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Abstract

This paper surveys basic results on complexity classes
of partial multivalued functions. We stress basic inclusion
relations, interesting hierarchies, and results that demon-
strate that hierarchies are extant.

1 Introduction

The fundamental data type that a nondeterministic pro-
cess computesis a partial multivalued function, partial be-
cause nondetermini stic computati onsdo not necessarily ac-
cept every input, and multivalued because nondeterminis-
tic computations may output different values on different
accepting paths. As understanding the power of nondeter-
minism is one of the fundamental goals of complexity the-
ory, surely, we must study the computational complexity of
partial multivalued functions.

The problemsthat we traditionally think of as set recog-
nition problems are more naturally thought of as functional
computational problems. For example, we do not care to
know only whether agraph has a hamiltonian, but we want
a hamiltonian to be output, if one exists.

It is certainly the case that partial functions are the fun-
damental objectsstudiedin recursivefunctiontheory. So, it
is somewhat surprising that complexity theory has largely
developed as a study of classification of decision prob-
lems, and has somewhat ignored classification of function
classes. One reason might be that showing that a problem
is complete or hard for a class has in practice been suffi-
cient for showing that no efficient algorithm existsfor com-
puting witnesses to the problem. This is because typical
combinatorial problems are self-reducible. However, it is
not known whether all NP-complete problems in NP are
self-reducible. Consequently, it is not known whether the
familiar approach works in al cases. By studying com-
plexity classes of partial multivalued functions we address
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guestions about NP search problems and about the diffi-
culty of inverting polynomial-time computable functions.
Most importantly, by studying complexity classes of par-
tial multivalued functions, we directly illuminate interest-
ing questionsthat otherwisewould not surface. Wewill see
that properties of complexity classes of partial multivalued
functions may be identical to or may differ from those of
their corresponding well-known complexity classes of lan-
guages. There are several hierarchies of function classes. a
query hierarchy that closely reflects the query hierarchy of
language classes, a difference hierarchy that only superfi-
cialy resemblesthedifferencehierarchy for languages, and
at least one new hierarchy that seems not to correspond to
any collection of language classes. We will see that sev-
era of the interesting questions remain open. In brief, we
will seethat studying the complexity of partial multivalued
functionsis not much ado about nothing.

2 Function Classes

To date, most researchers have concentrated on par-
tial multivalued functions that are computed in polynomial
time. Notable exceptions are Mocas [Moc93], who has
studied partial multivalued functions that are computable
in exponentia time, and Alvarez and Jenner [AJ93], who
have considered functionsthat are computable by logspace
transducers that access oraclesin NP. Cai et al. [CLL*95]
and Ogihara and Regan [OR93] have studied partial multi-
valued functions that are computed by probabilistic trans-
ducers in polynomial time. In this paper, we will con-
fine our attention to questions concerning nondeterministic
polynomial time computations.

The definitionsto follow origininate for the most part in
a paper of Book, Long, and Selman [BLS84]. Resultsin
this section for which we do not give an explicit citation,
appear first in a paper by Selman [Sel94].

Fix X to be the finite alphabet {0,1}. Let f : £* — X*
be a partiad multivalued function. We write f(x) — vy, if
y isavalue of f on input string x. Define graph(f) =
{(x¥) | (x) =y}, dom(f) = {x | Iy(f(x) ~ y)}, and



range(f) = {y | Ix(f(x) = y)}. If x¢ dom(f), we say that
f isundefined at x or that f(x) is undefined.

A transducer T is a nondeterministic Turing machine
with a read-only input tape, a write-only output tape, and
accepting statesin the usual manner. T computesavaluey
on an input string x if there is an accepting computation of
T onxfor whichyisthefinal contentsof T'soutput tape. In
this case, we will write T(x) — y. Such transducers com-
pute partial, multivalued functions.

e NPMV is the set of al partial, multivalued func-
tions computed by nondeterministic polynomial time-
bounded transducers;

e NPSV isthe set of al f € NPMV that are single-
valued;

e PFistheset of all partial functions that are computed
by deterministic polynomial time-bounded transduc-
ers.

