
COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

5th

Edition

ISA and Programming

CSE 341 Review

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

◼ The repertoire of instructions of a
computer

◼ Different computers have different
instruction sets

◼ But with many aspects in common

◼ Early computers had very simple
instruction sets

◼ Simplified implementation

◼ Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set

◼ Used as the example throughout the book

◼ Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

◼ Large share of embedded core market

◼ Applications in consumer electronics, network/storage

equipment, cameras, printers, …

◼ Typical of many modern ISAs

◼ See MIPS Reference Data tear-out card, and

Appendixes B and E

http://www.mips.com/

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations

◼ Add and subtract, three operands

◼ Two sources and one destination

add a, b, c # a gets b + c

◼ All arithmetic operations have this form

◼ Design Principle 1: Simplicity favours

regularity

◼ Regularity makes implementation simpler

◼ Simplicity enables higher performance at

lower cost

§
2
.2

 O
p

e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example

◼ C code:

f = (g + h) - (i + j);

◼ Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands

◼ Arithmetic instructions use register
operands

◼ MIPS has a 32 × 32-bit register file
◼ Use for frequently accessed data

◼ Numbered 0 to 31

◼ 32-bit data called a “word”

◼ Assembler names
◼ $t0, $t1, …, $t9 for temporary values

◼ $s0, $s1, …, $s7 for saved variables

◼ Design Principle 2: Smaller is faster
◼ c.f. main memory: millions of locations

§
2
.3

 O
p

e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example

◼ C code:

f = (g + h) - (i + j);

◼ f, …, j in $s0, …, $s4

◼ Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands

◼ Main memory used for composite data
◼ Arrays, structures, dynamic data

◼ To apply arithmetic operations
◼ Load values from memory into registers

◼ Store result from register to memory

◼ Memory is byte addressed
◼ Each address identifies an 8-bit byte

◼ Words are aligned in memory
◼ Address must be a multiple of 4

◼ MIPS is Big Endian
◼ Most-significant byte at least address of a word

◼ c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 1

◼ C code:

g = h + A[8];

◼ g in $s1, h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 8 requires offset of 32

◼ 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example 2

◼ C code:

A[12] = h + A[8];

◼ h in $s2, base address of A in $s3

◼ Compiled MIPS code:

◼ Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory

◼ Registers are faster to access than
memory

◼ Operating on memory data requires loads
and stores

◼ More instructions to be executed

◼ Compiler must use registers for variables
as much as possible

◼ Only spill to memory for less frequently used
variables

◼ Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands

◼ Constant data specified in an instruction

addi $s3, $s3, 4

◼ No subtract immediate instruction

◼ Just use a negative constant

addi $s2, $s1, -1

◼ Design Principle 3: Make the common

case fast

◼ Small constants are common

◼ Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

The Constant Zero

◼ MIPS register 0 ($zero) is the constant 0

◼ Cannot be overwritten

◼ Useful for common operations

◼ E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 14

2s-Complement Signed Integers

◼ Bit 31 is sign bit
◼ 1 for negative numbers

◼ 0 for non-negative numbers

◼ –(–2n – 1) can’t be represented

◼ Non-negative numbers have the same unsigned
and 2s-complement representation

◼ Some specific numbers
◼ 0: 0000 0000 … 0000

◼ –1: 1111 1111 … 1111

◼ Most-negative: 1000 0000 … 0000

◼ Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 15

Sign Extension

◼ Representing a number using more bits
◼ Preserve the numeric value

◼ In MIPS instruction set
◼ addi: extend immediate value

◼ lb, lh: extend loaded byte/halfword

◼ beq, bne: extend the displacement

◼ Replicate the sign bit to the left
◼ c.f. unsigned values: extend with 0s

◼ Examples: 8-bit to 16-bit
◼ +2: 0000 0010 => 0000 0000 0000 0010

◼ –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 16

Representing Instructions

◼ Instructions are encoded in binary

◼ Called machine code

◼ MIPS instructions

◼ Encoded as 32-bit instruction words

◼ Small number of formats encoding operation code

(opcode), register numbers, …

◼ Regularity!

