
© 2019 Elsevier Inc. All rights reserved. 

Chapter 4 
Data-Level Parallelism in 
Vector, SIMD, and GPU 

Architectures 



© 2019 Elsevier Inc. All rights reserved. 2 

Figure 4.1 The basic structure of a vector architecture, RV64V, which includes a RISC-V scalar architecture. There are also 
32 vector registers, and all the functional units are vector functional units. The vector and scalar registers have a significant number 
of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these 
ports to the inputs and outputs of the vector functional units. 



© 2019 Elsevier Inc. All rights reserved. 3 

Figure 4.2 The RV64V vector instructions. All use the R instruction format. Each vector operation with two operands is shown 
with both operands being vector (.vv), but there are also versions where the second operand is a scalar register (.vs) and, when it 
makes a difference, where the first operand is a scalar register and the second is a vector register (.sv). The type and width of the 
operands are determined by configuring each vector register rather than being supplied by the instruction. In addition to the vector 
registers and predicate registers, there are two vector control and status registers (CSRs), vl and vctype, discussed below. The 
strided and indexed data transfers are also explained later. Once completed, RV64 will surely have more instructions, but the ones 
in this figure will be included. 



© 2019 Elsevier Inc. All rights reserved. 4 

Figure 4.3 Data sizes supported for RV64V assuming it also has the single- and double-precision floating-point extensions 
RVS and RVD. Adding RVV to such a RISC-V design means the scalar unit must also add RVH, which is a scalar instruction 
extension to support half-precision (16-bit) IEEE 754 floating point. Because RV32V would not have doubleword scalar operations, it 
could drop 64-bit integers from the vector unit. If a RISC-V implementation didn’t include RVS or RVD, it could omit the vector 
floating-point instructions. 



© 2019 Elsevier Inc. All rights reserved. 5 

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction, C = A + B. The 
vector processor (A) on the left has a single add pipeline and can complete one addition per clock cycle. The vector processor (B) 
on the right has four add pipelines and can complete four additions per clock cycle. The elements within a single vector add 
instruction are interleaved across the four pipelines. The set of elements that move through the pipelines together is termed an 
element group. Reproduced with permission from Asanovic, K., 1998. Vector Microprocessors (Ph.D. thesis). Computer Science 
Division, University of California, Berkeley. 



© 2019 Elsevier Inc. All rights reserved. 6 

Figure 4.5 Structure of a vector unit containing four lanes. The vector register memory is divided across the lanes, with each 
lane holding every fourth element of each vector register. The figure shows three vector functional units: an FP add, an FP multiply, 
and a load-store unit. Each of the vector arithmetic units contains four execution pipelines, one per lane, which act in concert to 
complete a single vector instruction. Note how each section of the vector register file needs to provide only enough ports for 
pipelines local to its lane. This figure does not show the path to provide the scalar operand for vector-scalar instructions, but the 
scalar processor (or Control Processor) broadcasts a scalar value to all lanes. 



© 2019 Elsevier Inc. All rights reserved. 7 

Figure 4.6 A vector of arbitrary length processed with strip mining. All blocks but the first are of length MVL, utilizing the full 
power of the vector processor. In this figure, we use the variable m for the expression (n % MVL). (The C operator % is modulo.) 



© 2019 Elsevier Inc. All rights reserved. 8 

Figure 4.7 Level of vectorization among the Perfect Club benchmarks when executed on the Cray Y-MP (Vajapeyam, 1991). 
The first column shows the vectorization level obtained with the compiler without hints, and the second column shows the results 
after the codes have been improved with hints from a team of Cray Research programmers. 



© 2019 Elsevier Inc. All rights reserved. 9 

Figure 4.8 Summary of typical SIMD multimedia support for 256-bit-wide operations. Note that the IEEE 754-2008 floating-
point standard added half-precision (16-bit) and quad-precision (128-bit) floating-point operations. 