Let SAT denote the NP-complete satisfiability problem.
The function sat, defined by sat(x) — y if and only if x €
SAT and y isasatisfying assignment of X, isthe ubiquitous
example of a partial multivalued function; sat belongs to
NPMYV and dom(sat) = SAT.

Example 1 Thefollowing interesting partial functions be-
long to NPSV.

(primefactorization) Let {p;} be the sequence of prime
numbers in increasing order. Define f(n), for each
positive integer n, to be the finite sequence {(p;, &)},
i >0, suchthat n=T]] pf'*'. f issingle-valued and to-
tal because every positive integer has a unique prime
factorization. f € NPSV becausethe set of primesbe-
longsto UPN coUP[FK92].

(discretelogarithm) Define h so that

domh) = {(p,g,x) | pisprime, gisa
primitive root mod p,

and1<x<p-1},
and for each (p,g,x) € dom(h),

h({p,9,x)) = theuniquec,1<c<p-1,
such that g¢ = x(mod p).

The computation has two components, (1) testing for
membership in the domain and (2) the computation.
Testing for membership inthe domainissingle-valued
becausethe set of primes (and primitiveroots) belongs
to UPN coUP [FK92]. The discrete logarithm has a
unique value when applied to tuplesthat belong to the
domain.

Given apartial multivalued function f, for al x, we de-
fine
set-f(x) = {y| f(x) = y}.

e FewPFistheset of al functions f in NPMV such that
for some polynomia p and all x, ||set-f(x)|| < p(|x]).

Wetakethe point of view that apartial multivalued func-
tion is easy to compute if for each input string in the do-
main of the function, some value of the function is easy to
compute. (We cannot compute al the values.) For thisrea-
son, we define the following technical notions. Given par-
tial multivalued functions f and g, define g to be a refine-
ment of f if dom(g) = dom(f) and for all x € dom(g) and
al y, if yisavalue of g(x), thenyisavaueof f(x) (i.e,
set-g(x) C set-f(x)). Let F and G beclassesof partial mul-
tivalued functions. If f isapartial multivalued function, we
define f €c G if G containsarefinement g of f, and we de-
fine F Cc Gifforevery f € F, f €c G. Thisnotation is
consistent with our intuition that 7 C G should entail that
the complexity of 7 isnot greater than the complexity of G.
Thus, “NPMV C. PF” would mean that every partial mul-
tivalued functionin NPMV can be computed efficiently by
some deterministic polynomial timetransducer. Itisknown
[SXB83, Sel92, Sel94] that each of the following hypothe-
ses are equivalent:

1. Thefunction sat has arefinement in PF;
2. NPMV C. PF;

3. NPSV C PF;

4. P=NP.

When f € FewPF, then it makes senseto seek al theval-
uesof f(x). Forafiniteset {yy,---,Yn}, Wwherethe elements
are listed in lexicographic order,

c({y1, - +>Yn}) = Yoy1 - - - Yoyn%,

where%isasymbol notinX. If ||set-f(x)|| isfinitefor each
x, then the function c(set-f) is defined by c(set-f)(x) =
c(set-f(x)). c(set-f) is a single-valued total function.
Given f € FewPF and aclass of single-valued functions G,
define f €¢ G to mean that c(set-f) € G.

The class of partial functions that are computable in
polynomial time with oraclesin NP, PFNP, has been well-
studied [Kre88, Bei88], as have been the corresponding
class of partial functions that can be computed nonadap-
tively with oracles in NP [Sel94], PF)P, and the classes
of partial functions that are obtained by limiting the num-
ber of queries to some value k > 1, namely, PFNPX and
PFt'\t'P[k] [Bei91]. A richbody of resultsisknown about these
classes. (A partial function f isin PFYFif thereisan oracle



Turing machinetransducer T suchthat f € PFNP viaT with
an oracle L in NP and a polynomial time computable func-
tion f: {0,1}* — (%{0,1}*)* such that, for each input x to
T, T only makes queriesto L from thelist f(x).)

