
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5th

Edition

Chapter 5

Large and Fast:

Exploiting Memory

Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality

◼ Programs access a small proportion of

their address space at any time

◼ Temporal locality

◼ Items accessed recently are likely to be

accessed again soon

◼ e.g., instructions in a loop, induction variables

◼ Spatial locality

◼ Items near those accessed recently are likely

to be accessed soon

◼ E.g., sequential instruction access, array data

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

◼ Memory hierarchy

◼ Store everything on disk

◼ Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

◼ Main memory

◼ Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

◼ Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

◼ Block (aka line): unit of copying

◼ May be multiple words

◼ If accessed data is present in

upper level

◼ Hit: access satisfied by upper level

◼ Hit ratio: hits/accesses

◼ If accessed data is absent

◼ Miss: block copied from lower level

◼ Time taken: miss penalty

◼ Miss ratio: misses/accesses

= 1 – hit ratio

◼ Then accessed data supplied from

upper level

bj8sgs2poom1

bj8sgs2poom1

bj8sgs2poom1

Second

Level

Cache

(SRAM)

A Typical Memory Hierarchy

Control

Datapath

Secondary

Memory

(Disk)

On-Chip Components

R
e
g
F

ile

Main

Memory

(DRAM)

D
a

ta

C
a
c
h
e

In
s
tr

C
a
c
h
e

IT
L
B

D
T

L
B

Speed (%cycles): ½’s 1’s 10’s 100’s 10,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

Cost: highest lowest

❑ Take advantage of the principle of locality to present the

user with as much memory as is available in the

cheapest technology at the speed offered by the fastest

technology

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Memory Technology

◼ Static RAM (SRAM)

◼ 0.5ns – 2.5ns, $2000 – $5000 per GB

◼ Dynamic RAM (DRAM)

◼ 50ns – 70ns, $20 – $75 per GB

◼ Magnetic disk

◼ 5ms – 20ms, $0.20 – $2 per GB

◼ Ideal memory

◼ Access time of SRAM

◼ Capacity and cost/GB of disk

§
5
.2

 M
e
m

o
ry

 T
e
c
h
n
o
lo

g
ie

s

DRAM Technology

◼ Data stored as a charge in a capacitor

◼ Single transistor used to access the charge

◼ Must periodically be refreshed

◼ Read contents and write back

◼ Performed on a DRAM “row”

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Advanced DRAM Organization

◼ Bits in a DRAM are organized as a

rectangular array

◼ DRAM accesses an entire row

◼ Burst mode: supply successive words from a

row with reduced latency

◼ Double data rate (DDR) DRAM

◼ Transfer on rising and falling clock edges

◼ Quad data rate (QDR) DRAM

◼ Separate DDR inputs and outputs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

DRAM Performance Factors

◼ Row buffer

◼ Allows several words to be read and refreshed in

parallel

◼ Synchronous DRAM

◼ Allows for consecutive accesses in bursts without

needing to send each address

◼ Improves bandwidth

◼ DRAM banking

◼ Allows simultaneous access to multiple DRAMs

◼ Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Increasing Memory Bandwidth

◼ 4-word wide memory
◼ Miss penalty = 1 + 15 + 1 = 17 bus cycles

◼ Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

◼ 4-bank interleaved memory
◼ Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

◼ Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 6 — Storage and Other I/O Topics — 12

Flash Storage

◼ Nonvolatile semiconductor storage

◼ 100× – 1000× faster than disk

◼ Smaller, lower power, more robust

◼ But more $/GB (between disk and DRAM)

§
6
.4

 F
la

s
h
 S

to
ra

g
e

Chapter 6 — Storage and Other I/O Topics — 13

Flash Types

◼ NOR flash: bit cell like a NOR gate

◼ Random read/write access

◼ Used for instruction memory in embedded systems

◼ NAND flash: bit cell like a NAND gate

◼ Denser (bits/area), but block-at-a-time access

◼ Cheaper per GB

◼ Used for USB keys, media storage, …

◼ Flash bits wears out after 1000’s of accesses

◼ Not suitable for direct RAM or disk replacement

◼ Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other I/O Topics — 14

Disk Storage

◼ Nonvolatile, rotating magnetic storage

§
6
.3

 D
is

k
 S

to
ra

g
e

Chapter 6 — Storage and Other I/O Topics — 15

Disk Sectors and Access

◼ Each sector records
◼ Sector ID

◼ Data (512 bytes, 4096 bytes proposed)

◼ Error correcting code (ECC)
◼ Used to hide defects and recording errors

◼ Synchronization fields and gaps

◼ Access to a sector involves
◼ Queuing delay if other accesses are pending

◼ Seek: move the heads

◼ Rotational latency

◼ Data transfer

◼ Controller overhead

Chapter 6 — Storage and Other I/O Topics — 16

Disk Access Example

◼ Given
◼ 512B sector, 15,000rpm, 4ms average seek

time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

◼ Average read time
◼ 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

◼ If actual average seek time is 1ms
◼ Average read time = 3.2ms

Chapter 6 — Storage and Other I/O Topics — 17

Disk Performance Issues

◼ Manufacturers quote average seek time

◼ Based on all possible seeks

◼ Locality and OS scheduling lead to smaller actual

average seek times

◼ Smart disk controller allocate physical sectors on

disk

◼ Present logical sector interface to host

◼ SCSI, ATA, SATA

◼ Disk drives include caches

◼ Prefetch sectors in anticipation of access

◼ Avoid seek and rotational delay

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Cache Memory

◼ Cache memory

◼ The level of the memory hierarchy closest to

the CPU

◼ Given accesses X1, …, Xn–1, Xn

§
5
.3

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

◼ How do we know if

the data is present?