© 2019 Elsevier Inc. All rights reserved. 10 

Figure 4.9 AVX instructions for x86 architecture useful in double-precision floating-point programs. Packed-double for 256-
bit AVX means four 64-bit operands executed in SIMD mode. As the width increases with AVX, it is increasingly important to add 
data permutation instructions that allow combinations of narrow operands from different parts of the wide registers. AVX includes 
instructions that shuffle 32-bit, 64-bit, or 128-bit operands within a 256-bit register. For example, BROADCAST replicates a 64-bit 
operand four times in an AVX register. AVX also includes a large variety of fused multiply-add/subtract instructions; we show just two 
here. 



© 2019 Elsevier Inc. All rights reserved. 11 

Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run the program divided by the 
number of bytes accessed in main memory (Williams et al., 2009). Some kernels have an arithmetic intensity that scales with 
problem size, such as a dense matrix, but there are many kernels with arithmetic intensities independent of problem size. 



© 2019 Elsevier Inc. All rights reserved. 12 

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore computer with 
SIMD extensions on the right (Williams et al., 2009). This Roofline is for unit-stride memory accesses and double-precision 
floating-point performance. NEC SX-9 is a vector supercomputer announced in 2008 that cost millions of dollars. It has a peak DP 
FP performance of 102.4 GFLOP/s and a peak memory bandwidth of 162 GB/s from the Stream benchmark. The Core i7 920 has a 
peak DP FP performance of 42.66 GFLOP/s and a peak memory bandwidth of 16.4 GB/s. The dashed vertical lines at an arithmetic 
intensity of 4 FLOP/byte show that both processors operate at peak performance. In this case, the SX-9 at 102.4 FLOP/s is 2.4 × 
faster than the Core i7 at 42.66 GFLOP/s. At an arithmetic intensity of 0.25 FLOP/byte, the SX-9 is 10 × faster at 40.5 GFLOP/s 
versus 4.1 GFLOP/s for the Core i7. 



© 2019 Elsevier Inc. All rights reserved. 13 

Figure 4.12 Quick guide to GPU terms used in this chapter. We use the first column for hardware terms. Four groups cluster 
these 11 terms. From top to bottom: program abstractions, machine objects, processing hardware, and memory hardware. Figure 
4.21 on page 312 associates vector terms with the closest terms here, and Figure 4.24 on page 317 and Figure 4.25 on page 318 
reveal the official CUDA/NVIDIA and AMD terms and definitions along with the terms used by OpenCL. 



© 2019 Elsevier Inc. All rights reserved. 14 

Figure 4.13 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic blocks), and threads of SIMD instructions 
to a vector-vector multiply, with each vector being 8192 elements long. Each thread of SIMD instructions calculates 32 
elements per instruction, and in this example, each Thread Block contains 16 threads of SIMD instructions and the Grid contains 16 
Thread Blocks. The hardware Thread Block Scheduler assigns Thread Blocks to multithreaded SIMD Processors, and the hardware 
Thread Scheduler picks which thread of SIMD instructions to run each clock cycle within a SIMD Processor. Only SIMD Threads in 
the same Thread Block can communicate via local memory. (The maximum number of SIMD Threads that can execute 
simultaneously per Thread Block is 32 for Pascal GPUs.) 



© 2019 Elsevier Inc. All rights reserved. 15 

Figure 4.14 Simplified block diagram of a multithreaded SIMD Processor. It has 16 SIMD Lanes. The SIMD Thread Scheduler 
has, say, 64 independent threads of SIMD instructions that it schedules with a table of 64 program counters (PCs). Note that each 
lane has 1024 32-bit registers. 



© 2019 Elsevier Inc. All rights reserved. 16 

Figure 4.15 Full-chip block diagram of the Pascal P100 GPU. It has 56 multithreaded SIMD Processors, each with an L1 cache 
and local memory, 32 L2 units, and a memory-bus width of 4096 data wires. (It has 60 blocks, with four spares to improve yield.) The 
P100 has 4 HBM2 ports supporting up to 16 GB of capacity. It contains 15.4 billion transistors. 