◼ Register numbers

◼ $t0 – $t7 are reg’s 8 – 15

◼ $t8 – $t9 are reg’s 24 – 25

◼ $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 17

MIPS R-format Instructions

◼ Instruction fields

◼ op: operation code (opcode)

◼ rs: first source register number

◼ rt: second source register number

◼ rd: destination register number

◼ shamt: shift amount (00000 for now)

◼ funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 18

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 19

MIPS I-format Instructions

◼ Immediate arithmetic and load/store instructions
◼ rt: destination or source register number

◼ Constant: –215 to +215 – 1

◼ Address: offset added to base address in rs

◼ Design Principle 4: Good design demands good
compromises
◼ Different formats complicate decoding, but allow 32-bit

instructions uniformly

◼ Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 20

Logical Operations

◼ Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

◼ Useful for extracting and inserting

groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 21

Shift Operations

◼ shamt: how many positions to shift

◼ Shift left logical

◼ Shift left and fill with 0 bits

◼ sll by i bits multiplies by 2i

◼ Shift right logical

◼ Shift right and fill with 0 bits

◼ srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 22

AND Operations

◼ Useful to mask bits in a word

◼ Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 23

OR Operations

◼ Useful to include bits in a word

◼ Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 24

NOT Operations

◼ Useful to invert bits in a word

◼ Change 0 to 1, and 1 to 0

◼ MIPS has NOR 3-operand instruction

◼ a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always

read as zero

Chapter 2 — Instructions: Language of the Computer — 25

Conditional Operations

◼ Branch to a labeled instruction if a
condition is true

◼ Otherwise, continue sequentially

◼ beq rs, rt, L1
◼ if (rs == rt) branch to instruction labeled L1;

◼ bne rs, rt, L1
◼ if (rs != rt) branch to instruction labeled L1;

◼ j L1
◼ unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 26

Compiling If Statements

◼ C code:

if (i==j) f = g+h;
else f = g-h;

◼ f, g, … in $s0, $s1, …

◼ Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 27

Compiling Loop Statements

◼ C code:

while (save[i] == k) i += 1;

◼ i in $s3, k in $s5, address of save in $s6

◼ Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 28

More Conditional Operations

◼ Set result to 1 if a condition is true

◼ Otherwise, set to 0

◼ slt rd, rs, rt

◼ if (rs < rt) rd = 1; else rd = 0;

◼ slti rt, rs, constant

◼ if (rs < constant) rt = 1; else rt = 0;

◼ Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 29

Branch Instruction Design

◼ Why not blt, bge, etc?

◼ Hardware for <, ≥, … slower than =, ≠

◼ Combining with branch involves more work

per instruction, requiring a slower clock

◼ All instructions penalized!

◼ beq and bne are the common case

◼ This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 30

Signed vs. Unsigned

◼ Signed comparison: slt, slti

◼ Unsigned comparison: sltu, sltui

◼ Example

◼ $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

◼ $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

◼ slt $t0, $s0, $s1 # signed

◼ –1 < +1 $t0 = 1

◼ sltu $t0, $s0, $s1 # unsigned

◼ +4,294,967,295 > +1 $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 31

Procedure Calling

◼ Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 32

Register Usage

◼ $a0 – $a3: arguments (reg’s 4 – 7)

◼ $v0, $v1: result values (reg’s 2 and 3)

◼ $t0 – $t9: temporaries
◼ Can be overwritten by callee

◼ $s0 – $s7: saved
◼ Must be saved/restored by callee

◼ $gp: global pointer for static data (reg 28)

◼ $sp: stack pointer (reg 29)

◼ $fp: frame pointer (reg 30)

◼ $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 33

Procedure Call Instructions

◼ Procedure call: jump and link

jal ProcedureLabel

◼ Address of following instruction put in $ra

◼ Jumps to target address

◼ Procedure return: jump register

jr $ra

◼ Copies $ra to program counter

◼ Can also be used for computed jumps

◼ e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 34

Leaf Procedure Example

◼ C code:

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

◼ Arguments g, …, j in $a0, …, $a3

◼ f in $s0 (hence, need to save $s0 on stack)