◼ Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Direct Mapped Cache

◼ Location determined by address

◼ Direct mapped: only one choice

◼ (Block address) modulo (#Blocks in cache)

◼ #Blocks is a

power of 2

◼ Use low-order

address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Tags and Valid Bits

◼ How do we know which particular block is

stored in a cache location?

◼ Store block address as well as the data

◼ Actually, only need the high-order bits

◼ Called the tag

◼ What if there is no data in a location?

◼ Valid bit: 1 = present, 0 = not present

◼ Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Cache Example

◼ 8-blocks, 1 word/block, direct mapped

◼ Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

Address Subdivision

CSE431 Chapter 5A.28 Irwin, PSU, 2008

The Memory Hierarchy: Terminology

❑ Block (or line): the minimum unit of information that is

present (or not) in a cache

❑ Hit Rate: the fraction of memory accesses found in a level

of the memory hierarchy

l Hit Time: Time to access that level which consists of

Time to access the block + Time to determine hit/miss

❑ Miss Rate: the fraction of memory accesses not found in a

level of the memory hierarchy 1 - (Hit Rate)

l Miss Penalty: Time to replace a block in that level with the

corresponding block from a lower level which consists of

Time to access the block in the lower level + Time to transmit that block

to the level that experienced the miss + Time to insert the block in that

level + Time to pass the block to the requestor

Hit Time << Miss Penalty

CSE431 Chapter 5A.29 Irwin, PSU, 2008

Characteristics of the Memory Hierarchy

Increasing

distance

from the

processor

in access

time

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive–

what is in L1$

is a subset of

what is in L2$

is a subset of

what is in MM

that is a

subset of is in

SM

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

CSE431 Chapter 5A.30 Irwin, PSU, 2008

How is the Hierarchy Managed?

❑ registers memory

l by compiler (programmer?)

❑ cache main memory

l by the cache controller hardware

❑ main memory disks

l by the operating system (virtual memory)

l virtual to physical address mapping assisted by the hardware
(TLB)

l by the programmer (files)

CSE431 Chapter 5A.31 Irwin, PSU, 2008

❑ Two questions to answer (in hardware):

Q1: How do we know if a data item is in the cache?

Q2: If it is, how do we find it?

❑ Direct mapped

Each memory block is mapped to exactly one block in the

cache

- lots of lower level blocks must share blocks in the cache

Address mapping (to answer Q2):

(block address) modulo (# of blocks in the cache)

Have a tag associated with each cache block that contains

the address information (the upper portion of the address)

required to identify the block (to answer Q1)

Cache Basics

CSE431 Chapter 5A.33 Irwin, PSU, 2008

Caching: A Simple First Example

00

01

10

11

Cache

Main Memory

Q2: How do we find it?

Use next 2 low order

memory address bits

– the index – to

determine which

cache block (i.e.,

modulo the number of

blocks in the cache)

Tag Data

Q1: Is it there?

Compare the cache

tag to the high order 2

memory address bits to

tell if the memory block

is in the cache

Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

One word blocks

Two low order bits

define the byte in the

word (32b words)

(block address) modulo (# of blocks in the cache)

Index

CSE431 Chapter 5A.35 Irwin, PSU, 2008

Direct Mapped Cache

0 1 2 3

4 3 4 15

❑ Consider the main memory word reference string

0 1 2 3 4 3 4 15

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 4

11 15

00 Mem(1)

00 Mem(2)

00 Mem(3)

Start with an empty cache - all

blocks initially marked as not valid

8 requests, 6 misses

CSE431 Chapter 5A.36 Irwin, PSU, 2008

❑ One word blocks, cache size = 1K words (or 4KB)

MIPS Direct Mapped Cache Example

20Tag
10

Index

DataIndex TagValid
0

1

2

.

.

.

1021

1022

1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte

offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

CSE431 Chapter 5A.37 Irwin, PSU, 2008

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0

1

2

.

.

.

253

254

255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte

offset

20

20Tag

Hit Data

32

Block offset

❑ Four words/block, cache size = 1K words

What kind of locality are we taking advantage of?

CSE431 Chapter 5A.39 Irwin, PSU, 2008

Taking Advantage of Spatial Locality

0

❑ Let cache block hold more than one word

0 1 2 3 4 3 4 15

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)
01 5 4

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

miss

11 15 14

Start with an empty cache - all

blocks initially marked as not valid

8 requests, 4 misses

CSE431 Chapter 5A.40 Irwin, PSU, 2008

Miss Rate vs Block Size vs Cache Size

❑ Miss rate goes up if the block size becomes a significant

fraction of the cache size because the number of blocks

that can be held in the same size cache is smaller

(increasing capacity misses)

CSE431 Chapter 5A.41 Irwin, PSU, 2008

Cache Field Sizes

❑ The number of bits in a cache includes both the storage

for data and for the tags

32-bit byte address

For a direct mapped cache with 2n blocks, n bits are used for the

index

For a block size of 2m words (2m+2 bytes), m bits are used to

address the word within the block and 2 bits are used to address

the byte within the word

❑ What is the size of the tag field?

❑ The total number of bits in a direct-mapped cache is then

2n x (block size + tag field size + valid field size)

❑ How many total bits are required for a direct mapped

cache with 16KB of data and 4-word blocks assuming a

32-bit address?

