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Domain-Specific Architectures

Computer Architecture
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Introduction

◼ Moore’s Law enabled:
◼ Deep memory hierarchy

◼ Wide SIMD units

◼ Deep pipelines

◼ Branch prediction

◼ Out-of-order execution

◼ Speculative prefetching

◼ Multithreading

◼ Multiprocessing

◼ Objective:
◼ Extract performance from software that is oblivious to 

architecture
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Introduction

◼ Need factor of 100 improvements in number of 
operations per instruction

◼ Requires domain specific architectures

◼ For ASICs, NRE cannot be amoratized over large 
volumes

◼ FPGAs are less efficient than ASICs
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Guidelines for DSAs

◼ Use dedicated memories to minimize data 
movement

◼ Invest resources into more arithmetic units or 
bigger memories

◼ Use the easiest form of parallelism that matches 
the domain

◼ Reduce data size and type to the simplest 
needed for the domain

◼ Use a domain-specific programming language
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Guidelines for DSAs
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Example:  Deep Neural Networks

◼ Inpired by neuron of the brain

◼ Computes non-linear “activiation” function of the 
weighted sum of input values

◼ Neurons arranged in layers
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Example:  Deep Neural Networks

◼ Most practioners will choose an existing design
◼ Topology

◼ Data type

◼ Training (learning):
◼ Calculate weights using backpropagation algorithm

◼ Supervised learning:  stocastic graduate descent

◼ Inferrence:  use neural network for classification
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◼ Parameters:
◼ Dim[i]:  number of neurons

◼ Dim[i-1]:  dimension of input vector

◼ Number of weights:  Dim[i-1] x Dim[i]

◼ Operations:  2 x Dim[i-1] x Dim[i]

◼ Operations/weight:  2
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Multi-Layer Perceptrons
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◼ Computer vision

◼ Each layer raises the level of abstraction
◼ First layer recognizes horizontal and vertical lines

◼ Second layer recognizes corners

◼ Third layer recognizes shapes

◼ Fourth layer recognizes features, such as ears of a dog

◼ Higher layers recognizes different breeds of dogs
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Convolutional Neural Network
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◼ Parameters:
◼ DimFM[i-1]: Dimension of the (square) input 

Feature Map

◼ DimFM[i]: Dimension of the (square) output 
Feature Map

◼ DimSten[i]: Dimension of the (square) stencil

◼ NumFM[i-1]: Number of input Feature Maps

◼ NumFM[i]: Number of output Feature Maps

◼ Number of neurons: NumFM[i] x DimFM[i]2

◼ Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

◼ Total number of weights per layer: NumFM[i] x 
Number of weights per output Feature Map

◼ Number of operations per output Feature Map: 2 
x DimFM[i]2 x Number of weights per output 
Feature Map

◼ Total number of operations per layer: NumFM[i] 
x Number of operations per output Feature Map 
= 2 x DimFM[i]2 x NumFM[i] x Number of weights 
per output Feature Map = 2 x DimFM[i]2 x Total 
number of weights per layer

◼ Operations/Weight: 2 x DimFM[i]2
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Convolutional Neural Network
E

x
a
m

p
le

:  D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s



11

◼ Speech recognition and language translation

◼ Long short-term memory (LSTM) network
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Recurrent Neural Network
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Recurrent Neural Network
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◼ Parameters:
◼ Number of weights per cell: 

3 x (3 x Dim x Dim)+(2 x 
Dim x Dim) + (1 x Dim x 
Dim) = 12 x Dim2

◼ Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per cell 
= 24 x Dim2

◼ Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

◼ Total number of operations 
per cell (5 vector-matrix 
multiplies and the 4 
element-wise operations): 
24 x Dim2 + 4 x Dim

◼ Operations/Weight: ~2
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◼ Batches:
◼ Reuse weights once fetched from memory across multiple inputs

◼ Increases operational intensity

◼ Quantization
◼ Use 8- or 16-bit fixed point

◼ Summary:
◼ Need the following kernels:

◼ Matrix-vector multiply

◼ Matrix-matrix multiply

◼ Stencil

◼ ReLU

◼ Sigmoid

◼ Hyperbolic tangeant
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Convolutional Neural Network
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◼ Google’s DNN ASIC

◼ 256 x 256 8-bit matrix multiply unit

◼ Large software-managed scratchpad

◼ Coprocessor on the PCIe bus

Copyright © 2019, Elsevier Inc. All rights Reserved

Tensor Processing Unit
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it



15Copyright © 2019, Elsevier Inc. All rights Reserved

Tensor Processing Unit
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◼ Read_Host_Memory

◼ Reads memory from the CPU memory into the unified buffer

◼ Read_Weights

◼ Reads weights from the Weight Memory into the Weight FIFO as input 
to the Matrix Unit

◼ MatrixMatrixMultiply/Convolve

◼ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution 
from the Unified Buffer into the accumulators

◼ takes a variable-sized B*256 input, multiplies it by a 256x256 constant 
input, and produces a B*256 output, taking B pipelined cycles to 
complete

◼ Activate

◼ Computes activation function

◼ Write_Host_Memory

◼ Writes data from unified buffer into host memory
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TPU ISA
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TPU ISA
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◼ Read_Host_Memory

◼ Reads memory from the CPU memory into the unified buffer

◼ Read_Weights

◼ Reads weights from the Weight Memory into the Weight FIFO as input 
to the Matrix Unit