Let PFNP(O(log n))denote the class of functions com-
puted in polynomial time with at most O(log n) queriesto
an oraclein NP. Krentel [Kre88] demonstrated that

PFNP = PENP(O(log n)) implies P= NP.

Several of these classes seem to capture the complex-
ity of computing NP-optimization problems[CT91, Kre88,
War92, VW95, BKT94], but we will not explicity pursue
this connection.

2.1 Inclusions

We know the following relations between these classes:

e PFC NPSV C FewPF C NPMV C. PFNP,
e PFC NPSV C FewPF C PFYP c PFNP,
e PF C PFNP(O(log n)) C PRYP  PFNP,

Most of these inclusions are obvious. The proof for
language classes [Hem89, Wag90, BH91], shows that
PFNP(O(log n)) € PFYP. To see that FewPF C. PF}P,
we make the following definition. For each multivalued
function f, define code( ) to contain all tuples (i, j, 0, x,Kk),
where j <, such that there are at least i distinct values of
f on x such that the j-th value in lexicographic order has a
k-th bit, and to contain all tuples (i, j, 1,x,k), where j < i,
such that there are at least i distinct values of f on x such
that the k-th bit of the j-th value in lexicographic order is
one. Then, for f € FewPF, it is easy to see that code(f)
belongsto NP and that all the values of f oninput x can be
computed nonadaptively in polynomial timefrom code( ).

2.2 NP-search functions

Let R(x,y) be an arbitrary relation in P (Thisis usually
called an NP-relation.) and let p be a polynomial, so that
the set

A= {x|3y[lyl < p(Ix|) AR(XY)]}
belongsto NP. Define

frp(X) =Y, if [y] < p(IX]) AR(X,Y).

The partial multivalued function fr, is an “NP-search
function.”

Following Valiant [Val 76], given aclassof partial multi-
valued functions 7, let g denotetheclassof al f € F such
that graph(f) € P. Valiant noticed that ordinary search

problems associated with NP decision problems are partial
multivalued functionsin NPMVg. That is, the naturally oc-
curring partial multivalued functions fr , are in NPMVyg,
and the function sat is atypical example. The converseis
trueaswell. Every partial multivalued functionin NPMVg
isthe NP-search function of its graph.

Unless P = NP, not every function in NPMV belongs
to NPMVg. To see this, let L € NP — P and define the
partial function § by S (x) =1if xe L. (S.(X) isunde-
fined for al x € L.) Observethat the partial function §_ be-
longsto NPSV and that dom(S ) = L. It iseasy to see that
graph(S) € PimpliesL € P. Thus, § does not belong to
NPMVg. The same argument proves that NPSV = NPSVg
if and only if P= NP.

An interesting question is whether there are naturally
occurring candidates for partial multivalued functions in
NPMV that arenotin NPM Vg, or in NPSV but not NPSV .
Thefunctionsin Example 1 arein NPSV if primality test-
ing is in P. Perhaps the reader knows whether these are
likely candidates.

For any NP-search function fg p, let maxfr , denote the
partial function that on input x, outputs the lexicographi-
cally largest value of fr p(X), if one exists. For every NP-
relation R and polynomial p, maxfg , belongs to the class
PFNP. The function maxsat is complete for PFNP [Kres8g].
Precisely, given single-valued partial functions f and g, de-
fine f <P gif there are partial functions hy,h, € PF such
that for all x € dom(f), f(x) = ha(x,g(h1(x))), and de-
fine f <} gif there are partial functions hy, h, € PF such
that for all x € dom(f), hy(x) = {da,...,0), and f(x) =
ho(X,{9(a1),---,09(ak)). Krentel called the former metric
reducibility and Watanabe and Toda [WT93] called the lat-
ter functional reducibility. In both cases, it is understood
that f(x) is defined only if every computation on the right
side of the equation is defined. With these definitions in
hand, maxsat is <P -complete for PFNP. Watanabe and
Todaraised the question of whether every single-valued re-
finement of sat is complete for PFNP. They proved that if
NP # coNP, then there is a single-valued refinement g of
sat such that maxsat is not <f-reducibleto g. Thus, gisa
single-val ued refinement of sat that is not <i-completefor
PFNP. We do not know whether their result holds for more
general Turing reductions between partia functions.

