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Summary

We present a hardware architecture similar to work by Beaumont et. al.
[Beaumont et al., 2012] while utilizing a homomorphic cryptography based
processor similar to [Breuer and Bowen, 2013].

Our design differs however in that we consider a cryptographic processor
unit (KPU) in conjunction with a set of heterogeneous processors that use
verification algorithms to ensure that the KPU executes properly.
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Goals

Our work proceeds under the maliciously unreliable model.
Assume that a trojan is present, can we hide the computations we’re
performing?
Can we introduce enough fault tolerance to provide useful
computation before failure?
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Highlights

Define homomorphic encryption
Discuss components of a KPU
Describe verification mechanisms
Describe multiparty voting and SAFER PATH
Discuss the architecture

James Clay (SUNY Buffalo) A Trojan Resistant Architecture May 6, 2015 5 / 25



Homomorphic Encryption

Homomorphic Encryption
An encryption scheme such that operations performed on encrypted data
have the same effect as those acting on unencrypted data. For example,
adding two encrypted numbers should result in the sum of their
unencrypted counter parts.
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Example Homomorphic Encryption

Example: Suppose we wish to add two n bit numbers, x and y . Let p, q
denote two large (N2 and N5 respectively) random numbers. Let p be
odd. We use these as private keys. Let m stand for a particular bit of the
input. Let m′ be a length N random number such that m′ = m mod 2.
We encrypt each bit xi and yj as c = m′ + pq, note that we select a
random new q for each c. Thus an encrypted x and y would look like

cx =< cx1, cx2, cx3..., cxn >

cy =< cy1, cy2, cy3..., cyn >

Operations can then be performed “bitwise” (really on elements of the
vector array that are ≈ N6 or N7 bit integers).
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Example Homomorphic Encryption

The AND gate: cx∧y =< cx1 ∧ cy1, cx2 ∧ cy2, cx3 ∧ cy3..., cxn ∧ cyn >.

Here AND is the same as bitwise multiplication. Thus,

cxi ∧ cyj = cxi × cyj

= (m′
xi + p(qxi ))× (m′

yi + p(qyi ))
= m′

xim′
yi + p(qxiqyi + mxi + myi )

XOR can be defined similarly (e.g. add instead of multiply).
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Example Homomorphic Encryption

Decryption from this state is relatively straightforward,

cxi ∧ cyj = m′
xim′

yi + p(qxiqyi + mxi + myi )
DEC(cxi ∧ cyj) = (m′

xim′
yi + p(qxiqyi + mxi + myi )) mod p mod 2

= (m′
xim′

yi ) mod 2
= m′

xi mod 2 ×m′
yi mod 2

= mximyi
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Unfortunately...

For each bit in the original input you have a minimum of N6 more bits!

You need to perform multiplication and randomizations for these N6 more
bits!
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More issues...

Each operation on the encrypted text introduces “noise”. [Gentry, 2009]‘s
contribution noted that one may re-encrypt without revealing the plaintext
while reducing noise.

However, this re-encryption needs to be performed often and requires large
computational overhead.
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Improvements

Older software implementations would take roughly 30 minutes per bit
operation.

Newer implementations can perform single bit operations in about 1/2 a
second [Ducas and Micciancio, 2015].
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Related Work

[Breuer and Bowen, 2013] present a proof of correctness for a KPU and
associated ALU. They do not provide layout or physical architecture or
implementation detail.

[Beaumont et al., 2012] use a grid of heterogeneous processors to improve
fault tolerance and quality of computation. Considers the rarity that all
processors will fail or maliciously work in unison. Delineates execution
based on instruction banks, each processor responsible for computing small
pieces of a larger program.
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SAFER-PATH
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Related work

Theoretical computer science uses the notion of verifying the results of
computation efficiently. There has been significant work in software
engineering towards this goal as well [Walfish and Blumberg, ].

Performing efficient verification is crucial for our application: we want the
CPU grid verifying the KPU workhorse. [Chung et al., 2010] give strong
evidence that we can perform verification in log T time. Whether it fully
applies needs to be investigated further.
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Anatomy of a KPU

Figure: KPU: Red areas hold encrypted data [Breuer and Bowen, 2013].

Note: addresses aren’t encrypted. Might be addressable with CryptoPage
[Duc and Keryell, 2006].
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Verification

Basic verification scheme: we send one of c1, c2, c3,De to each OTS
(off-the-shelf) processor, where c1, c2 are inputs, c3 is output, and De is
the described bit operation.

Using a technique described in [Kaminski, 1989] and [Kozen, 1992] we
perform integer multiplication verification in O(n log n log log n). We can
do so with high probability in time linear with respect to n. An analysis
could be performed to determine whether the probabilistic algorithm is
sufficient for our purposes.
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Architecture
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Scheme

Encrypted program and inputs fed in. Expect encrypted output.
The KPU acts as a slow, but secure, processor. We verify its
operational correctness across all of the other CPUs which are even
slower at the same task.
We use verification, rather than brute force to ensure that each task
is performed correctly.
Voting is then conducted, if a particular CPU votes against the
majority we can flag as suspicious.
Supposing KPU fails the processor farm can run the same algorithms
albiet at a much slower pace providing some protection against kill
switch like backdoors.
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Benefits

No information about inputs, outputs, or intermediary computations
are leaked.
Only vulnerable to side channel analysis, even with full visibility of the
hardware functioning.
Killswitch and trojan manipulation significantly hindered.
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Drawbacks

Currently slow.
KPU needs to hide its address space in some way.
Facilities KPU uses like random number generation need to be closely
scrutinized
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Further work

There’s already been work done in getting strongly pseudo random
numbers from non-random sources [Kamara and Katz, 2008]. See if
we can get a scheme whereby the hardware/software work in unison
to provide a secure random number.
Add something like CryptoPage to KPU [Duc and Keryell, 2006].
Explore more efficient homomorphic mechanisms
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The End
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