◼ Result in $v0

Chapter 2 — Instructions: Language of the Computer — 35

Leaf Procedure Example

◼ MIPS code:
leaf_example:

addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 36

Non-Leaf Procedures

◼ Procedures that call other procedures

◼ For nested call, caller needs to save on the

stack:

◼ Its return address

◼ Any arguments and temporaries needed after

the call

◼ Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 37

Non-Leaf Procedure Example

◼ C code:

int fact (int n)
{

if (n < 1) return f;
else return n * fact(n - 1);

}

◼ Argument n in $a0

◼ Result in $v0

Chapter 2 — Instructions: Language of the Computer — 38

Non-Leaf Procedure Example

◼ MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 39

Local Data on the Stack

◼ Local data allocated by callee
◼ e.g., C automatic variables

◼ Procedure frame (activation record)
◼ Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 40

Byte/Halfword Operations

◼ Could use bitwise operations

◼ MIPS byte/halfword load/store

◼ String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

◼ Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

◼ Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

◼ Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 41

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants

◼ Most constants are small

◼ 16-bit immediate is sufficient

◼ For the occasional 32-bit constant

lui rt, constant

◼ Copies 16-bit constant to left 16 bits of rt

◼ Clears right 16 bits of rt to 0

lhi $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2

-B
it Im

m
e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 42

Branch Addressing

◼ Branch instructions specify

◼ Opcode, two registers, target address

◼ Most branch targets are near branch

◼ Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

◼ PC-relative addressing

◼ Target address = PC + offset × 4

◼ PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 43

Jump Addressing

◼ Jump (j and jal) targets could be

anywhere in text segment

◼ Encode full address in instruction

op address

6 bits 26 bits

◼ (Pseudo)Direct jump addressing

◼ Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 44

Target Addressing Example

◼ Loop code from earlier example

◼ Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 45

Branching Far Away

◼ If branch target is too far to encode with

16-bit offset, assembler rewrites the code

◼ Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 46

Addressing Mode Summary

Green sheet

Review

MIPS-32 ISA

R0 - R31

Registers
 Instruction Categories

 Computational

 Load/Store

 Jump and Branch

 Floating Point

- coprocessor

 Memory Management

 Special

PC

HI

LO

3 Instruction Formats: all 32 bits wide

rtop rs rd sa funct

rt immediate

R format

I formatop rs

op jump target

CSE431 Chapter 2.48 Irwin, PSU, 2008

J format

MIPS ArithmeticInstructions

MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs one operation

 Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0,$s1,$s2)

destination source1 op source2

 Instruction Format (R format)

0

CSE431 Chapter 2.49 Irwin, PSU, 2008

17 18 8 0 0x22

MIPS Arithmetic Instructions

 MIPS assembly language arithmetic statement

add $t0, $s1, $s2

sub $t0, $s1, $s2

 Each arithmetic instruction performs one operation

 Each specifies exactly three operands that are all
contained in the datapath’s register file ($t0,$s1,$s2)

destination source1 op source2

 Instruction Format (R format)

0 17 18 8 0 0x22

CSE431 Chapter 2.50 Irwin, PSU, 2008

MIPS Register File

Register File
32 bits

src1
data

325

5

 Holds thirty-two 32-bit registers

 Two read ports and

 One write port
32

locations

32

5

32 Registers are

src1 addr

src2 addr

dst addr

write data
src2
data

 Faster than main memory

write control
- But register files with more locations

are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file)

CSE431 Chapter 2.51 Irwin, PSU, 2008

- Read/write port increase impacts speed quadratically

 Easier for a compiler to use

- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.
stack

 Can hold variables so that

- code density improves (since register are named with fewer bits
than a memory location)

Aside: MIPS RegisterConvention

Name Registe

r

Number

Usage Preserv

e on

call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes
CSE431 Chapter 2.52 Irwin, PSU, 2008

CSE431 Chapter 2.53 Irwin, PSU, 2008

MIPS Memory Access Instructions

MIPS has two basic data transfer instructions for
accessing memory

lw $t0, 4($s3)

sw $t0, 8($s3)

#load word from memory

#store word to memory

 The data is loaded into (lw) or stored from (sw) a register
in the register file – a 5 bit address

 The memory address – a 32 bit address – is formed by
adding the contents of the base address register to the
offset value

