
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 7

Domain-Specific Architectures

Computer Architecture
A Quantitative Approach, Sixth Edition

2Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

◼ Moore’s Law enabled:
◼ Deep memory hierarchy

◼ Wide SIMD units

◼ Deep pipelines

◼ Branch prediction

◼ Out-of-order execution

◼ Speculative prefetching

◼ Multithreading

◼ Multiprocessing

◼ Objective:
◼ Extract performance from software that is oblivious to

architecture

In
tro

d
u

c
tio

n

3Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

◼ Need factor of 100 improvements in number of
operations per instruction

◼ Requires domain specific architectures

◼ For ASICs, NRE cannot be amoratized over large
volumes

◼ FPGAs are less efficient than ASICs

In
tro

d
u

c
tio

n

4Copyright © 2019, Elsevier Inc. All rights Reserved

Guidelines for DSAs

◼ Use dedicated memories to minimize data
movement

◼ Invest resources into more arithmetic units or
bigger memories

◼ Use the easiest form of parallelism that matches
the domain

◼ Reduce data size and type to the simplest
needed for the domain

◼ Use a domain-specific programming language

G
u
id

e
lin

e
s
 fo

r D
S

A
s

5Copyright © 2019, Elsevier Inc. All rights Reserved

Guidelines for DSAs
G

u
id

e
lin

e
s
 fo

r D
S

A
s

6Copyright © 2019, Elsevier Inc. All rights Reserved

Example: Deep Neural Networks

◼ Inpired by neuron of the brain

◼ Computes non-linear “activiation” function of the
weighted sum of input values

◼ Neurons arranged in layers

E
x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

7Copyright © 2019, Elsevier Inc. All rights Reserved

Example: Deep Neural Networks

◼ Most practioners will choose an existing design
◼ Topology

◼ Data type

◼ Training (learning):
◼ Calculate weights using backpropagation algorithm

◼ Supervised learning: stocastic graduate descent

◼ Inferrence: use neural network for classification

E
x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

8

◼ Parameters:
◼ Dim[i]: number of neurons

◼ Dim[i-1]: dimension of input vector

◼ Number of weights: Dim[i-1] x Dim[i]

◼ Operations: 2 x Dim[i-1] x Dim[i]

◼ Operations/weight: 2

Copyright © 2019, Elsevier Inc. All rights Reserved

Multi-Layer Perceptrons
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

9

◼ Computer vision

◼ Each layer raises the level of abstraction
◼ First layer recognizes horizontal and vertical lines

◼ Second layer recognizes corners

◼ Third layer recognizes shapes

◼ Fourth layer recognizes features, such as ears of a dog

◼ Higher layers recognizes different breeds of dogs

Copyright © 2019, Elsevier Inc. All rights Reserved

Convolutional Neural Network
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

10

◼ Parameters:
◼ DimFM[i-1]: Dimension of the (square) input

Feature Map

◼ DimFM[i]: Dimension of the (square) output
Feature Map

◼ DimSten[i]: Dimension of the (square) stencil

◼ NumFM[i-1]: Number of input Feature Maps

◼ NumFM[i]: Number of output Feature Maps

◼ Number of neurons: NumFM[i] x DimFM[i]2

◼ Number of weights per output Feature Map:
NumFM[i-1] x DimSten[i]2

◼ Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

◼ Number of operations per output Feature Map: 2
x DimFM[i]2 x Number of weights per output
Feature Map

◼ Total number of operations per layer: NumFM[i]
x Number of operations per output Feature Map
= 2 x DimFM[i]2 x NumFM[i] x Number of weights
per output Feature Map = 2 x DimFM[i]2 x Total
number of weights per layer

◼ Operations/Weight: 2 x DimFM[i]2

Copyright © 2019, Elsevier Inc. All rights Reserved

Convolutional Neural Network
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

11

◼ Speech recognition and language translation

◼ Long short-term memory (LSTM) network

Copyright © 2019, Elsevier Inc. All rights Reserved

Recurrent Neural Network
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

12Copyright © 2019, Elsevier Inc. All rights Reserved

Recurrent Neural Network
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

◼ Parameters:
◼ Number of weights per cell:

3 x (3 x Dim x Dim)+(2 x
Dim x Dim) + (1 x Dim x
Dim) = 12 x Dim2

◼ Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim2

◼ Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

◼ Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim2 + 4 x Dim

◼ Operations/Weight: ~2

13

◼ Batches:
◼ Reuse weights once fetched from memory across multiple inputs

◼ Increases operational intensity

◼ Quantization
◼ Use 8- or 16-bit fixed point

◼ Summary:
◼ Need the following kernels:

