
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory

 Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

In
tro

d
u
c
tio

n

3Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy
In

tro
d
u
c
tio

n

4Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Performance Gap
In

tro
d
u
c
tio

n

5Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock

 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +

 12.8 billion 128-bit instruction references/second

 = 409.6 GB/s!

 DRAM bandwidth is only 8% of this (34.1 GB/s)

 Requires:
 Multi-port, pipelined caches

 Two levels of cache per core

 Shared third-level cache on chip

In
tro

d
u
c
tio

n

6Copyright © 2019, Elsevier Inc. All rights Reserved

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

In
tro

d
u
c
tio

n

7Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference

 Lower level may be another cache or the main
memory

 Also fetch the other words contained within the block
 Takes advantage of spatial locality

 Place block into cache in any location within its set,
determined by address

 block address MOD number of sets in cache

In
tro

d
u
c
tio

n

8Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 n sets => n-way set associative
 Direct-mapped cache => one block per set

 Fully associative => one set

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy

 Write-back
 Only update lower levels of hierarchy when an updated block

is replaced

 Both strategies use write buffer to make writes
asynchronous

In
tro

d
u
c
tio

n

9Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block

 Capacity
 Blocks discarded and later retrieved

 Conflict
 Program makes repeated references to multiple addresses

from different blocks that map to the same location in the
cache

In
tro

d
u
c
tio

n

10Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Speculative and multithreaded processors may
execute other instructions during a miss
 Reduces performance impact of misses

In
tro

d
u
c
tio

n

11Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses

 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses

 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

In
tro

d
u
c
tio

n

12Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology and Optimizations

 Performance metrics
 Latency is concern of cache

 Bandwidth is concern of multiprocessors and I/O

 Access time
 Time between read request and when desired word

arrives

 Cycle time
 Minimum time between unrelated requests to memory

 SRAM memory has low latency, use for
cache

 Organize DRAM chips into many banks for
high bandwidth, use for main memory

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

13Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 SRAM
 Requires low power to retain bit

 Requires 6 transistors/bit

 DRAM
 Must be re-written after being read

 Must also be periodically refeshed
 Every ~ 8 ms (roughly 5% of time)

 Each row can be refreshed simultaneously

 One transistor/bit

 Address lines are multiplexed:
 Upper half of address: row access strobe (RAS)

 Lower half of address: column access strobe (CAS)

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

14

Internal Organization of DRAM

Copyright © 2019, Elsevier Inc. All rights Reserved

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

15Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 Amdahl:
 Memory capacity should grow linearly with processor speed

 Unfortunately, memory capacity and speed has not kept
pace with processors

 Some optimizations:
 Multiple accesses to same row

 Synchronous DRAM

 Added clock to DRAM interface

 Burst mode with critical word first

 Wider interfaces

 Double data rate (DDR)

 Multiple banks on each DRAM device

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

16Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

17Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

18Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)

 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V

 800 MHz

 DDR4
 1-1.2 V

 1333 MHz

 GDDR5 is graphics memory based on DDR3

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

19Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage

 Low power mode (ignores clock, continues to
refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)

 Higher clock rate
 Possible because they are attached via soldering instead of

socketted DIMM modules

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

20Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Power Consumption
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

21

Stacked/Embedded DRAMs

 Stacked DRAMs in same package as

processor

 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

22Copyright © 2019, Elsevier Inc. All rights Reserved

Flash Memory

 Type of EEPROM

 Types: NAND (denser) and NOR (faster)

 NAND Flash:
 Reads are sequential, reads entire page (.5 to 4

KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes

 SDRAM: 40 ns for first byte, 4.8 GB/s for
subsequent bytes

 2 KiB transfer: 75 uS vs 500 ns for SDRAM, 150X
slower

 300 to 500X faster than magnetic disk

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

23Copyright © 2019, Elsevier Inc. All rights Reserved

NAND Flash Memory

 Must be erased (in blocks) before being
overwritten

 Nonvolatile, can use as little as zero power

 Limited number of write cycles (~100,000)

 $2/GiB, compared to $20-40/GiB for SDRAM
and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance

and 2X improvement in read performance

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

24Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Dependability

 Memory is susceptible to cosmic rays

 Soft errors: dynamic errors
 Detected and fixed by error correcting codes

(ECC)

 Hard errors: permanent errors
 Use spare rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

25Copyright © 2019, Elsevier Inc. All rights Reserved

Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches

 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

26Copyright © 2019, Elsevier Inc. All rights Reserved

L1 Size and Associativity

Access time vs. size and associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

27Copyright © 2019, Elsevier Inc. All rights Reserved

L1 Size and Associativity

Energy per read vs. size and associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

28Copyright © 2019, Elsevier Inc. All rights Reserved

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Mis-prediction gives longer hit time

 Prediction accuracy
 > 90% for two-way

 > 80% for four-way

 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s

 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”

 Increases mis-prediction penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

29Copyright © 2019, Elsevier Inc. All rights Reserved

Pipelined Caches

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle

 Pentium Pro – Pentium III: 2 cycles

 Pentium 4 – Core i7: 4 cycles

 Increases branch mis-prediction penalty

 Makes it easier to increase associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