CSE431 Chapter 5A.42 Irwin, PSU, 2008

❑ Read hits (I$ and D$)

this is what we want!

❑ Write hits (D$ only)

require the cache and memory to be consistent

- always write the data into both the cache block and the next level in

the memory hierarchy (write-through)

- writes run at the speed of the next level in the memory hierarchy – so

slow! – or can use a write buffer and stall only if the write buffer is full

allow cache and memory to be inconsistent

- write the data only into the cache block (write-back the cache block to

the next level in the memory hierarchy when that cache block is

“evicted”)

- need a dirty bit for each data cache block to tell if it needs to be

written back to memory when it is evicted – can use a write buffer to

help “buffer” write-backs of dirty blocks

Handling Cache Hits

CSE431 Chapter 5A.43 Irwin, PSU, 2008

Sources of Cache Misses

❑ Compulsory (cold start or process migration, first
reference):

First access to a block, “cold” fact of life, not a whole lot you
can do about it. If you are going to run “millions” of instruction,
compulsory misses are insignificant

Solution: increase block size (increases miss penalty; very
large blocks could increase miss rate)

❑ Capacity:

Cache cannot contain all blocks accessed by the program

Solution: increase cache size (may increase access time)

❑ Conflict (collision):

Multiple memory locations mapped to the same cache location

Solution 1: increase cache size

Solution 2: increase associativity (stay tuned) (may increase
access time)

CSE431 Chapter 5A.44 Irwin, PSU, 2008

Handling Cache Misses (Single Word Blocks)

❑ Read misses (I$ and D$)

stall the pipeline, fetch the block from the next level in the memory

hierarchy, install it in the cache and send the requested word to

the processor, then let the pipeline resume

❑ Write misses (D$ only)

1. stall the pipeline, fetch the block from next level in the memory

hierarchy, install it in the cache (which may involve having to evict

a dirty block if using a write-back cache), write the word from the

processor to the cache, then let the pipeline resume

or

2. Write allocate – just write the word into the cache updating both

the tag and data, no need to check for cache hit, no need to stall

or

3. No-write allocate – skip the cache write (but must invalidate that

cache block since it will now hold stale data) and just write the

word to the write buffer (and eventually to the next memory level),

no need to stall if the write buffer isn’t full

CSE431 Chapter 5A.45 Irwin, PSU, 2008

Multiword Block Considerations

❑ Read misses (I$ and D$)

Processed the same as for single word blocks – a miss returns

the entire block from memory

Miss penalty grows as block size grows

- Early restart – processor resumes execution as soon as the

requested word of the block is returned

- Requested word first – requested word is transferred from the

memory to the cache (and processor) first

Nonblocking cache – allows the processor to continue to access

the cache while the cache is handling an earlier miss

❑ Write misses (D$)

If using write allocate must first fetch the block from memory and

then write the word to the block (or could end up with a “garbled”

block in the cache (e.g., for 4 word blocks, a new tag, one word

of data from the new block, and three words of data from the old

block)

CSE431 Chapter 5A.46 Irwin, PSU, 2008

❑ The off-chip interconnect and memory architecture can
affect overall system performance in dramatic ways

Memory Systems that Support Caches

CPU

Cache

DRAM

Memory

bus

One word wide organization (one word wide bus

and one word wide memory)

❑ Assume

1. 1 memory bus clock cycle to send the addr

2. 15 memory bus clock cycles to get the 1st

word in the block from DRAM (row cycle

time), 5 memory bus clock cycles for 2nd,

3rd, 4th words (column access time)

3. 1 memory bus clock cycle to return a word

of data

❑ Memory-Bus to Cache bandwidth

⚫ number of bytes accessed from memory

and transferred to cache/CPU per memory

bus clock cycle

32-bit data

&

32-bit addr

per cycle

on-chip

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Example: Larger Block Size

◼ 64 blocks, 16 bytes/block

◼ To what block number does address 1200

map?

◼ Block address = 1200/16 = 75

◼ Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Block Size Considerations

◼ Larger blocks should reduce miss rate

◼ Due to spatial locality

◼ But in a fixed-sized cache

◼ Larger blocks fewer of them

◼ More competition increased miss rate

◼ Larger blocks pollution

◼ Larger miss penalty

◼ Can override benefit of reduced miss rate

◼ Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Cache Misses

◼ On cache hit, CPU proceeds normally

◼ On cache miss

◼ Stall the CPU pipeline

◼ Fetch block from next level of hierarchy

◼ Instruction cache miss

◼ Restart instruction fetch

◼ Data cache miss

◼ Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Write-Through

◼ On data-write hit, could just update the block in
cache
◼ But then cache and memory would be inconsistent

◼ Write through: also update memory

◼ But makes writes take longer
◼ e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
◼ Effective CPI = 1 + 0.1×100 = 11

◼ Solution: write buffer
◼ Holds data waiting to be written to memory

◼ CPU continues immediately
◼ Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Write-Back

◼ Alternative: On data-write hit, just update

the block in cache

◼ Keep track of whether each block is dirty

◼ When a dirty block is replaced

◼ Write it back to memory

◼ Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Write Allocation

◼ What should happen on a write miss?