◼ Matrix-vector multiply

◼ Matrix-matrix multiply

◼ Stencil

◼ ReLU

◼ Sigmoid

◼ Hyperbolic tangeant

Copyright © 2019, Elsevier Inc. All rights Reserved

Convolutional Neural Network
E

x
a
m

p
le

: D
e
e
p

 N
e
u
ra

l N
e
tw

o
rk

s

14

◼ Google’s DNN ASIC

◼ 256 x 256 8-bit matrix multiply unit

◼ Large software-managed scratchpad

◼ Coprocessor on the PCIe bus

Copyright © 2019, Elsevier Inc. All rights Reserved

Tensor Processing Unit
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

15Copyright © 2019, Elsevier Inc. All rights Reserved

Tensor Processing Unit
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

16

◼ Read_Host_Memory

◼ Reads memory from the CPU memory into the unified buffer

◼ Read_Weights

◼ Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

◼ MatrixMatrixMultiply/Convolve

◼ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

◼ takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

◼ Activate

◼ Computes activation function

◼ Write_Host_Memory

◼ Writes data from unified buffer into host memory

Copyright © 2019, Elsevier Inc. All rights Reserved

TPU ISA
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

17Copyright © 2019, Elsevier Inc. All rights Reserved

TPU ISA
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

18Copyright © 2019, Elsevier Inc. All rights Reserved

TPU ISA
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

19

◼ Read_Host_Memory

◼ Reads memory from the CPU memory into the unified buffer

◼ Read_Weights

◼ Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

◼ MatrixMatrixMultiply/Convolve

◼ Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

◼ takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

◼ Activate

◼ Computes activation function

◼ Write_Host_Memory

◼ Writes data from unified buffer into host memory

Copyright © 2019, Elsevier Inc. All rights Reserved

TPU ISA
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

20Copyright © 2019, Elsevier Inc. All rights Reserved

Improving the TPU
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

21

◼ Use dedicated memories
◼ 24 MiB dedicated buffer, 4 MiB accumulator buffers

◼ Invest resources in arithmetic units and dedicated
memories
◼ 60% of the memory and 250X the arithmetic units of a server-class CPU

◼ Use the easiest form of parallelism that matches the
domain
◼ Exploits 2D SIMD parallelism

◼ Reduce the data size and type needed for the domain
◼ Primarily uses 8-bit integers

◼ Use a domain-specific programming language
◼ Uses TensorFlow

Copyright © 2019, Elsevier Inc. All rights Reserved

The TPU and the Guidelines
T
e
n

s
o
r P

ro
c
e
s
s
in

g
 U

n
it

22

◼ Needed to be general
purpose and power efficient
◼ Uses FPGA PCIe board with

dedicated 20 Gbps network in 6 x
8 torus

◼ Each of the 48 servers in half the
rack has a Catapult board

◼ Limited to 25 watts

◼ 32 MiB Flash memory

◼ Two banks of DDR3-1600 (11
GB/s) and 8 GiB DRAM

◼ FPGA (unconfigured) has 3962
18-bit ALUs and 5 MiB of on-chip
memory

◼ Programmed in Verilog RTL

◼ Shell is 23% of the FPGA

Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

23

◼ CNN accelerator, mapped across multiple FPGAs

Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: CNN
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

24Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: CNN
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

25Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: Search Ranking
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ Feature extraction (1 FPGA)
◼ Extracts 4500 features for every document-query pair, e.g. frequency in which the query

appears in the page

◼ Systolic array of FSMs

◼ Free-form expressions (2 FPGAs)
◼ Calculates feature combinations

◼ Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate
score)
◼ Uses results of previous two stages to calculate floating-point score

◼ One FPGA allocated as a hot-spare

26Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: Search Ranking
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ Free-form expression evaluation
◼ 60 core processor

◼ Pipelined cores

◼ Each core supports four threads that can hide each other’s latency

◼ Threads are statically prioritized according to thread latency

27Copyright © 2019, Elsevier Inc. All rights Reserved

Microsoft Catapult: Search Ranking
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ Version 2 of Catapult
◼ Placed the FPGA between the

CPU and NIC

◼ Increased network from 10 Gb/s
to 40 Gb/s

◼ Also performs network
acceleration

◼ Shell now consumes 44% of the
FPGA

◼ Now FPGA performs only
feature extraction

28Copyright © 2019, Elsevier Inc. All rights Reserved

Catapult and the Guidelines
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ Use dedicated memories
◼ 5 MiB dedicated memory