30Copyright © 2019, Elsevier Inc. All rights Reserved

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2

 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

31Copyright © 2019, Elsevier Inc. All rights Reserved

Nonblocking Caches

 Allow hits before previous misses complete
 “Hit under miss”

 “Hit under multiple miss”

 L2 must support this

 In general, processors can hide L1 miss penalty but
not L2 miss penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

32Copyright © 2019, Elsevier Inc. All rights Reserved

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first

 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order

 Send missed work to the processor as soon as it
arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

33Copyright © 2019, Elsevier Inc. All rights Reserved

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer

 Do not apply to I/O addresses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

No write

buffering

Write buffering

34Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks

 Requires more memory accesses but improves
locality of accesses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

35

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (i = 0; i < N; i = i + 1)

for (j = 0; j < N; j = j + 1)

{

r = 0;

for (k = 0; k < N; k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = r;

};

36

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (jj = 0; jj < N; jj = jj + B)

for (kk = 0; kk < N; kk = kk + B)

for (i = 0; i < N; i = i + 1)

for (j = jj; j < min(jj + B,N); j = j + 1)

{

r = 0;

for (k = kk; k < min(kk + B,N); k = k + 1)

r = r + y[i][k]*z[k][j];

x[i][j] = x[i][j] + r;

};

37Copyright © 2019, Elsevier Inc. All rights Reserved

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block)

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

Pentium 4 Pre-fetching

38Copyright © 2019, Elsevier Inc. All rights Reserved

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

39Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy

 128 MiB to 1 GiB

 Smaller blocks require substantial tag storage

 Larger blocks are potentially inefficient

 One approach (L-H):
 Each SDRAM row is a block index

 Each row contains set of tags and 29 data
segments

 29-set associative

 Hit requires a CAS

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

40Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy

 Another approach (Alloy cache):
 Mold tag and data together

 Use direct mapped

 Both schemes require two DRAM accesses
for misses
 Two solutions:

 Use map to keep track of blocks

 Predict likely misses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

41Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy
A

d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

42Copyright © 2019, Elsevier Inc. All rights Reserved

Summary
A

d
v
a
n
c
e
d
 O

p
tim

iz
a

tio
n
s

43Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Memory and Virtual Machines

 Protection via virtual memory
 Keeps processes in their own memory space

 Role of architecture
 Provide user mode and supervisor mode

 Protect certain aspects of CPU state

 Provide mechanisms for switching between user
mode and supervisor mode

 Provide mechanisms to limit memory accesses

 Provide TLB to translate addresses

V
irtu

a
l M

e
m

o
ry

 a
n
d

 V
irtu

a
l M

a
c
h
in

e
s

44Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Machines

 Supports isolation and security

 Sharing a computer among many unrelated users

 Enabled by raw speed of processors, making the
overhead more acceptable

 Allows different ISAs and operating systems to be
presented to user programs
 “System Virtual Machines”

 SVM software is called “virtual machine monitor” or
“hypervisor”

 Individual virtual machines run under the monitor are called
“guest VMs”

V
irtu

a
l M

e
m

o
ry

 a
n
d

 V
irtu

a
l M

a
c
h
in

e
s

45Copyright © 2019, Elsevier Inc. All rights Reserved

Requirements of VMM

 Guest software should:
 Behave on as if running on native hardware

 Not be able to change allocation of real system
resources

 VMM should be able to “context switch”
guests

 Hardware must allow:
 System and use processor modes

 Privileged subset of instructions for allocating
system resources

V
irtu

a
l M

e
m

o
ry

 a
n
d

 V
irtu

a
l M

a
c
h
in

e
s

46Copyright © 2019, Elsevier Inc. All rights Reserved

Impact of VMs on Virtual Memory

 Each guest OS maintains its own set of page
tables
 VMM adds a level of memory between physical

and virtual memory called “real memory”

 VMM maintains shadow page table that maps
guest virtual addresses to physical addresses

 Requires VMM to detect guest’s changes to its own page
table

 Occurs naturally if accessing the page table pointer is a
privileged operation

V
irtu

a
l M

e
m

o
ry

 a
n
d

 V
irtu

a
l M

a
c
h
in

e
s

47Copyright © 2019, Elsevier Inc. All rights Reserved

Extending the ISA for Virtualization

 Objectives:
 Avoid flushing TLB

 Use nested page tables instead of shadow page
tables

 Allow devices to use DMA to move data

 Allow guest OS’s to handle device interrupts

 For security: allow programs to manage
encrypted portions of code and data

V
irtu

a
l M

e
m

o
ry

 a
n
d

 V
irtu

a
l M

a
c
h
in

e
s

48

Fallacies and Pitfalls

 Predicting cache performance of one

program from another

 Simulating enough instructions to get

accurate performance measures of the

memory hierarchy

 Not deliverying high memory bandwidth in

a cache-based system

Copyright © 2019, Elsevier Inc. All rights Reserved