◼ Alternatives for write-through

◼ Allocate on miss: fetch the block

◼ Write around: don’t fetch the block

◼ Since programs often write a whole block before

reading it (e.g., initialization)

◼ For write-back

◼ Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Example: Intrinsity FastMATH

◼ Embedded MIPS processor

◼ 12-stage pipeline

◼ Instruction and data access on each cycle

◼ Split cache: separate I-cache and D-cache

◼ Each 16KB: 256 blocks × 16 words/block

◼ D-cache: write-through or write-back

◼ SPEC2000 miss rates

◼ I-cache: 0.4%

◼ D-cache: 11.4%

◼ Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Main Memory Supporting Caches

◼ Use DRAMs for main memory
◼ Fixed width (e.g., 1 word)

◼ Connected by fixed-width clocked bus
◼ Bus clock is typically slower than CPU clock

◼ Example cache block read
◼ 1 bus cycle for address transfer

◼ 15 bus cycles per DRAM access

◼ 1 bus cycle per data transfer

◼ For 4-word block, 1-word-wide DRAM
◼ Miss penalty = 1 + 4×15 + 4×1 = 65 bus cycles

◼ Bandwidth = 16 bytes / 65 cycles = 0.25 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Measuring Cache Performance

◼ Components of CPU time
◼ Program execution cycles

◼ Includes cache hit time

◼ Memory stall cycles
◼ Mainly from cache misses

◼ With simplifying assumptions:

§
5
.4

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

=

=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Cache Performance Example

◼ Given
◼ I-cache miss rate = 2%

◼ D-cache miss rate = 4%

◼ Miss penalty = 100 cycles

◼ Base CPI (ideal cache) = 2

◼ Load & stores are 36% of instructions

◼ Miss cycles per instruction
◼ I-cache: 0.02 × 100 = 2

◼ D-cache: 0.36 × 0.04 × 100 = 1.44

◼ Actual CPI = 2 + 2 + 1.44 = 5.44
◼ Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Average Access Time

◼ Hit time is also important for performance

◼ Average memory access time (AMAT)

◼ AMAT = Hit time + Miss rate × Miss penalty

◼ Example

◼ CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

◼ AMAT = 1 + 0.05 × 20 = 2ns

◼ 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Performance Summary

◼ When CPU performance increased

◼ Miss penalty becomes more significant

◼ Decreasing base CPI

◼ Greater proportion of time spent on memory

stalls

◼ Increasing clock rate

◼ Memory stalls account for more CPU cycles

◼ Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Associative Caches

◼ Fully associative

◼ Allow a given block to go in any cache entry

◼ Requires all entries to be searched at once

◼ Comparator per entry (expensive)

◼ n-way set associative

◼ Each set contains n entries

◼ Block number determines which set

◼ (Block number) modulo (#Sets in cache)

◼ Search all entries in a given set at once

◼ n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Spectrum of Associativity

◼ For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Associativity Example

◼ Compare 4-block caches

◼ Direct mapped, 2-way set associative,

fully associative

◼ Block access sequence: 0, 8, 0, 6, 8

◼ Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Associativity Example

◼ 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

◼ Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

How Much Associativity

◼ Increased associativity decreases miss

rate

◼ But with diminishing returns

◼ Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

◼ 1-way: 10.3%

◼ 2-way: 8.6%

◼ 4-way: 8.3%

◼ 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Set Associative Cache Organization

CSE431 Chapter 5A.67 Irwin, PSU, 2008

Average Memory Access Time (AMAT)

❑ A larger cache will have a longer access time. An

increase in hit time will likely add another stage to the

pipeline. At some point the increase in hit time for a

larger cache will overcome the improvement in hit rate

leading to a decrease in performance.

❑ Average Memory Access Time (AMAT) is the average to

access memory considering both hits and misses

AMAT = Time for a hit + Miss rate x Miss penalty

❑ What is the AMAT for a processor with a 20 psec clock, a

miss penalty of 50 clock cycles, a miss rate of 0.02

misses per instruction and a cache access time of 1

clock cycle?

CSE431 Chapter 5A.68 Irwin, PSU, 2008

Reducing Cache Miss Rates #1

1. Allow more flexible block placement

❑ In a direct mapped cache a memory block maps to
exactly one cache block

❑ At the other extreme, could allow a memory block to be
mapped to any cache block – fully associative cache

❑ A compromise is to divide the cache into sets each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set (specified by the
index field) and can be placed in any way of that set (so
there are n choices)

(block address) modulo (# sets in the cache)

CSE431 Chapter 5A.70 Irwin, PSU, 2008

Another Reference String Mapping

0 4 0 4

0 4 0 4

❑ Consider the main memory word reference string

0 4 0 4 0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01

4

00 Mem(0)

01 4
00 Mem(0)

01
4

01 Mem(4)
000

01 Mem(4)
000

Start with an empty cache - all

blocks initially marked as not valid

❑ Ping pong effect due to conflict misses - two memory

locations that map into the same cache block

l 8 requests, 8 misses

CSE431 Chapter 5A.71 Irwin, PSU, 2008

Set Associative Cache Example

0

Cache

Main Memory

Q2: How do we find it?

Use next 1 low order

memory address bit to

determine which

cache set (i.e., modulo

the number of sets in

the cache)

Tag Data

Q1: Is it there?

Compare all the cache

tags in the set to the

high order 3 memory

address bits to tell if

the memory block is in

the cache

V

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Set

1

0

1

Way

0

1

One word blocks

Two low order bits

define the byte in the

word (32b words)

CSE431 Chapter 5A.73 Irwin, PSU, 2008

Another Reference String Mapping

0 4 0 4

❑ Consider the main memory word reference string

0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all

blocks initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

❑ Solves the ping pong effect in a direct mapped cache

due to conflict misses since now two memory locations

that map into the same cache set can co-exist!

l 8 requests, 2 misses

CSE431 Chapter 5A.74 Irwin, PSU, 2008

Four-Way Set Associative Cache
❑ 28 = 256 sets each with four ways (each with one block)

31 30 . . . 13 12 11 . . . 2 1 0 Byte offset

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

DataTagV
0

1

2

.

