Computer Architecture

A Quantitative Approach, Sixth Edition

Chapter 7

COMPUTER
ARCHITECTURE

Domain-Specific Architectures

Introduction

uonoNPOAU|

= Moore's Law enabled:
s Deep memory hierarchy
= Wide SIMD units
= Deep pipelines
= Branch prediction
= Out-of-order execution
s Speculative prefetching
= Multithreading
= Multiprocessing

= Objective:

= Extract performance from software that is oblivious to
architecture

Introduction

uonoNPOAU|

s Need factor of 100 improvements in number of
operations per instruction
s Requires domain specific architectures

s For ASICs, NRE cannot be amoratized over large
volumes

s FPGASs are less efficient than ASICs

Guidelines for DSAs

s Use dedicated memories to minimize data
movement

s Invest resources into more arithmetic units or
bigger memories

s Use the easiest form of parallelism that matches
the domain

= Reduce data size and type to the simplest
needed for the domain

sySq Joj sauljeping

s Use a domain-specific programming language

Guidelines for DSAs

sySq Joj sauljeping

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC PMD ASIC/SOC 1P

1. Dedicated 24 MiB Unified Buffer, Vanes N.A. Per core: 128 KiB line
memones 4 MiB Accumulators buffer. 64 KiB P.E.

memaory

2. Larger 65,536 Mulaply- Varies N.A. Per core: 256 Multiply-
anthmetc unit accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD, SIMD, MISD N.A. MPMD. SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit mteger 21-bit Fl. Pr. 8-bit, 16-bit, 32-bhit integer
size 32-bit Fl. Pt

5. Domain- TensorFlow Venlog TensarFlow Halide/TensorFlow

spectfic lane.

Example: Deep Neural Networks

= Inpired by neuron of the brain

s Computes non-linear “activiation” function of the
weighted sum of input values

= Neurons arranged in layers

SYJOMION |ednaN dea(g :ajdwex]

Name DNN layers Weights Operations/Weight
MLPO 5 20M 200
MLPI 4 SM 168
LSTMO 58 52M 64
LSTMI 56 34M 96
CNNO 16 M 2888

CNNI 89 100M 1750

Example: Deep Neural Networks

= Most practioners will choose an existing design
= Topology
= Data type

= [raining (learning):
= Calculate weights using backpropagation algorithm
s Supervised learning: stocastic graduate descent

SYJOMION |ednaN dea(g :ajdwex]

Size of
benchmark’s DNN Training
Type of data Problem area training set architecture Hardware time
text[1] Word prediction 100 billion words 2-layer skip 1 NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU
audio [2] Speech recognition 2000 hours (Fisher 1 1-layer RNN 1 NVIDIA K1200 3.5 days
Corpus) GPU
images [3] Image 1 million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU
video [4] activity recognition 1 million videos 8-layer CNN 10 NVIDIA GPUs I month
(Sports-1M)
= Inferrence: use neural network for classification

Multi-Layer Perceptrons

= Parameters:
= Dim[i]: number of neurons
= Dim[i-1]: dimension of input vector
= Number of weights: Dim[i-1] x Dim[i]
s Operations: 2 x Dim[i-1] x Dim([i]
= Operations/weight: 2

SYJOMION |ednaN dea(g :ajdwex]

Layerfi-1] Layerfi]
Dim{i-1]
Input
Dim(i]
VMX nif Output
Dim[i]

Weights

@ Vector matrix multiply
@ Nonlinear function

Dim(i-1]

I —

Convolutional Neural Network

= Computer vision

= Each layer raises the level of abstraction
= First layer recognizes horizontal and vertical lines
= Second layer recognizes corners
= Third layer recognizes shapes
= Fourth layer recognizes features, such as ears of a dog
= Higher layers recognizes different breeds of dogs

SYJOMION |ednaN dea(g :ajdwex]

Input image Output feature map
CL.&
O—{-0]
nif O
oo -
By
(s &
oo
@ Vector matrix multiply Weights
@ Nonlinear function