◼ MatrixMatrixMultiply/Convolve

◼ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution 
from the Unified Buffer into the accumulators

◼ takes a variable-sized B*256 input, multiplies it by a 256x256 constant 
input, and produces a B*256 output, taking B pipelined cycles to 
complete

◼ Activate

◼ Computes activation function

◼ Write_Host_Memory

◼ Writes data from unified buffer into host memory

Copyright © 2019, Elsevier Inc. All rights Reserved

TPU ISA
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it



20Copyright © 2019, Elsevier Inc. All rights Reserved

Improving the TPU
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◼ Use dedicated memories
◼ 24 MiB dedicated buffer, 4 MiB accumulator buffers

◼ Invest resources in arithmetic units and dedicated 
memories
◼ 60% of the memory and 250X the arithmetic units of a server-class CPU

◼ Use the easiest form of parallelism that matches the 
domain
◼ Exploits 2D SIMD parallelism

◼ Reduce the data size and type needed for the domain
◼ Primarily uses 8-bit integers

◼ Use a domain-specific programming language
◼ Uses TensorFlow
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◼ Needed to be general 
purpose and power efficient
◼ Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 x 
8 torus

◼ Each of the 48 servers in half the 
rack has a Catapult board

◼ Limited to 25 watts

◼ 32 MiB Flash memory

◼ Two banks of DDR3-1600 (11 
GB/s) and 8 GiB DRAM

◼ FPGA (unconfigured) has 3962 
18-bit ALUs and 5 MiB of on-chip 
memory

◼ Programmed in Verilog RTL

◼ Shell is 23% of the FPGA
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◼ CNN accelerator, mapped across multiple FPGAs

Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult:  CNN
M

ic
ro

s
o
ft C

a
p
a
p

u
lt



24Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking
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◼ Feature extraction (1 FPGA)
◼ Extracts 4500 features for every document-query pair, e.g. frequency in which the query 

appears in the page

◼ Systolic array of FSMs

◼ Free-form expressions (2 FPGAs)
◼ Calculates feature combinations

◼ Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate 
score)
◼ Uses results of previous two stages to calculate floating-point score

◼ One FPGA allocated as a hot-spare
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Microsoft Catapult: Search Ranking
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◼ Free-form expression evaluation
◼ 60 core processor

◼ Pipelined cores

◼ Each core supports four threads that can hide each other’s latency

◼ Threads are statically prioritized according to thread latency
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Microsoft Catapult: Search Ranking
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◼ Version 2 of Catapult
◼ Placed the FPGA between the 

CPU and NIC

◼ Increased network from 10 Gb/s 
to 40 Gb/s

◼ Also performs network 
acceleration

◼ Shell now consumes 44% of the 
FPGA

◼ Now FPGA performs only 
feature extraction



28Copyright © 2019, Elsevier Inc. All rights Reserved

Catapult and the Guidelines
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◼ Use dedicated memories
◼ 5 MiB dedicated memory

◼ Invest resources in arithmetic units and dedicated 
memories
◼ 3926 ALUs

◼ Use the easiest form of parallelism that matches the 
domain
◼ 2D SIMD for CNN, MISD parallelism for search scoring

◼ Reduce the data size and type needed for the 
domain
◼ Uses mixture of 8-bit integers and 64-bit floating-point

◼ Use a domain-specific programming language
◼ Uses Verilog RTL; Microsoft did not follow this guideline
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Intel Crest
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◼ DNN training

◼ 16-bit fixed point

◼ Operates on blocks of 32x32 matrices

◼ SRAM + HBM2



30Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core
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◼ Pixel Visual Core
◼ Image Processing Unit

◼ Performs stencil operations

◼ Decended from Image Signal processor
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Pixel Visual Core

◼ Software written in Halide, a DSL
◼ Compiled to virtual ISA

◼ vISA is lowered to physical ISA using application-specific 
parameters

◼ pISA is VLSI

◼ Optimized for energy
◼ Power Budget is 6 to 8 W for bursts of 10-20 seconds, 

dropping to tens of milliwatts when not in use

◼ 8-bit DRAM access equivalent energy as 12,500 8-bit 
integer operations or 7 to 100 8-bit SRAM accesses

◼ IEEE 754 operations require 22X to 150X of the cost of 8-bit 
integer operations

◼ Optimized for 2D access
◼ 2D SIMD unit

◼ On-chip SRAM structured using a square geometry
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Visual Core and the Guidelines
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◼ Use dedicated memories
◼ 128 + 64 MiB dedicated memory per core

◼ Invest resources in arithmetic units and dedicated 
memories
◼ 16x16 2D array of processing elements per core and 2D 

shifting network per core

◼ Use the easiest form of parallelism that matches the 
domain
◼ 2D SIMD and VLIW

◼ Reduce the data size and type needed for the 
domain
◼ Uses mixture of 8-bit and 16-bit integers

◼ Use a domain-specific programming language
◼ Halide for image processing and TensorFlow for CNNs
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Fallacies and Pitfalls
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◼ It costs $100 million to design a custom chip

◼ Performance counters added as an 
afterthought

◼ Architects are tackling the right DNN tasks

◼ For DNN hardware, inferences per second 
(IPS) is a fair summary performance metric

◼ Being ignorant of architecture history when 
designing an DSA
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