 A 16-bit field meaning access is limited to memory locations
within a region of 213 or 8,192 words (215 or 32,768 bytes) of
the address in the base register

Machine Language – Load Instruction

 Load/Store Instruction Format (I format):

lw $t0, 24($s3)

35 19 8 2410

Memory

0xf f f f f f f f

$s3 0x12004094

0x120040ac$t0

2410 + $s3 =

. . . 0001 1000

+ . . . 1001 0100

. . . 1010 1100 =
0x120040ac

data

0x00000000

word address (hex)

0x0000000c
0x00000008
0x00000004

CSE431 Chapter 2.54 Irwin, PSU, 2008

ByteAddresses

 Since 8-bit bytes are so useful, most architectures
address individual bytes in memory

 Alignment restriction - the memory address of a word must be
on natural word boundaries (a multiple of 4 in MIPS-32)

 Big Endian: leftmost byte is word address

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

 Little Endian: rightmost byte is word address

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

3 2 1
little endian byte 0

0

msb lsb

1 2 30

big endian byte 0

CSE431 Chapter 2.55 Irwin, PSU, 2008

Aside: Loading and Storing Bytes

MIPS provides special instructions to move bytes

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

0x28 19 8 16 bit offset

 What 8 bits get loaded and stored?

 load byte places the byte from memory in the rightmost 8 bits of

the destination register

- what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a register

and writes it to a byte in memory

- what happens to the other bits in the memory word?

CSE431 Chapter 2.56 Irwin, PSU, 2008

MIPS Immediate Instructions

 Small constants are used often in typical code

 Possible approaches?

 put “typical constants” in memory and load them

 create hard-wired registers (like $zero) for constants like 1

 have special instructions that contain constants !

addi $sp, $sp, 4

slti $t0, $s2, 15

#$sp = $sp + 4

#$t0 = 1 if $s2<15

 Machine format (I format):

0x0A 18 8 0x0F

 The constant is kept inside the instruction itself!

 Immediate format limits values to the range +215–1 to -215

CSE431 Chapter 2.57 Irwin, PSU, 2008

Review: Unsigned Binary Representation

231 230 229 . . . 23 22 21 20 bit weight

31 30 29 . . .

1 1 1 . . . 1 1 1 1 bit

3 2 1 0 bit position

1 0 0 0 . . . 0 0 0 0 - 1

232 - 1

Hex Binary Decimal

0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100 232 - 4

0xFFFFFFFD 1…1101 232 - 3

0xFFFFFFFE 1…1110 232 - 2

0xFFFFFFFF 1…1111 232 - 1

CSE431 Chapter 2.58 Irwin, PSU, 2008

Review: Signed Binary

Representation
-23 =

-(23 - 1)=

complement all the bits

1011

and add a 1

0101

1010

and add a 1

0110

complement all the bits

CSE431 Chapter2.16 Irwin, PSU, 2008

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7
23 - 1=

MIPS Shift Operations

 Need operations to pack and unpack 8-bit characters into
32-bit words

 Shifts move all the bits in a word left or right

sll $t2, $s0, 8 #$t2 = $s0 << 8 bits

srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits

 Instruction Format (R format)

0 16 10 8 0x00

 Such shifts are called logical because they fill with

zeros

 Notice that a 5-bit shamt field is enough to shift a 32-bit value

25 – 1 or 31 bit positions

CSE431 Chapter 2.60 Irwin, PSU, 2008

MIPS Logical Operations

 There are a number of bit-wise logical operations in the
MIPS ISA

and $t0, $t1, $t2 #$t0 = $t1 & $t2

or $t0, $t1, $t2 #$t0 = $t1 | $t2

nor $t0, $t1, $t2 #$t0 = not($t1 | $t2)

 Instruction Format (R format)

0 9 10 8 0 0x24

andi $t0, $t1, 0xFF00 #$t0 = $t1 & ff00

#$t0 = $t1 | ff00ori $t0, $t1, 0xFF00

 Instruction Format (I format)

0x0D 9 8

CSE431 Chapter 2.61 Irwin, PSU, 2008

0xFF00

MIPS Control Flow Instructions

 MIPS conditional branch instructions:

bne $s0, $s1, Lbl

beq $s0, $s1, Lbl

#go to Lbl if $s0$s1
#go to Lbl if $s0=$s1

 Ex: if (i==j) h = i + j;

Lbl1:

bne $s0, $s1, Lbl1

add $s3, $s0, $s1

...