.

.

253

254

255

Index DataTagV
0

1

2

.

.

.

253

254

255

8

Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

CSE431 Chapter 5A.76 Irwin, PSU, 2008

Range of Set Associative Caches

❑ For a fixed size cache, each increase by a factor of two
in associativity doubles the number of blocks per set (i.e.,
the number or ways) and halves the number of sets –
decreases the size of the index by 1 bit and increases
the size of the tag by 1 bit

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative

(only one set)

Tag is all the bits except

block and byte offset

Direct mapped

(only one way)

Smaller tags, only a

single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

CSE431 Chapter 5A.77 Irwin, PSU, 2008

Costs of Set Associative Caches

❑ When a miss occurs, which way’s block do we pick for

replacement?

l Least Recently Used (LRU): the block replaced is the one that

has been unused for the longest time

- Must have hardware to keep track of when each way’s block was

used relative to the other blocks in the set

- For 2-way set associative, takes one bit per set → set the bit when a

block is referenced (and reset the other way’s bit)

❑ N-way set associative cache costs

l N comparators (delay and area)

l MUX delay (set selection) before data is available

l Data available after set selection (and Hit/Miss decision). In a

direct mapped cache, the cache block is available before the

Hit/Miss decision

- So its not possible to just assume a hit and continue and recover later

if it was a miss

CSE431 Chapter 5A.78 Irwin, PSU, 2008

Benefits of Set Associative Caches

❑ The choice of direct mapped or set associative depends
on the cost of a miss versus the cost of implementation

0

2

4

6

8

10

12

1-way 2-way 4-way 8-way

Associativity

M
is

s
 R

a
te

4KB

8KB

16KB

32KB

64KB

128KB

256KB

512KB

Data from Hennessy &

Patterson, Computer

Architecture, 2003

❑ Largest gains are in going from direct mapped to 2-way

(20%+ reduction in miss rate)

CSE431 Chapter 5A.79 Irwin, PSU, 2008

Reducing Cache Miss Rates #2

2. Use multiple levels of caches

❑ With advancing technology have more than enough

room on the die for bigger L1 caches or for a second

level of caches – normally a unified L2 cache (i.e., it

holds both instructions and data) and in some cases

even a unified L3 cache

❑ For our example, CPIideal of 2, 100 cycle miss penalty

(to main memory) and a 25 cycle miss penalty (to

UL2$), 36% load/stores, a 2% (4%) L1 I$ (D$) miss

rate, add a 0.5% UL2$ miss rate

CPIstalls = 2 + .02×25 + .36×.04×25 + .005×100 +

.36×.005×100 = 3.54

(as compared to 5.44 with no L2$)

CSE431 Chapter 5A.80 Irwin, PSU, 2008

Multilevel Cache Design Considerations

❑ Design considerations for L1 and L2 caches are very
different

l Primary cache should focus on minimizing hit time in support of
a shorter clock cycle

- Smaller with smaller block sizes

l Secondary cache(s) should focus on reducing miss rate to
reduce the penalty of long main memory access times

- Larger with larger block sizes

- Higher levels of associativity

❑ The miss penalty of the L1 cache is significantly reduced
by the presence of an L2 cache – so it can be smaller
(i.e., faster) but have a higher miss rate

❑ For the L2 cache, hit time is less important than miss rate

l The L2$ hit time determines L1$’s miss penalty

l L2$ local miss rate >> than the global miss rate

CSE431 Chapter 5A.82 Irwin, PSU, 2008

Two Machines’ Cache Parameters

Intel Nehalem AMD Barcelona

L1 cache

organization & size

Split I$ and D$; 32KB for

each per core; 64B blocks

Split I$ and D$; 64KB for each

per core; 64B blocks

L1 associativity 4-way (I), 8-way (D) set

assoc.; ~LRU replacement

2-way set assoc.; LRU

replacement

L1 write policy write-back, write-allocate write-back, write-allocate

L2 cache

organization & size

Unified; 256KB (0.25MB) per

core; 64B blocks

Unified; 512KB (0.5MB) per

core; 64B blocks

L2 associativity 8-way set assoc.; ~LRU 16-way set assoc.; ~LRU

L2 write policy write-back write-back

L2 write policy write-back, write-allocate write-back, write-allocate

L3 cache

organization & size

Unified; 8192KB (8MB)

shared by cores; 64B blocks

Unified; 2048KB (2MB)

shared by cores; 64B blocks

L3 associativity 16-way set assoc. 32-way set assoc.; evict block

shared by fewest cores

L3 write policy write-back, write-allocate write-back; write-allocate

CSE431 Chapter 5A.84 Irwin, PSU, 2008

FSM Cache Controller

❑ Key characteristics for a simple L1 cache

l Direct mapped

l Write-back using write-allocate

l Block size of 4 32-bit words (so 16B); Cache size of 16KB (so
1024 blocks)

l 18-bit tags, 10-bit index, 2-bit block offset, 2-bit byte offset, dirty
bit, valid bit, LRU bits (if set associative)