Recall that a single-valued refinement of sat is a partial
function f whose domain isthe set of all satisfiable formu-
lassuchthatfor al x € SAT, f(x) isasatisfying assignment.
Much of the research on function classes has been moti-
vated by the question of whether sat hasasingle-valued re-
finement in a smaller class than PFNP [WT93, HNOS94].
We will address this question as we proceed.

Observe that if A belongs to the class UP of problems
that have unique solution [Val 76], then for each x, there is



at most one'y such that |y| < p(|x]) AR(x,y). Thus, for A
in UP, fr , belongsto NPSV. Again, the converseistrue;
every partia functionin NPSV isthe search function for a
languagein UP. Note however, by the argument above, that
NPSV differsfrom NPSVg unlessP = NP.

Jenner and Toran [JT96] provide an excellent survey of
the subject from the point of view of examining the com-
plexity of NP-search functions.

Givenaclassof partia multivalued functions #, Valiant
[Val76] defined % to denotethe classof al f € F that are
defined on al input strings; i.e. f € K ifandonlyif f € &
and dom(f) = T*. Beame et al. [BCE'95] study combi-
natorial properties of the class NPMVyy. Let us say that
an NP-acceptor N for SAT is natural if thereis afunction
f € PF so that if x € SAT, and y is an accepting computa-
tion of N on input x, then f(x,y) is a satisfying assignment
of x. Fenner et al. [FFNR96] prove that NPMV; C. PF if
and only if every NP-acceptor for SAT is natural.

2.3 Thecomplexity of inverting functionsin PF

A function f € PF is honest if there is a polynomia g
such that for every y in range( f) there exists x in dom( f)
such that f(x) =y and |x < q(ly|). The inverse of ev-
ery honest function f € PF belongsto NPMVg, and thein-
verse of every honest one-one function f € PF belongs to
NPSV. (For any function f, theinverse f~1 is defined by
f=1(x) = yif and only if f(y) — x.) The difficulty of in-
verting f isthe complexity of the single-val ued refinements
of f~1. A function f isinvertiblein class #, where ¥ isa
class of functions, if f~1 has asingle-valued refinement in
F. For example, f isinvertiblein polynomial timeif f—1
has a single-valued refinement in PF. Every honest func-
tionin PFisinvertiblein PFNP. Every honest single-valued
function f in PFisinvertiblein PFYP. To seethis, simply
observethat for such afunction f, f=1isin NPSVg, which
isincluded in PFYP.

We are interested in knowing whether every honest
(one-one, few-one) function isinvertiblein some class that
is smaller than PFNP. The following proposition [Sel94]
addresses this question for severa of the interesting cases.
Lett=(, ) denote apolynomial time computable pairing
function with polynomial time computableinversesc; and
Oo.

Proposition 1 ([Sel94]) Let C be any class of single-
valued functions such that f € C implies 6(f) € C.
Then, every honest (one-one, few-one) polynomial time
computable function is invertible in class C if and only if
NPMVg C C (NPSVq C C, FewPFq C C, respectively).

All of the following are in part applications of this
proposition.

Example2 1. Every honest
polynomial time computable function is invertible in
the class PF

& NPMVy CcPF
& NPMV C.PF
& P=NP.

2. [GB88] Every honest one-one polynomial time com-
putable functionisinvertiblein the class PF

& NPSVg CcPF
& P=UP

3. Every honest few-one polynomial time computable
functionisinvertiblein the class PF

< FewPFy Cc PF
< P = FewP.

4. Every honest polynomial time computable function is
invertible in the class PFYP

< NPMVg Cc PFRYP
& NPMV C¢ PRYP.

5. Every honest polynomial time computable function is
invertible in the class NPSV

< NPMVg CcNPSV
< NPMV CcNPSV.