Convolutional Neural Network

m Parameters:

» DimFM][i-1]: Dimension of the (square) input
Feature Map

Layerfi-1] Layerfi] . S :
(input feature maps) (output feature maps) = DimFM][i]: Dimension of the (square) output
DO > Y Feature Map
& DimSten(i]: Dimension of the (square) stencil

NumFM][i-1]: Number of input Feature Maps
NumFM][i]: Number of output Feature Maps
= Number of neurons: NumFM([i] x DimFM][i]?
= Number of weights per output Feature Map:
NumFM][i-1] x DimStenli]?
\ Pimstent] = Total number pf weights per layer: NumFM][i] x
Number of weights per output Feature Map

= Number of operations per output Feature Map: 2
x DImFM([i]? x Number of weights per output
Feature Map

= Total number of operations per layer: NumFM][i]
x Number of operations per output Feature Map
= 2 x DimFM][i]2 x NumFM][i] x Number of weights
per output Feature Map = 2 x DimFM[i]?> x Total
number of weights per layer

= Operations/Weight: 2 x DimFMI[i]?

3
g
»
<
N ‘\"\ 4f
/
‘
§
~
| u

NumFM[-1] O,
NumFM[i]
|

SYJOMION |ednaN dea(g :ajdwex]

@ Vector matrix multiply
@ Nonlinear function

NumFM[i-1]

Recurrent Neural Network

= Speech recognition and language translation

= Long short-term memory (LSTM) network

Time

- & @

—]

LSTMn

i

LSTMn

'

LSTMn

i

LSTMn

SHJOM]BN |ednaN dea(q :sjdwex]

i

LSTMn

— “momento”

i

LSTMn

—= “g|"

i

“now” —={ LSTMo0O LSTM1
! B!
“Is" —{ LSTMO LSTM1
B! R
“the” —=| LSTM0 LSTM1
b b
“time” —| LSTM0 LSTM1
! B!
<end_input> —={ LSTMO0 —= LSTM1
B! i
“momento” —={ LSTMO LSTM1
R B!
“el" —=| LSTMo LSTM1
B! i
“es” —=| LSTMoO LSTM1
b !
“ahora” —={ LSTMo0 LSTM1

LSTMn

ﬂesf

B!

LSTMn

— “ghora”

B!

'

3

LSTMn

— <end_output>

'

Recurrent Neural Network

s Parameters:

| LTMemoryin | [STMemoryin |
]

@ @ @ Vector matrix multiply
@ Element-wise multiply

Output gate
@ Element-wise addition

weights
@ Nonlinear function

Input
weights

LTMemoryout | | STMemoryout

Number of weights per cell:

3 x (3 x Dim x Dim)+(2 x
Dim x Dim) + (1 x Dim x
Dim) = 12 x Dim?

Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim?

Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x Dim? + 4 x Dim

Operations/Weight: ~2

SYJOMION |ednaN dea(g :ajdwex]

Convolutional Neural Network

= Batches:
= Reuse weights once fetched from memory across multiple inputs
= Increases operational intensity

= Quantization
= Use 8- or 16-bit fixed point

= Summary:

= Need the following kernels:
= Matrix-vector multiply
= Matrix-matrix multiply

Stencil

RelLU

Sigmoid

Hyperbolic tangeant

SYJOMION |ednaN dea(g :ajdwex]

Tensor Processing Unit

s Google’s DNN ASIC

m 256 x 256 8-bit matrix multiply unit

» Large software-managed scratchpad
m Coprocessor on the PCle bus

Hun Buissasold Josua|

Tensor Processin

14
GiBls

14
GiB/s

Host interface

14 GiB/s

g Unit

30 GiB/s

¢ > =
8—8

(
10
GiB/s

~

4)