Cache

&

Cache

Controller

1-bit Read/Write

P
ro

c
e
s
s
o
r

D
D

R
 S

D
R

A
M

1-bit Valid

32-bit address

32-bit data

32-bit data

1-bit Ready

1-bit Read/Write

1-bit Valid

32-bit address

128-bit data

128-bit data

1-bit Ready

CSE431 Chapter 5A.85 Irwin, PSU, 2008

Four State Cache Controller

Idle

Compare Tag

If Valid && Hit

Set Valid, Set Tag,

If Write set Dirty

Allocate

Read new block

from memory

Write Back

Write old block

to memory

Cache Hit

Mark Cache Ready

Cache Miss

Old block is

Dirty

Memory Ready

Memory

Not Ready

Memory

Not Ready

Cache Miss

Old block is

clean

Valid CPU request

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 86

Replacement Policy

◼ Direct mapped: no choice

◼ Set associative
◼ Prefer non-valid entry, if there is one

◼ Otherwise, choose among entries in the set

◼ Least-recently used (LRU)
◼ Choose the one unused for the longest time

◼ Simple for 2-way, manageable for 4-way, too hard
beyond that

◼ Random
◼ Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Multilevel Caches

◼ Primary cache attached to CPU

◼ Small, but fast

◼ Level-2 cache services misses from

primary cache

◼ Larger, slower, but still faster than main

memory

◼ Main memory services L-2 cache misses

◼ Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Multilevel Cache Example

◼ Given

◼ CPU base CPI = 1, clock rate = 4GHz

◼ Miss rate/instruction = 2%

◼ Main memory access time = 100ns

◼ With just primary cache

◼ Miss penalty = 100ns/0.25ns = 400 cycles

◼ Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Example (cont.)

◼ Now add L-2 cache

◼ Access time = 5ns

◼ Global miss rate to main memory = 0.5%

◼ Primary miss with L-2 hit

◼ Penalty = 5ns/0.25ns = 20 cycles

◼ Primary miss with L-2 miss

◼ Extra penalty = 500 cycles

◼ CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4

◼ Performance ratio = 9/3.4 = 2.6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Multilevel Cache Considerations

◼ Primary cache

◼ Focus on minimal hit time

◼ L-2 cache

◼ Focus on low miss rate to avoid main memory

access

◼ Hit time has less overall impact

◼ Results

◼ L-1 cache usually smaller than a single cache

◼ L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Interactions with Advanced CPUs

◼ Out-of-order CPUs can execute

instructions during cache miss

◼ Pending store stays in load/store unit

◼ Dependent instructions wait in reservation

stations

◼ Independent instructions continue

◼ Effect of miss depends on program data

flow

◼ Much harder to analyse

◼ Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Interactions with Software

◼ Misses depend on

memory access

patterns

◼ Algorithm behavior

◼ Compiler

optimization for

memory access

Software Optimization via Blocking

◼ Goal: maximize accesses to data before it

is replaced

◼ Consider inner loops of DGEMM:

for (int j = 0; j < n; ++j)

{

double cij = C[i+j*n];

for(int k = 0; k < n; k++)

cij += A[i+k*n] * B[k+j*n];

C[i+j*n] = cij;

}

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

DGEMM Access Pattern

◼ C, A, and B arrays

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

older accesses

new accesses

Cache Blocked DGEMM
1 #define BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double

3 *B, double *C)

4 {

5 for (int i = si; i < si+BLOCKSIZE; ++i)

6 for (int j = sj; j < sj+BLOCKSIZE; ++j)

7 {

8 double cij = C[i+j*n];/* cij = C[i][j] */

9 for(int k = sk; k < sk+BLOCKSIZE; k++)

10 cij += A[i+k*n] * B[k+j*n];/* cij+=A[i][k]*B[k][j] */

11 C[i+j*n] = cij;/* C[i][j] = cij */

12 }

13 }

14 void dgemm (int n, double* A, double* B, double* C)

15 {

16 for (int sj = 0; sj < n; sj += BLOCKSIZE)

17 for (int si = 0; si < n; si += BLOCKSIZE)

18 for (int sk = 0; sk < n; sk += BLOCKSIZE)

19 do_block(n, si, sj, sk, A, B, C);

20 }

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Blocked DGEMM Access Pattern

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Unoptimized Blocked

Chapter 6 — Storage and Other I/O Topics — 97

Dependability

◼ Fault: failure of a

component

◼ May or may not lead

to system failure

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

FailureRestoration

§
5
.5

 D
e
p
e
n
d
a
b
le

 M
e
m

o
ry

 H
ie

ra
rc

h
y

Chapter 6 — Storage and Other I/O Topics — 98

Dependability Measures

◼ Reliability: mean time to failure (MTTF)

◼ Service interruption: mean time to repair (MTTR)

◼ Mean time between failures

◼ MTBF = MTTF + MTTR

◼ Availability = MTTF / (MTTF + MTTR)

◼ Improving Availability

◼ Increase MTTF: fault avoidance, fault tolerance, fault

forecasting

◼ Reduce MTTR: improved tools and processes for

diagnosis and repair

The Hamming SEC Code

◼ Hamming distance

◼ Number of bits that are different between two

bit patterns

◼ Minimum distance = 2 provides single bit

error detection

◼ E.g. parity code

◼ Minimum distance = 3 provides single

error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Encoding SEC

◼ To calculate Hamming code:

◼ Number bits from 1 on the left

◼ All bit positions that are a power 2 are parity

bits

◼ Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Decoding SEC

◼ Value of parity bits indicates which bits are

in error

◼ Use numbering from encoding procedure

◼ E.g.