 Instruction Format (I format):

0x05 16 17 16 bit offset

 How is the branch destination address specified?

CSE431 Chapter 2.62 Irwin, PSU, 2008

Specifying Branch Destinations

PC 32

32 Add32

 Use a register (like in lw and sw) added to the 16-bit offset

 which register? Instruction Address Register (the PC)

- its use is automatically implied by instruction

- PC gets updated (PC+4) during the fetch cycle so that it holds the
address of the next instruction

 limits the branch distance to -215 to +215-1 (word) instructions from
the (instruction after the) branch instruction, but most branches are
local anyway

from the low order 16 bits of the branch instruction

16

offset
sign-extend

00

branch dst

address

32 Add

32
32 ?4 32

CSE431 Chapter 2.63 Irwin, PSU, 2008

In Support of Branch Instructions

 We have beq, bne, but what about other kinds of
branches (e.g., branch-if-less-than)? For this, we need yet
another instruction, slt

 Set on less than instruction:

slt $t0, $s0, $s1 then

else

if $s0 < $s1

$t0 = 1

$t0 = 0

 Alternate versions of slt

 Instruction format (R format):

0 16 17 8 0x24

slti $t0, $s0, 25

sltu $t0, $s0, $s1

CSE431 Chapter 2.64 Irwin, PSU, 2008

if $s0 < 25 then $t0=1 ...

if $s0 < $s1 then $t0=1 ...

sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

CSE431 Chapter 2.65 Irwin, PSU, 2008

Aside: More Branch Instructions

 Can use slt, beq, bne, and the fixed value of 0 in
register $zero to create other conditions

 less than blt $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if

bne $at, $zero, Label #$s1 < $s2

 less than or equal to ble $s1, $s2, Label

 greater than bgt $s1, $s2, Label

 great than or equal to bge $s1, $s2, Label

 Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler

 Its why the assembler needs a reserved register ($at)

Other Control Flow Instructions

 MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

 Instruction Format (J Format):

0x02 26-bit address

from the low order 26 bits of the jump instruction

26

4

00

32

PC 32

CSE431 Chapter 2.66 Irwin, PSU, 2008

Six Steps in Execution of a Procecure

1. Main routine (caller) places parameters in a place
where the procedure (callee) can access them

 $a0 - $a3: four argument registers

2. Caller transfers control to the callee

3. Callee acquires the storage resources needed

4. Callee performs the desired task

5. Callee places the result value in a place where the

CSE431 Chapter 2.67 Irwin, PSU, 2008

caller can access it

 $v0 - $v1: two value registers for result values

6. Callee returns control to the caller

 $ra: one return address register to return to the point of origin

Aside: SpillingRegisters

 What if the callee needs to use more registers than
allocated to argument and return values?

 callee uses a stack – a last-in-first-out queue

high addr
One of the general registers,$sp

($29), is used to address the stack

$sptop of stack

(which “grows” from high address
to low address)

 add data onto the stack – push

$sp = $sp – 4

data on stack at new $sp

 remove data from the stack – pop

data from stack at $sp
low addr

CSE431 Chapter 2.68 Irwin, PSU, 2008

$sp = $sp + 4

Aside: Allocating Space on the stack

 The segment of the stack
containing a procedure’s

high addr

Saved argument

regs (if any)

Saved return addr

$fp

saved registers and local
variables is its procedure
frame (aka activation
record)

 The frame pointer ($fp)
points to the first word of the
frame of a

Saved local regs

(if any)

procedure – providing a stable
“base” register for the procedure

-$fp is initialized using $sp on a
call and $sp is restored using
$fp on a return

$sp

Local arrays &

structures (if

any)

CSE431 Chapter 2.69 Irwin, PSU, 2008

low addr

MIPS Organization So Far

Memory

1…1100

Processor

Register File

read/write

addr

src1 addr

src2 addr

dst addr

src1
data

src2
data

32
registers

($zero - $ra)