[#)
1T

5

&

Unified
buffer Systolic
(local data
tivati I
storage)
& e
167 GiB/s

30 GiB/s

&=

Accumulators

Activation

Normalize / Pool

Hun Buissadold Josua|

TPU ISA

= Read Host Memory
= Reads memory from the CPU memory into the unified buffer

= Read Weights

= Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

= MatrixMatrixMultiply/Convolve

= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

= takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

s Activate

Hun Buissasold Josua|

= Computes activation function

= Write Host Memory
= Writes data from unified buffer into host memory

TPU ISA

Local Unified Buffer for

Hun Buissasold Josua|

Matrix multiply unit
{%m"""mﬁ““gf‘g 4 MiB) (256x256x8b = 64K MAC)
29% of chip 24%

Host Accumulators
Interf. 2% (4Kx256x32b = 4 MiB) 6%

D

R

A

M R

| R e o o
ddr3

3%

Interface 3% Misc. /0 1%

§§§:rmn

TPU ISA

[oomr |,

Data

Partial sums

MI<

MORGAN KAUFMANN

e

w11 w12 w13

(A)

w11 wiz2 w13

w21

U

w11

w21

Y1 = WygXy * WXy + WyaXy

Y1 = WygXy * Wypkap + Wy3Xy

Y1 = WqgXy # WopXyp # WygXy

Y2 = WXy # WXy + WXy

Hun Buissasold Josua|

TPU ISA

= Read Host Memory
= Reads memory from the CPU memory into the unified buffer

= Read Weights

= Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

= MatrixMatrixMultiply/Convolve

= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

= takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

s Activate

Hun Buissasold Josua|

= Computes activation function

= Write Host Memory
= Writes data from unified buffer into host memory

Improving the TPU

Hun Buissasold Josua|

5 35 —k— memory
g 3.0 //' —»— Clock+
E . // —&— clock

o —&— matrix+
‘-:: 2 2.0 - —A— matrix
S=1s /

E 1.0

B —3- — A

% 0.5

. 0.0

00 05 10 15 20 25 30 35 40
Scale relative to original MPU

The TPU and the Guidelines

s Use dedicated memories
= 24 MiB dedicated buffer, 4 MiB accumulator buffers

s Invest resources in arithmetic units and dedicated
memories
= 60% of the memory and 250X the arithmetic units of a server-class CPU

s Use the easiest form of parallelism that matches the
domain

Hun Buissasold Josua|

= Exploits 2D SIMD parallelism

= Reduce the data size and type needed for the domain
= Primarily uses 8-bit integers

s Use a domain-specific programming language
= Uses TensorFlow

Microsoft Catapult

= Needed to be general
purpose and power efficient

= Uses FPGA PCle board with
dedicated 20 Gbps network in 6 x

8 torus 4GB DDR3-1333 4 GB DDR3-1333
ECC SO-DIMM ECC SO-DIMM

= Each of the 48 servers in half the 372 372
rack has a Catapult board

= Limited to 25 watts
= 32 MiB Flash memory

= Two banks of DDR3-1600 (11
GB/s) and 8 GiB DRAM ey

= FPGA (unconfigured) has 3962
18-bit ALUs and 5 MiB of on-chip
memory

s Programmed in Verilog RTL
» Shell is 23% of the FPGA

}ndede) 1JOSOUI\

256 Mb
4 aspl
“ " Config

Flash

§ 5 28

o
reconfig

Microsoft Catapult: CNN

= CNN accelerator, mapped across multiple FPGAs

}ndede) 1JOSOUI\

Output volume
z
\“
Top x“'\
controller Data re-distribution 7& ~
Output Output | Output Output
Layer _|feature[|feature| ¥ feature feature
config. Layer , map map map map
troll nput Input st nput nput
controfer |, kernel | | | kerel | | kenel | | | kernel | |
weight (4 | weight | 4 weight [4 | weight ||
— addressL_0 1 M2 -
l generation | Scan chain l |
Input
~ 4 volume PE (H— PE PE = PE
z | Segment0
Input volume Broad-cast |) ‘ |
x Input
volume PE H— PE PE =~ PE
Segment 1
L] ..‘
Input
~{ volume PE H—{ PE PE (= PE
Segment N-2
y ! ' | !
Input
Y wvolume PE +— PE PE = PE
Segment N-1