◼ Invest resources in arithmetic units and dedicated
memories
◼ 3926 ALUs

◼ Use the easiest form of parallelism that matches the
domain
◼ 2D SIMD for CNN, MISD parallelism for search scoring

◼ Reduce the data size and type needed for the
domain
◼ Uses mixture of 8-bit integers and 64-bit floating-point

◼ Use a domain-specific programming language
◼ Uses Verilog RTL; Microsoft did not follow this guideline

29Copyright © 2019, Elsevier Inc. All rights Reserved

Intel Crest
In

te
l C

re
s
t

◼ DNN training

◼ 16-bit fixed point

◼ Operates on blocks of 32x32 matrices

◼ SRAM + HBM2

30Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core
P

ix
e

l V
is

u
a
l C

o
re

◼ Pixel Visual Core
◼ Image Processing Unit

◼ Performs stencil operations

◼ Decended from Image Signal processor

31Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core

◼ Software written in Halide, a DSL
◼ Compiled to virtual ISA

◼ vISA is lowered to physical ISA using application-specific
parameters

◼ pISA is VLSI

◼ Optimized for energy
◼ Power Budget is 6 to 8 W for bursts of 10-20 seconds,

dropping to tens of milliwatts when not in use

◼ 8-bit DRAM access equivalent energy as 12,500 8-bit
integer operations or 7 to 100 8-bit SRAM accesses

◼ IEEE 754 operations require 22X to 150X of the cost of 8-bit
integer operations

◼ Optimized for 2D access
◼ 2D SIMD unit

◼ On-chip SRAM structured using a square geometry

P
ix

e
l V

is
u
a
l C

o
re

32Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core
P

ix
e

l V
is

u
a
l C

o
re

33Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core
P

ix
e

l V
is

u
a
l C

o
re

34Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core
P

ix
e

l V
is

u
a
l C

o
re

35Copyright © 2019, Elsevier Inc. All rights Reserved

Visual Core and the Guidelines
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ Use dedicated memories
◼ 128 + 64 MiB dedicated memory per core

◼ Invest resources in arithmetic units and dedicated
memories
◼ 16x16 2D array of processing elements per core and 2D

shifting network per core

◼ Use the easiest form of parallelism that matches the
domain
◼ 2D SIMD and VLIW

◼ Reduce the data size and type needed for the
domain
◼ Uses mixture of 8-bit and 16-bit integers

◼ Use a domain-specific programming language
◼ Halide for image processing and TensorFlow for CNNs

36Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and Pitfalls
M

ic
ro

s
o
ft C

a
p
a
p

u
lt

◼ It costs $100 million to design a custom chip

◼ Performance counters added as an
afterthought

◼ Architects are tackling the right DNN tasks

◼ For DNN hardware, inferences per second
(IPS) is a fair summary performance metric

◼ Being ignorant of architecture history when
designing an DSA

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Guidelines for DSAs
	Slide 5: Guidelines for DSAs
	Slide 6: Example: Deep Neural Networks
	Slide 7: Example: Deep Neural Networks
	Slide 8: Multi-Layer Perceptrons
	Slide 9: Convolutional Neural Network
	Slide 10: Convolutional Neural Network
	Slide 11: Recurrent Neural Network
	Slide 12: Recurrent Neural Network
	Slide 13: Convolutional Neural Network
	Slide 14: Tensor Processing Unit
	Slide 15: Tensor Processing Unit
	Slide 16: TPU ISA
	Slide 17: TPU ISA
	Slide 18: TPU ISA
	Slide 19: TPU ISA
	Slide 20: Improving the TPU
	Slide 21: The TPU and the Guidelines
	Slide 22: Microsoft Catapult
	Slide 23: Microsoft Catapult: CNN
	Slide 24: Microsoft Catapult: CNN
	Slide 25: Microsoft Catapult: Search Ranking
	Slide 26: Microsoft Catapult: Search Ranking
	Slide 27: Microsoft Catapult: Search Ranking
	Slide 28: Catapult and the Guidelines
	Slide 29: Intel Crest
	Slide 30: Pixel Visual Core
	Slide 31: Pixel Visual Core
	Slide 32: Pixel Visual Core
	Slide 33: Pixel Visual Core
	Slide 34: Pixel Visual Core
	Slide 35: Visual Core and the Guidelines
	Slide 36: Fallacies and Pitfalls