© 2019 Elsevier Inc. All rights reserved. 17 

Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a ready thread of SIMD instructions and issues an 
instruction synchronously to all the SIMD Lanes executing the SIMD Thread. Because threads of SIMD instructions are independent, 
the scheduler may select a different SIMD Thread each time. 



© 2019 Elsevier Inc. All rights reserved. 18 

Figure 4.17 Basic PTX GPU thread instructions. 



© 2019 Elsevier Inc. All rights reserved. 19 

Figure 4.18 GPU memory structures. GPU memory is shared by all Grids (vectorized loops), local memory is shared by all threads 
of SIMD instructions within a Thread Block (body of a vectorized loop), and private memory is private to a single CUDA Thread. 
Pascal allows preemption of a Grid, which requires that all local and private memory be able to be saved in and restored from global 
memory. For completeness sake, the GPU can also access CPU memory via the PCIe bus. This path is commonly used for a final 
result when its address is in host memory. This option eliminates a final copy from the GPU memory to the host memory. 



© 2019 Elsevier Inc. All rights reserved. 20 

Figure 4.19 Block diagram of Pascal’s dual SIMD Thread scheduler. Compare this design to the single SIMD Thread design in 
Figure 4.16. 



© 2019 Elsevier Inc. All rights reserved. 21 

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Pascal GPU. Each of the 64 SIMD Lanes (cores) has a 
pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these units, and a queue 
for holding results. The 64 SIMD Lanes interact with 32 double-precision ALUs (DP units) that perform 64-bit floating-point arithmetic, 
16 load-store units (LD/STs), and 16 special function units (SFUs) that calculate functions such as square roots, reciprocals, sines, 
and cosines. 



© 2019 Elsevier Inc. All rights reserved. 22 

Figure 4.21 GPU equivalent to vector terms. 



© 2019 Elsevier Inc. All rights reserved. 23 

Figure 4.22 A vector processor with four lanes on the left and a multithreaded SIMD Processor of a GPU with four SIMD 
Lanes on the right. (GPUs typically have 16 or 32 SIMD Lanes.) The Control Processor supplies scalar operands for scalar-
vector operations, increments addressing for unit and nonunit stride accesses to memory, and performs other accounting-type 
operations. Peak memory performance occurs only in a GPU when the Address Coalescing Unit can discover localized addressing. 
Similarly, peak computational performance occurs when all internal mask bits are set identically. Note that the SIMD Processor has 
one PC per SIMD Thread to help with multithreading. 



© 2019 Elsevier Inc. All rights reserved. 24 

Figure 4.23 Similarities and differences between multicore with multimedia SIMD extensions and recent GPUs. 



© 2019 Elsevier Inc. All rights reserved. 25 

Figure 4.24 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. OpenCL names are given 
in the book’s definitions. 



© 2019 Elsevier Inc. All rights reserved. 26 

Figure 4.25 Conversion from terms used in this chapter to official NVIDIA/CUDA and AMD jargon. Note that our descriptive 
terms “local memory” and “private memory” use the OpenCL terminology. NVIDIA uses SIMT (single-instruction multiple-thread) 
rather than SIMD to describe a streaming multiprocessor. SIMT is preferred over SIMD because the per-thread branching and 
control flow are unlike any SIMD machine. 



© 2019 Elsevier Inc. All rights reserved. 27 

Figure 4.26 Key features of the GPUs for embedded clients and servers. 



© 2019 Elsevier Inc. All rights reserved. 28 

Figure 4.27 Intel Core i7-960 and NVIDIA GTX 280. The rightmost column shows the ratios of GTX 280 to Core i7. For single-
precision SIMD FLOPS on the GTX 280, the higher speed (933) comes from a very rare case of dual issuing of fused multiply-add 
and multiply. More reasonable is 622 for single fused multiply-adds. Note that these memory bandwidths are higher than in Figure 
4.28 because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors as measured by a benchmark 
program. From Table 2 in Lee, W.V., et al., 2010. Debunking the 100 × GPU vs. CPU myth: an evaluation of throughput computing 
on CPU and GPU. In: Proc. 37th Annual Int’l. Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo, France. 