MI<

MORGAN KAUFMANN

Microsoft Catapult: CNN

@)
-
o
wn
PCle DRAM 9"\
I I —
oo Umi Dram &
Fetcher S
|:‘u-ni (1
Multi layer —+ | Singlo Laver 18w | 8w, H ewe b« | 8w, o
control |Umi _ c
Kernel weights —
Buffer array —
j—d-il". j FUgg M| FUgg H FUgp - * == = FUg,
j.ﬂél-\ j FU b U, M FU b oeee o FU | S
. T T T Y %
—) FUso M Flipy H Faa b oo® »f FUaa | |
. 2
: : : . : e : g
* L] L] L] L] L]
}dgl-\ J FUpo M FULy H FU b = = FU,,
L i | 1
pidoule |7 (m—mf———p——t 1
Bufferamay -~ [
B ~~" Address 0By H OB, H OB, b ==+ =~| OB,
17T utput bufier
- Amay
Bias data load
- by P #b, P +by b eer = 4b,
buffer
Amray
_/.- - _/' - _/: - . ’/.'
Max pool command | Max pool Activation
control Function array
Control T~| MPEo [| MPE, - MPE; - - -* ~| MPE,
L Maxpooling_] ___

I
J_' array
Shallow -E_- S T .

MI<

MORGAN KAUFMANN

Microsoft Catapult: Search Ranking

m Feature extraction (1 FPGA)

» Extracts 4500 features for every document-query pair, e.g. frequency in which the query
appears in the page

= Systolic array of FSMs
m Free-form expressions (2 FPGAS)
» Calculates feature combinations
s Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate
score)
» Uses results of previous two stages to calculate floating-point score

= One FPGA allocated as a hot-spare

JIndeden 1JOSOIDIN

Hit vector
——=| preprocessing
FSM

bl bl ol bl Bl ; C]
F Lol bl Ll bl Bl ;]
Feature- e Ll bl Bl]

- a.i —
m Lol Bl Ll bl Bl]
' e Ll bl Bl]
Lol Ll L bdd]

Feature extraction FSMs

Microsoft Catapult: Search Ranking

s Free-form expression evaluation
= 60 core processor
= Pipelined cores
= Each core supports four threads that can hide each other’s latency
= Threads are statically prioritized according to thread latency

}ndede) 1JOSOUI\

05th percentile latency versus throughput

T ° | |
— FPGA ' |
% 4 — Software = I
E Ll I A 95%mor —
= 1 I
= P Thruughput
(=N — - - - - - '_l ——
E | |
gL
E 29% lower Iatevcy |
ﬂ L L L
0 0.5 1 1.5 2

Latency (normalized to 95th percentile target)

Microsoft Catapult: Search Ranking

= Version 2 of Catapult

s Placed the FPGA between the
CPU and NIC

s Increased network from 10 Gb/s
to 40 Gb/s

= Also performs network
acceleration

s Shell now consumes 44% of the
FPGA 40Gb/s ToR

= Now FPGA performs only
feature extraction

2-socket server blade

JIndeden 1JOSOIDIN

Accelerator card

Catapult and the Guidelines

s Use dedicated memories
= 5 MiB dedicated memory
s Invest resources in arithmetic units and dedicated
memories
s 3926 ALUs

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD for CNN, MISD parallelism for search scoring

= Reduce the data size and type needed for the
domain

JIndeden 1JOSOIDIN

= Uses mixture of 8-bit integers and 64-bit floating-point

s Use a domain-specific programming language
= Uses Verilog RTL; Microsoft did not follow this guideline

Intel Crest

]Sal) DU

= DNN training

s 16-bit fixed point

s Operates on blocks of 32x32 matrices
= SRAM + HBM2

Interposer
gllzllal e icc gllg||g| e
Processing Processing Processing
8GB HBM2 HBM | Mem Cluster Cluster Cluster Mem | HBM 8GB HBM2
PHY | Ctrir Ctrir | PHY
Processing Processing Processing
Cluster Cluster Cluster
SPI, ICZ.\ ‘ MGMT
P
GPIO P = CPU
Cluster Cluster Cluster
HBM | Mem Mem | HBM
o PHY | Ctrir | | Processing || Processing || Processing | | Ctrir | PHY
8GB HBM2 Cluster Cluster Cluster 8GB HBM2
= = ORI EERBE