We will examine items 4 and 5 further as we proceed.
For now, let us observe that these questions are especially
interesting because NPMV C. PFYP if and only if every
NP-search problem has asingle-val ued refinement in PFy"
if and only if sat has a single-valued refinement in PFY",
and NPMV C. NPSV if and only if every NP-search prob-
lem has a single-valued refinement in NPSV if and only if
sat has a single-valued refinement in NPSV. This remark
follows by noting that Cook’s proof [Coo71] demonstrates
that sat is complete for the functionsin NPMV [Sel94].

24 Someinteresting questions

241 PP C PFYP?

For any single-valued function f, we define code(f)
[Sel 78] to betheset of al triples (o, x, k), wheres € {0, 1},
such that the following properties hold: (0, x,k) € code(f)



if and only if f(x) has a k-th hit (i.e. x € dom(f) and
f(x) has length > k), and (1,x,k) € code(f) if and only
if the k-th bit of f(x) is 1. We say that a function f is
polynomial-bounded if there is a polynomial p such that
for al x € dom(f), |f(x)] < p(|x|). For any single-valued
polynomial-bounded function f, f can be nonadaptively
computed in polynomial time using code(f) as an oracle.
The following proposition and theorem follow readily.

Proposition 2 ([Sel94]) (i) f € PFNP if and only if f is
polynomial-bounded and
code(f) € PNP.

(i) f e PEYP if and only if f is polynomial-bounded and
code( f ) € PP,

Theorem 1([Sel94]) PNP =
PRNP.

PP if and only if PFNP =

Beigel, Hemachandra, and Wechsung [ BHW91] showed
that PP € PP. Thus, PFNP = PEYP implies PN C PP,
which suggests that the classes PFN"and PF}Pare not iden-
tical. (Thereisan oraclerelative to which PNP is not asub-
set of PP [Bei94].)

Recall that Py = PNP(O(log n)) [Hem89, Wag90,
BH91]. Indeed, PNP(O(log n)) is a natural and robust
complexity classes that has natural complete sets [Kre88,
KSW87, Kad89, Wag90].

Since maxsat is complete for PFNP, the question of
whether PFNP € PFRP is equivalent to the question of
whether maxsat belongs to the class PF) We learn from
Proposition 2 that maxsat belongs to P P if and only if
for each satisfiable formula X, each bit of the maximum
satisfying assignment can be computed independently and
nonadaptively relative to NP. Then, from the result of
Hemachandra, Wagner and Buss and Hay, we learn that
maxsat belongs to PFYF if and only if each bit of the
maximum satisfying assgnment can be computed inde-
pendently and without making more than O(log n) many
gueriesto SAT.

242 NPMV C. PF\P?

As we have seen already, whereas the previous question
is equivalent to asking whether optimal solutions to NP-
search problems can be computed nonadaptively using an
oracle in NP, this question asks whether any single-valued
refinement of NP-search problems can be computed in this
manner. Also, recall (Example 2, item 4) that this ques-
tionisequivalent to asking whether honest polynomial time
computable functions are invertible in PFY".

We turn first to aresult of Buhrman, Kadin, and Thier-
auf [BKT94] that offers some insight into the question.
Define the partial multivalued function max zero_sat by

max_zero_sat(x) — y if and only if y is a satisfying assign-
ment of x having the maximum number of 0's. Whereas
the number of single-valued refinements of sat is large,
these researchers prove that sat has a single-valued refine-
ment in PFYT if and only if max_zero_sat does. Further-
more, they prove that PF}" is the class of all partial func-
tions that are gﬁ—reduci ble to some single-valued refine-
ment of max_zero_sat. Of coursg, it is not known whether
max_zero_sat iscomplete for PFRF, becauseit isnot known
whether any refinement of sat belongs to PF}P. It follows
easily from these results that PFNP = PFNP if and only if
maxsat is gﬁ—reduci ble to some single-valued refinement
of max_zero_sat.

Watanabe and Toda[WT93] provethat NPMV C PFRP
relative to a random oracle. In contrast, Burhman and
Thierauf [BT96] have obtained the following results.

Theorem 2 ([BT96]) If E=NE and sat €. PF}", then ev-
ery exponential-type search problemis solvablein E, where
an “ exponential-type search problem” denotes a search
problem of a languagein NE.

