance when total
performance is measured by the harmonic mean on all 24 loops.
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Figure 4.35 Sample tree.
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