© 2019 Elsevier Inc. All rights reserved. 29 

Figure 4.28 Roofline model (Williams et al. 2009). These rooflines show double-precision floating-point performance in the 
top row and single-precision performance in the bottom row. (The DP FP performance ceiling is also in the bottom row to give 
perspective.) The Core i7 920 on the left has a peak DP FP performance of 42.66 GFLOP/s, a SP FP peak of 85.33 GFLOP/s, 
and a peak memory bandwidth of 16.4 GB/s. The NVIDIA GTX 280 has a DP FP peak of 78 GFLOP/s, SP FP peak of 624 
GFLOP/s, and 127 GB/s of memory bandwidth. The dashed vertical line on the left represents an arithmetic intensity of 0.5 
FLOP/byte. It is limited by memory bandwidth to no more than 8 DP GFLOP/s or 8 SP GFLOP/s on the Core i7. The dashed 
vertical line to the right has an arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/s and 
64 SP GFLOP/s on the Core i7 and to 78 DP GFLOP/s and 512 DP GFLOP/s on the GTX 280. To hit the highest computation 
rate on the Core i7, you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 
280, you need to use fused multiply-add instructions on all multithreaded SIMD Processors. 



© 2019 Elsevier Inc. All rights reserved. 30 

Figure 4.29 Throughput computing kernel characteristics. The name in parentheses identifies the benchmark name in this 
section. The authors suggest that code for both machines had equal optimization effort. From Table 1 in Lee, W.V., et al., 2010. 
Debunking the 100 × GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proc. 37th Annual Int’l. 
Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-Malo, France. 



© 2019 Elsevier Inc. All rights reserved. 31 

Figure 4.30 Raw and relative performance measured for the two platforms. In this study, SAXPY is used only as a measure of 
memory bandwidth, so the right unit is GB/s and not GFLOP/s. Based on Table 3 in Lee, W.V., et al., 2010. Debunking the 100 × 
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: Proc. 37th Annual Int’l. Symposium on Computer 
Architecture (ISCA), June 19–23, 2010, Saint-Malo, France. 



© 2019 Elsevier Inc. All rights reserved. 32 

Figure 4.31 Intel Xeon ?? and NVIDIA P100. The rightmost column shows the ratios of P100 to the Xeon. Note that these memory 
bandwidths are higher than in Figure 4.28 because these are DRAM pin bandwidths and those in Figure 4.28 are at the processors 
as measured by a benchmark program. 



© 2019 Elsevier Inc. All rights reserved. 33 

Figure 4.32 Raw and relative performance measured for modern versions of the two platforms as compared to the relative 
performance of the original platforms. Like Figure 4.30, SAXPY and DAXPY are used only as a measure of memory bandwidth, 
so the proper unit is GB/s and not GFLOP/s. 



© 2019 Elsevier Inc. All rights reserved. 34 

Figure 4.33 Roofline models of older and newer CPUs versus older and newer GPUs. The higher roofline for each computer is 
single-precision floating-point performance, and the lower one is double-precision performance. 



© 2019 Elsevier Inc. All rights reserved. 35 

Figure 4.34 Performance measurements for the Livermore Fortran kernels on two different processors. Both the MIPS 
M/120-5 and the Stardent-1500 (formerly the Ardent Titan-1) use a 16.7 MHz MIPS R2000 chip for the main CPU. The Stardent-
1500 uses its vector unit for scalar FP and has about half the scalar performance (as measured by the minimum rate) of the MIPS 
M/120-5, which uses the MIPS R2010 FP chip. The vector processor is more than a factor of 2.5 × faster for a highly vectorizable 
loop (maximum rate). However, the lower scalar performance of the Stardent-1500 negates the higher vector performance when total 
performance is measured by the harmonic mean on all 24 loops. 



© 2019 Elsevier Inc. All rights reserved. 36 

Figure 4.35 Sample tree. 