32

5

5

5

230

words32

32
write data

32

Add32

32 bits

branch offset

write data

32

read data

32PC32 32

7654

Fetch

PC = PC+4

Add
32

32
4

32

word address

(binary)

0…1100
0…1000
0…0100
0…0000

32

32 ALU

32

0 1 2 3

32 bits
DecodeExec

byte address

(big Endian)

CSE431 Chapter 2.70 Irwin, PSU, 2008

32-bit signed numbers (2’s complement):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

Number Representations

maxint

minint

❑ Converting <32-bit values into 32-bit values

copy the most significant bit (the sign bit) into the “empty” bits
0010 -> 0000 0010

1010 -> 1111 1010

sign extend versus zero extend (lb vs. lbu)

MSB

LSB

MIPS Arithmetic Logic Unit (ALU)

Must support the Arithmetic/Logic operations of the
ISA

add, addi, addiu, addu

sub, subu

mult, multu, div, divu

sqrt

and, andi, nor, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

32

32

32

m (operation)

result

A

B

ALU

4

zero ovf

1
1

❑ With special handling for

sign extend – addi, addiu, slti, sltiu

zero extend – andi, ori, xori

overflow detection – add, addi, sub

Chapter 2 — Instructions: Language of the Computer — 73

ARM & MIPS Similarities

◼ ARM: the most popular embedded core

◼ Similar basic set of instructions to MIPS

§
2
.1

6
 R

e
a
l S

tu
ff: A

R
M

 In
s
tru

c
tio

n
s

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory

mapped

Memory

mapped

Chapter 2 — Instructions: Language of the Computer — 74

Compare and Branch in ARM

◼ Uses condition codes for result of an

arithmetic/logical instruction

◼ Negative, zero, carry, overflow

◼ Compare instructions to set condition codes

without keeping the result

◼ Each instruction can be conditional

◼ Top 4 bits of instruction word: condition value

◼ Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 75

Instruction Encoding

ARM v8 Instructions

◼ In moving to 64-bit, ARM did a complete

overhaul

◼ ARM v8 resembles MIPS
◼ Changes from v7:

◼ No conditional execution field

◼ Immediate field is 12-bit constant

◼ Dropped load/store multiple

◼ PC is no longer a GPR

◼ GPR set expanded to 32

◼ Addressing modes work for all word sizes

◼ Divide instruction

◼ Branch if equal/branch if not equal instructions

Chapter 2 — Instructions: Language of the Computer — 76

§
2
.1

8
 R

e
a
l S

tu
ff: A

R
M

 v
8
 (6

4
-b

it) In
s
tru

c
tio

n
s

Chapter 2 — Instructions: Language of the Computer — 77

Fallacies

◼ Powerful instruction higher performance

◼ Fewer instructions required

◼ But complex instructions are hard to implement

◼ May slow down all instructions, including simple ones

◼ Compilers are good at making fast code from simple

instructions

◼ Use assembly code for high performance

◼ But modern compilers are better at dealing with

modern processors

◼ More lines of code more errors and less

productivity

§
2
.1

9
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 2 — Instructions: Language of the Computer — 78

Concluding Remarks

◼ Measure MIPS instruction executions in
benchmark programs

◼ Consider making the common case fast

◼ Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

Chapter 3 — Arithmetic for Computers — 79

Arithmetic for Multimedia

◼ Graphics and media processing operates

on vectors of 8-bit and 16-bit data

◼ Use 64-bit adder, with partitioned carry chain

◼ Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

◼ SIMD (single-instruction, multiple-data)

◼ Saturating operations

◼ On overflow, result is largest representable

value

◼ c.f. 2s-complement modulo arithmetic

◼ E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 80

Arithmetic for Multimedia

◼ Graphics and media processing operates

on vectors of 8-bit and 16-bit data

◼ Use 64-bit adder, with partitioned carry chain

◼ Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

◼ SIMD (single-instruction, multiple-data)

◼ Saturating operations

◼ On overflow, result is largest representable

value

◼ c.f. 2s-complement modulo arithmetic

◼ E.g., clipping in audio, saturation in video