Impagliazzo and Tardos[1T91] constructed an oracle A
such that EA = NEA but, relative to which, there exists an
exponential-type search problem that cannot be solved in
exponential time. Thus, asanimmediate corollary, relative
tothisoracleA, sat” ¢ (PFANP*. So, thereisan oraclerel-
ative to which NPMV does not have refinementsin PFYP.

One might anticipate that the answer to this question is
false, But as with most hypotheses that are known to rela-
tivize in both directions, the answer seems not to be forth-
coming.

We have had better successwith the question of whether
NPMV C¢ NPSV (Example 2, item 5), for Hemaspaandra
et al. [HNOS94] have shown that NPMV C; NPSV im-
plies a collapse of the polynomial hierarchy. Recall that
NPMV C. NPSV if and only if some single-valued refine-
ment of sat belongsto NPSV, and if and only if every hon-
est polynomial time computable function is invertible in
NPSV. We will sketch the proof of this result and of sub-
seguent recent developments in a later section. For now,
the following comments are in order. The proof of Hemas-
paandraet al. relativizesto all oracles If the proof wereto
extend to show that NPMV C. PFRP implies a collapse of
the polynomial hierarchy, and if the extension were to hold
inall oracles, then, by the result of Watanabe and Todathat
NPMV C PFRP holdsrel ative to arandom oracle, it would
follow that the polynomial hierarchy collapses relative to
arandom oracle. However, the polynomial hierarchy col-
lapsesrelativeto arandom oracleonly if the polynomial hi-
erarchy collapses [Boo94]. Thus, such an extension of the
proof of Hemaspaandra et al. would collapse the polyno-
mial hierarchy as a corollary—an unlikely scenario.



243 PRYP =PFNP(O(log n))?

Thisis an especialy intriguing question because much ev-
idence indicates that that PFNP(O(log n)) is properly in-
cluded in PFYP. Thus, since PP = PNP(O(log n)), this
guestion provides an excellent example for which relations
between two function classes are different from for their
corresponding language classes.

First we demonstrate that

PENP = PFNP(O(log n)) implies P = FewP.

Proposition 3 ([Sel94]) The following statements are
equivalent:

1. P=FewP
2. FewPFy Cc PF
3. FewPFy Cc PFNP(O(log n))

Proof. First we show that the first two statements are
equivalent. The proof that FewPFyq C. PF implies P =
FewP is straightforward. Assume FewP = P. Let f €
FewPFg, let M be a nondeterministic transducer that com-
putes f intimeq, and let p bound ||set-f||.

Consider the language

L = {(xc(F),u)|Fisafinitesetand
there existsw ¢ F such that
uisaprefix of wand f(x) — w}.

We claim that L € FewP: Given x, F, and u, guess a
string w and check whether w & F, uis a prefix of w, and
(x,w) € graph(f). The number of correct guesses is at
most p([x]).

Since FewP = Pis assumed, L € P. For each x, thefol-
lowing algorithm uses L to compute c(set-f(x)) in poly-
nomial time. The basic ideais to maintain F as a subset
of c(set-f(x)). Use L to determine whether there exists a
value of f(x) that does not belong to L; if so, useL to find
such avaluew by implementing atypical prefix search, and
then increment F to contain w.

begin
input x;
F:=0;
while (x,c(F),A) € L do
begin { F isaproper subset of set-f(x) }
u:=»x
while ((x,u) & graph(f)Vue F) do
if (x,c(F),u0) € L
then u:=u0
eseif (x,c(F),ul) € L
thenu:=ul,;

{f(X) —»uAugF}
F:=FU[u];
end
halt in an accepting state with c(F)
on the output tape;
end.

When execution of the outer while-loop terminates, F
= set-f(X). To see this, note that the inner while-loop is
reached only if thereisastring y € set-f(x) that has not
yet been found and that the inner while-loop preservesthis
property. In particular, theinner while-loop terminatesonly
when astring uisfound such that f(x) — uandu¢ F. This
condition ensuresthat if f(x) — wy and f(x) — w,, where
w; is a prefix of wy, then both w; and w, are eventually
placed into F.