Pixel Visual Core

= Pixel Visual Core
= Image Processing Unit
= Performs stencil operations
= Decended from Image Signal processor

Sensor
Lens (ccD or CMOS

.l ﬁ

Pixel Visual Core

s Software written in Halide, a DSL
= Compiled to virtual ISA

= VISAis lowered to physical ISA using application-specific
parameters

= pISAis VLSI

= Optimized for energy

= Power Budget is 6 to 8 W for bursts of 10-20 seconds,
dropping to tens of milliwatts when not in use

= 8-bit DRAM access equivalent energy as 12,500 8-bit
integer operations or 7 to 100 8-bit SRAM accesses

= |[EEE 754 operations require 22X to 150X of the cost of 8-bit
integer operations

s Optimized for 2D access
= 2D SIMD unit

8107 [ensIA |8Xid

= On-chip SRAM structured using a square geometry

Pixel Visual Core

Pixel Visual Core

Pixel Visual Core

5
O
©®
QOO

Siia

5
©
©
OlOR =

o))
() e)

506
&6

e

r

Co

GiOIO)

)JUJﬁ')?

$333

0066

$00000

Do
o
o
b

Pixel Visual

Pixel Visual Core

Lo 2D stencil
processor

2D stencil
processor

2D stencil
processor

2D stencil

e

2100 |ensiA |9Xid

Visual Core and the Guidelines

s Use dedicated memories
= 128 + 64 MiB dedicated memory per core

s |Invest resources in arithmetic units and dedicated
memories

= 16x16 2D array of processing elements per core and 2D
shifting network per core

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD and VLIW

= Reduce the data size and type needed for the
domain

JIndeden 1JOSOIDIN

= Uses mixture of 8-bit and 16-bit integers
s Use a domain-specific programming language
= Halide for image processing and TensorFlow for CNNs

Fallacies and Pitfalls

= |t costs $100 million to design a custom chip

s Performance counters added as an
afterthought

= Architects are tackling the right DNN tasks

= For DNN hardware, inferences per second
(IPS) is a fair summary performance metric

s Being ignorant of architecture history when
designing an DSA

JIndeden 1JOSOIDIN

	Slide 1
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Guidelines for DSAs
	Slide 5: Guidelines for DSAs
	Slide 6: Example: Deep Neural Networks
	Slide 7: Example: Deep Neural Networks
	Slide 8: Multi-Layer Perceptrons
	Slide 9: Convolutional Neural Network
	Slide 10: Convolutional Neural Network
	Slide 11: Recurrent Neural Network
	Slide 12: Recurrent Neural Network
	Slide 13: Convolutional Neural Network
	Slide 14: Tensor Processing Unit
	Slide 15: Tensor Processing Unit
	Slide 16: TPU ISA
	Slide 17: TPU ISA
	Slide 18: TPU ISA
	Slide 19: TPU ISA
	Slide 20: Improving the TPU
	Slide 21: The TPU and the Guidelines
	Slide 22: Microsoft Catapult
	Slide 23: Microsoft Catapult: CNN
	Slide 24: Microsoft Catapult: CNN
	Slide 25: Microsoft Catapult: Search Ranking
	Slide 26: Microsoft Catapult: Search Ranking
	Slide 27: Microsoft Catapult: Search Ranking
	Slide 28: Catapult and the Guidelines
	Slide 29: Intel Crest
	Slide 30: Pixel Visual Core
	Slide 31: Pixel Visual Core
	Slide 32: Pixel Visual Core
	Slide 33: Pixel Visual Core
	Slide 34: Pixel Visual Core
	Slide 35: Visual Core and the Guidelines
	Slide 36: Fallacies and Pitfalls

