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Introduction
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= Moore's Law enabled:
s Deep memory hierarchy
= Wide SIMD units
= Deep pipelines
= Branch prediction
= Out-of-order execution
s Speculative prefetching
= Multithreading
= Multiprocessing

= Objective:

= Extract performance from software that is oblivious to
architecture




Introduction
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s Need factor of 100 improvements in number of
operations per instruction
s Requires domain specific architectures

s For ASICs, NRE cannot be amoratized over large
volumes

s FPGASs are less efficient than ASICs




Guidelines for DSAs

s Use dedicated memories to minimize data
movement

s Invest resources into more arithmetic units or
bigger memories

s Use the easiest form of parallelism that matches
the domain

= Reduce data size and type to the simplest
needed for the domain
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s Use a domain-specific programming language




Guidelines for DSAs
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Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC  PMD ASIC/SOC 1P

1. Dedicated 24 MiB Unified Buffer, Vanes N.A. Per core: 128 KiB line
memones 4 MiB Accumulators buffer. 64 KiB P.E.

memaory

2. Larger 65,536 Mulaply- Varies N.A. Per core: 256 Multiply-
anthmetc unit accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD,  SIMD, MISD N.A. MPMD. SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit mteger  21-bit Fl. Pr. 8-bit, 16-bit, 32-bhit integer
size 32-bit Fl. Pt

5. Domain- TensorFlow Venlog TensarFlow Halide/TensorFlow

spectfic lane.




Example: Deep Neural Networks

= Inpired by neuron of the brain

s Computes non-linear “activiation” function of the
weighted sum of input values

= Neurons arranged in layers
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Name DNN layers Weights Operations/Weight
MLPO 5 20M 200
MLPI 4 SM 168
LSTMO 58 52M 64
LSTMI 56 34M 96
CNNO 16 M 2888

CNNI 89 100M 1750




Example: Deep Neural Networks

= Most practioners will choose an existing design
= Topology
= Data type

= [raining (learning):
= Calculate weights using backpropagation algorithm
s Supervised learning: stocastic graduate descent

SYJOMION |ednaN dea(g :ajdwex]

Size of
benchmark’s DNN Training
Type of data Problem area training set architecture Hardware time
text[1] Word prediction 100 billion words 2-layer skip 1 NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU
audio [2] Speech recognition 2000 hours (Fisher 1 1-layer RNN 1 NVIDIA K1200 3.5 days
Corpus) GPU
images [3] Image 1 million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU
video [4] activity recognition 1 million videos 8-layer CNN 10 NVIDIA GPUs I month
(Sports-1M)
= Inferrence: use neural network for classification




Multi-Layer Perceptrons

= Parameters:
= Dim[i]: number of neurons
= Dim[i-1]: dimension of input vector
= Number of weights: Dim[i-1] x Dim[i]
s Operations: 2 x Dim[i-1] x Dim([i]
= Operations/weight: 2
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Layerfi-1] Layerfi]
Dim{i-1]
Input
Dim(i]
VMX nif Output
Dim[i]

Weights

@ Vector matrix multiply
@ Nonlinear function

Dim(i-1]
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Convolutional Neural Network

= Computer vision

= Each layer raises the level of abstraction
= First layer recognizes horizontal and vertical lines
= Second layer recognizes corners
= Third layer recognizes shapes
= Fourth layer recognizes features, such as ears of a dog
= Higher layers recognizes different breeds of dogs
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Convolutional Neural Network

m Parameters:

» DimFM][i-1]: Dimension of the (square) input
Feature Map

Layerfi-1] Layerfi] . S :
(input feature maps) (output feature maps) = DimFM][i]: Dimension of the (square) output
DO > Y Feature Map
& DimSten(i]: Dimension of the (square) stencil

NumFM][i-1]: Number of input Feature Maps
NumFM][i]: Number of output Feature Maps
= Number of neurons: NumFM([i] x DimFM][i]?
= Number of weights per output Feature Map:
NumFM][i-1] x DimStenli]?
\ Pimstent] = Total number pf weights per layer: NumFM][i] x
Number of weights per output Feature Map

= Number of operations per output Feature Map: 2
x DImFM([i]? x Number of weights per output
Feature Map

= Total number of operations per layer: NumFM][i]
x Number of operations per output Feature Map
= 2 x DimFM][i]2 x NumFM][i] x Number of weights
per output Feature Map = 2 x DimFM[i]?> x Total
number of weights per layer

= Operations/Weight: 2 x DimFMI[i]?
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@ Vector matrix multiply
@ Nonlinear function

NumFM[i-1]




Recurrent Neural Network

=  Speech recognition and language translation

= Long short-term memory (LSTM) network
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Recurrent Neural Network

s Parameters:

| LTMemoryin | [STMemoryin |
]

@ @ @ Vector matrix multiply
@ Element-wise multiply

Output gate
@ Element-wise addition

weights
@ Nonlinear function

Input
weights

LTMemoryout | | STMemoryout

Number of weights per cell:

3 x (3 x Dim x Dim)+(2 x
Dim x Dim) + (1 x Dim x
Dim) = 12 x Dim?

Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim?

Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim? + 4 x Dim

Operations/Weight: ~2
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Convolutional Neural Network

= Batches:
= Reuse weights once fetched from memory across multiple inputs
= Increases operational intensity

= Quantization
= Use 8- or 16-bit fixed point

= Summary:

= Need the following kernels:
= Matrix-vector multiply
= Matrix-matrix multiply

Stencil

RelLU

Sigmoid

Hyperbolic tangeant
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Tensor Processing Unit

s Google’s DNN ASIC

m 256 x 256 8-bit matrix multiply unit

» Large software-managed scratchpad
m Coprocessor on the PCle bus
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Tensor Processin
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TPU ISA

= Read Host Memory
= Reads memory from the CPU memory into the unified buffer

= Read Weights

= Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

= MatrixMatrixMultiply/Convolve

= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

= takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

s Activate

Hun Buissasold Josua|

= Computes activation function

= Write Host Memory
= Writes data from unified buffer into host memory




TPU ISA

Local Unified Buffer for
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TPU ISA
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Data

Partial sums
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TPU ISA

= Read Host Memory
= Reads memory from the CPU memory into the unified buffer

= Read Weights

= Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

= MatrixMatrixMultiply/Convolve

= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

= takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

s Activate

Hun Buissasold Josua|

= Computes activation function

= Write Host Memory
= Writes data from unified buffer into host memory




Improving the TPU
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The TPU and the Guidelines

s Use dedicated memories
= 24 MiB dedicated buffer, 4 MiB accumulator buffers

s Invest resources in arithmetic units and dedicated
memories
= 60% of the memory and 250X the arithmetic units of a server-class CPU

s Use the easiest form of parallelism that matches the
domain

Hun Buissasold Josua|

= Exploits 2D SIMD parallelism

= Reduce the data size and type needed for the domain
= Primarily uses 8-bit integers

s Use a domain-specific programming language
= Uses TensorFlow




Microsoft Catapult

= Needed to be general
purpose and power efficient

= Uses FPGA PCle board with
dedicated 20 Gbps network in 6 x

8 torus 4GB DDR3-1333 4 GB DDR3-1333
ECC SO-DIMM  ECC SO-DIMM

= Each of the 48 servers in half the 372 372
rack has a Catapult board

= Limited to 25 watts
= 32 MiB Flash memory

= Two banks of DDR3-1600 (11
GB/s) and 8 GiB DRAM ey

= FPGA (unconfigured) has 3962
18-bit ALUs and 5 MiB of on-chip
memory

s Programmed in Verilog RTL
» Shell is 23% of the FPGA

}ndede) 1JOSOUI\
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Microsoft Catapult: CNN

= CNN accelerator, mapped across multiple FPGAs
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Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking

m Feature extraction (1 FPGA)

» Extracts 4500 features for every document-query pair, e.g. frequency in which the query
appears in the page

= Systolic array of FSMs
m  Free-form expressions (2 FPGAS)
» Calculates feature combinations
s Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate
score)
» Uses results of previous two stages to calculate floating-point score

= One FPGA allocated as a hot-spare

JIndeden 1JOSOIDIN
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Microsoft Catapult: Search Ranking

s Free-form expression evaluation
= 60 core processor
= Pipelined cores
= Each core supports four threads that can hide each other’s latency
= Threads are statically prioritized according to thread latency
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Microsoft Catapult: Search Ranking

= Version 2 of Catapult

s Placed the FPGA between the
CPU and NIC

s Increased network from 10 Gb/s
to 40 Gb/s

= Also performs network
acceleration

s Shell now consumes 44% of the
FPGA 40Gb/s ToR

= Now FPGA performs only
feature extraction

2-socket server blade

JIndeden 1JOSOIDIN

Accelerator card




Catapult and the Guidelines

s Use dedicated memories
= 5 MiB dedicated memory
s Invest resources in arithmetic units and dedicated
memories
s 3926 ALUs

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD for CNN, MISD parallelism for search scoring

= Reduce the data size and type needed for the
domain

JIndeden 1JOSOIDIN

= Uses mixture of 8-bit integers and 64-bit floating-point

s Use a domain-specific programming language
= Uses Verilog RTL; Microsoft did not follow this guideline




Intel Crest
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= DNN training

s 16-bit fixed point

s Operates on blocks of 32x32 matrices
= SRAM + HBM2
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Pixel Visual Core

= Pixel Visual Core
= Image Processing Unit
= Performs stencil operations
= Decended from Image Signal processor

Sensor
Lens (ccD or CMOS
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Pixel Visual Core

s Software written in Halide, a DSL
= Compiled to virtual ISA

= VISAis lowered to physical ISA using application-specific
parameters

= pISAis VLSI

= Optimized for energy

= Power Budget is 6 to 8 W for bursts of 10-20 seconds,
dropping to tens of milliwatts when not in use

= 8-bit DRAM access equivalent energy as 12,500 8-bit
integer operations or 7 to 100 8-bit SRAM accesses

= |[EEE 754 operations require 22X to 150X of the cost of 8-bit
integer operations

s Optimized for 2D access
= 2D SIMD unit

8107 [ensIA |8Xid

= On-chip SRAM structured using a square geometry




Pixel Visual Core

Pixel Visual Core




Pixel Visual Core
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Pixel Visual Core

Lo 2D stencil
processor

2D stencil
processor

2D stencil
processor

2D stencil
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Visual Core and the Guidelines

s Use dedicated memories
= 128 + 64 MiB dedicated memory per core

s |Invest resources in arithmetic units and dedicated
memories

= 16x16 2D array of processing elements per core and 2D
shifting network per core

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD and VLIW

= Reduce the data size and type needed for the
domain
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= Uses mixture of 8-bit and 16-bit integers
s Use a domain-specific programming language
= Halide for image processing and TensorFlow for CNNs




Fallacies and Pitfalls

= |t costs $100 million to design a custom chip

s Performance counters added as an
afterthought

= Architects are tackling the right DNN tasks

= For DNN hardware, inferences per second
(IPS) is a fair summary performance metric

s Being ignorant of architecture history when
designing an DSA
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