◼ Parity bits = 0000 indicates no error

◼ Parity bits = 1010 indicates bit 10 was flipped

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

SEC/DEC Code

◼ Add an additional parity bit for the whole word

(pn)

◼ Make Hamming distance = 4

◼ Decoding:

◼ Let H = SEC parity bits

◼ H even, pn even, no error

◼ H odd, pn odd, correctable single bit error

◼ H even, pn odd, error in pn bit

◼ H odd, pn even, double error occurred

◼ Note: ECC DRAM uses SEC/DEC with 8 bits

protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

Virtual Machines

◼ Host computer emulates guest operating system

and machine resources

◼ Improved isolation of multiple guests

◼ Avoids security and reliability problems

◼ Aids sharing of resources

◼ Virtualization has some performance impact

◼ Feasible with modern high-performance comptuers

◼ Examples

◼ IBM VM/370 (1970s technology!)

◼ VMWare

◼ Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

Virtual Machine Monitor

◼ Maps virtual resources to physical
resources

◼ Memory, I/O devices, CPUs

◼ Guest code runs on native machine in user
mode

◼ Traps to VMM on privileged instructions and
access to protected resources

◼ Guest OS may be different from host OS

◼ VMM handles real I/O devices

◼ Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 105

Example: Timer Virtualization

◼ In native machine, on timer interrupt

◼ OS suspends current process, handles

interrupt, selects and resumes next process

◼ With Virtual Machine Monitor

◼ VMM suspends current VM, handles interrupt,

selects and resumes next VM

◼ If a VM requires timer interrupts

◼ VMM emulates a virtual timer

◼ Emulates interrupt for VM when physical timer

interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106

Instruction Set Support

◼ User and System modes

◼ Privileged instructions only available in
system mode

◼ Trap to system if executed in user mode

◼ All physical resources only accessible
using privileged instructions

◼ Including page tables, interrupt controls, I/O
registers

◼ Renaissance of virtualization support

◼ Current ISAs (e.g., x86) adapting

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 107

Virtual Memory

◼ Use main memory as a “cache” for
secondary (disk) storage
◼ Managed jointly by CPU hardware and the

operating system (OS)

◼ Programs share main memory
◼ Each gets a private virtual address space

holding its frequently used code and data

◼ Protected from other programs

◼ CPU and OS translate virtual addresses to
physical addresses
◼ VM “block” is called a page

◼ VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 108

Address Translation

◼ Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 109

Page Fault Penalty

◼ On page fault, the page must be fetched

from disk

◼ Takes millions of clock cycles

◼ Handled by OS code

◼ Try to minimize page fault rate

◼ Fully associative placement

◼ Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 110

Page Tables

◼ Stores placement information

◼ Array of page table entries, indexed by virtual
page number

◼ Page table register in CPU points to page
table in physical memory

◼ If page is present in memory

◼ PTE stores the physical page number

◼ Plus other status bits (referenced, dirty, …)

◼ If page is not present

◼ PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111

Translation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 112

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113

Replacement and Writes

◼ To reduce page fault rate, prefer least-
recently used (LRU) replacement
◼ Reference bit (aka use bit) in PTE set to 1 on

access to page

◼ Periodically cleared to 0 by OS

◼ A page with reference bit = 0 has not been
used recently

◼ Disk writes take millions of cycles
◼ Block at once, not individual locations

◼ Write through is impractical

◼ Use write-back

◼ Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 114

Fast Translation Using a TLB

◼ Address translation would appear to require

extra memory references

◼ One to access the PTE

◼ Then the actual memory access

◼ But access to page tables has good locality

◼ So use a fast cache of PTEs within the CPU

◼ Called a Translation Look-aside Buffer (TLB)

◼ Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

◼ Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 115

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 116

TLB Misses

◼ If page is in memory

◼ Load the PTE from memory and retry

◼ Could be handled in hardware
◼ Can get complex for more complicated page table

structures

◼ Or in software
◼ Raise a special exception, with optimized handler

◼ If page is not in memory (page fault)

◼ OS handles fetching the page and updating
the page table

◼ Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 117

TLB Miss Handler

◼ TLB miss indicates

◼ Page present, but PTE not in TLB

◼ Page not preset

◼ Must recognize TLB miss before

destination register overwritten

◼ Raise exception

◼ Handler copies PTE from memory to TLB

◼ Then restarts instruction

◼ If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 118

Page Fault Handler

◼ Use faulting virtual address to find PTE

◼ Locate page on disk

◼ Choose page to replace

◼ If dirty, write to disk first

◼ Read page into memory and update page

table

◼ Make process runnable again

◼ Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 119

TLB and Cache Interaction

◼ If cache tag uses

physical address

◼ Need to translate

before cache lookup

◼ Alternative: use virtual

address tag

◼ Complications due to

aliasing

◼ Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120

Memory Protection

◼ Different tasks can share parts of their

virtual address spaces

◼ But need to protect against errant access

◼ Requires OS assistance

◼ Hardware support for OS protection

◼ Privileged supervisor mode (aka kernel mode)

◼ Privileged instructions

◼ Page tables and other state information only

accessible in supervisor mode

◼ System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 121

The Memory Hierarchy

◼ Common principles apply at all levels of

the memory hierarchy

◼ Based on notions of caching

◼ At each level in the hierarchy

◼ Block placement

◼ Finding a block

◼ Replacement on a miss

◼ Write policy

§
5
.8

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 122

Block Placement

◼ Determined by associativity

◼ Direct mapped (1-way associative)

◼ One choice for placement

◼ n-way set associative

◼ n choices within a set

◼ Fully associative

◼ Any location

◼ Higher associativity reduces miss rate

◼ Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 123

Finding a Block

◼ Hardware caches
◼ Reduce comparisons to reduce cost

◼ Virtual memory
◼ Full table lookup makes full associativity feasible

◼ Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 124

Replacement

◼ Choice of entry to replace on a miss

◼ Least recently used (LRU)

◼ Complex and costly hardware for high associativity

◼ Random

◼ Close to LRU, easier to implement

◼ Virtual memory

◼ LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 125

Write Policy

◼ Write-through
◼ Update both upper and lower levels

◼ Simplifies replacement, but may require write
buffer

◼ Write-back
◼ Update upper level only

◼ Update lower level when block is replaced

◼ Need to keep more state

◼ Virtual memory
◼ Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 126

Sources of Misses

◼ Compulsory misses (aka cold start misses)

◼ First access to a block

◼ Capacity misses

◼ Due to finite cache size

◼ A replaced block is later accessed again

◼ Conflict misses (aka collision misses)

◼ In a non-fully associative cache

◼ Due to competition for entries in a set

◼ Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 127

Cache Design Trade-offs

Design change Effect on miss rate Negative performance

effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 128

Cache Control

◼ Example cache characteristics

◼ Direct-mapped, write-back, write allocate

◼ Block size: 4 words (16 bytes)

◼ Cache size: 16 KB (1024 blocks)

◼ 32-bit byte addresses

◼ Valid bit and dirty bit per block

◼ Blocking cache

◼ CPU waits until access is complete

§
5
.9

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

03491031

4 bits10 bits18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 129

Interface Signals

CacheCPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 130

Finite State Machines

◼ Use an FSM to
sequence control steps

◼ Set of states, transition
on each clock edge
◼ State values are binary

encoded

◼ Current state stored in a
register

◼ Next state
= fn (current state,

current inputs)

◼ Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 131

Cache Controller FSM

Could

partition into

separate

states to

reduce clock

cycle time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 132

Cache Coherence Problem

◼ Suppose two CPU cores share a physical
address space
◼ Write-through caches

§
5
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 133

Coherence Defined

◼ Informally: Reads return most recently
written value

◼ Formally:

◼ P writes X; P reads X (no intervening writes)
 read returns written value

◼ P1 writes X; P2 reads X (sufficiently later)
 read returns written value
◼ c.f. CPU B reading X after step 3 in example

◼ P1 writes X, P2 writes X
 all processors see writes in the same order
◼ End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 134

Cache Coherence Protocols

◼ Operations performed by caches in
multiprocessors to ensure coherence

◼ Migration of data to local caches
◼ Reduces bandwidth for shared memory

◼ Replication of read-shared data
◼ Reduces contention for access

◼ Snooping protocols

◼ Each cache monitors bus reads/writes

◼ Directory-based protocols

◼ Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135

Invalidating Snooping Protocols

◼ Cache gets exclusive access to a block
when it is to be written

◼ Broadcasts an invalidate message on the bus

◼ Subsequent read in another cache misses
◼ Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 136

Memory Consistency

◼ When are writes seen by other processors
◼ “Seen” means a read returns the written value

◼ Can’t be instantaneously

◼ Assumptions
◼ A write completes only when all processors have seen

it

◼ A processor does not reorder writes with other
accesses

◼ Consequence
◼ P writes X then writes Y
 all processors that see new Y also see new X

◼ Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 137

Multilevel On-Chip Caches
§
5
.1

3
 T

h
e
 A

R
M

 C
o
rte

x
-A

8
 a

n
d
 In

te
l C

o
re

 i7
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 138

2-Level TLB Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 139

Supporting Multiple Issue

◼ Both have multi-banked caches that allow

multiple accesses per cycle assuming no

bank conflicts

◼ Core i7 cache optimizations

◼ Return requested word first

◼ Non-blocking cache

◼ Hit under miss

◼ Miss under miss

◼ Data prefetching

DGEMM

◼ Combine cache blocking and subword

parallelism

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 140

§
5
.1

4
 G

o
in

g
 F

a
s
te

r: C
a
c
h
e
 B

lo
c
k
in

g
 a

n
d
 M

a
trix

 M
u
ltip

ly

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 141

Pitfalls

◼ Byte vs. word addressing

◼ Example: 32-byte direct-mapped cache,

4-byte blocks

◼ Byte 36 maps to block 1

◼ Word 36 maps to block 4

◼ Ignoring memory system effects when

writing or generating code

◼ Example: iterating over rows vs. columns of

arrays

◼ Large strides result in poor locality

§
5
.1

5
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 142

Pitfalls

◼ In multiprocessor with shared L2 or L3

cache

◼ Less associativity than cores results in conflict

misses

◼ More cores need to increase associativity

◼ Using AMAT to evaluate performance of

out-of-order processors

◼ Ignores effect of non-blocked accesses

◼ Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 143

Pitfalls

◼ Extending address range using segments

◼ E.g., Intel 80286

◼ But a segment is not always big enough

◼ Makes address arithmetic complicated

◼ Implementing a VMM on an ISA not

designed for virtualization

◼ E.g., non-privileged instructions accessing

hardware resources

◼ Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 144

Concluding Remarks

◼ Fast memories are small, large memories are
slow
◼ We really want fast, large memories

◼ Caching gives this illusion ☺

◼ Principle of locality
◼ Programs use a small part of their memory space

frequently

◼ Memory hierarchy
◼ L1 cache L2 cache … DRAM memory
 disk

◼ Memory system design is critical for
multiprocessors

§
5
.1

6
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