Let us observe that the procedure runs in polynomial
time. Sincel € Pand graph(f) € P, eachtest takespolyno-
mial time. The outer while-loop is executed at most p(|x|)
times, and, for each execution of the outer loop, the inner
while-loop executes at most g(|x|) times. Thus, we con-
cludethat c(set-f) € PF.

Thus, the first two statements are equivalent. To see
that statement 3 is equivalent to the other assertions, as-
sumethat FewPFy Cc PFNP(O(log n)) andlet f € FewPFg.
Then, thereisaPFAT machine M that computes f and that
makes at most O(log n) queries. Simulate M on input x
for al possible oracle answers. This gives a polynomial
number of possibleoutput values. A valuey belongsto set-
f(x) if and only if (x,y) € graph(f). Sincegraph(f) € P,
c(set-f) € PF. m|

Theorem 3 ([Sel94]) PFYP = PFNP(O(log n)) implies
P= FewP.

The proof follows from Proposition 3. Recall that
FewPF C. PFYP. Thus, the hypothesis implies that
FewPFy C FewPF C. PFYP € PFNP(O(log n)), which, by
the Proposition, implies P = FewP.

Next we demonstrate that

PFYP = PFNP(O(log n)) impliesR = NP.

The proof is an easy application of aresult of Valiant and
Vazirani [VV86]. Let SAT1 denote the set of formulas
of propositional logic that have at most one satisfying as-
signment. Valiant and Vazirani showed that R = NP if the
promise problem (SAT1, SAT) hasasolution in P. By def-
inition, a solution to the promise problem (SAT1,SAT) is
any language L such that, for all x, if x € SAT1, thenx €
L < x e SAT.



Theorem 4 ([Sel94]) PFYP = PFNP(O(log n)) implies
R =NP.

Proof. Define

SAT = i has n variables, n > i, and
o,1) 19
there is a satisfying assignment w of ¢

in which thei-th variableistrue}.

Clearly, SAT' € NP.
Define

cand(¢) =
SAT'((9,1))SAT'((9,2)) - SAT'((¢,1)).

(One might think of cand as a candidate for a satisfy-
ing assignment of ¢. Of course, in general it is unlikely.)
Clearly, cand € PFNP. Thus, by hypothesis, cand €
PFNP(O(log n)). Let M be a PFAT machinethat computes
cand and that makes at most O(log n) queries.

Define M’ to be a deterministic transducer that on anin-
put ¢ smulates M for all possible oracle answers. Asinthe
final part of the proof of Proposition 3, M’ soutputisapoly-
nomial sizelist of values, and M’ runsin polynomial time.
Let

L = {¢|someoutput value of M’ oninput ¢
is asatisfying assignment}.

Then, L € Pand L isasolution of (SAT1,SAT). Thus, NP
= R follows from the result of Valiant and Vazirani. O

This proof is similar to earlier applications of the re-
sult of Valiant and Vazirani by Beigel [Bei88] and Toda
[Tod91].

Finally, we note that Jenner and Toran [JT95] proved
that PRy~ = PFNP(O(log n)) implies that for all k > 0,
SAT € DTIME(2Y Iogkr‘). Their argument connectsthe hy-
pothesis with alowering of the amount of nondeterminism
that is needed in a nondeterministic computation.

Although all of these results provide strong evidence
that the two function classes PFYP and PFNP(O(log n))
are not the same, it is not yet known whether PFY" =
PFNP(O(log n)) implies P = NP. New work by Naik and
Selman [NS96] reports modest progress on this question.

3 Reducibilitiesand Hierarchies

The purpose of this sectionisto define polynomial time-
bounded Turing reducibility between partial multivalued

functions and to explain the hierarchies that follow natu-
rally. A hierarchy isconclusive demonstration that changes
in computing resources impart changes in computing po-
wer. Thus, our philosophy isthat a hierarchy isits own re-
ward. That which herewe merely sketch is devel oped fully
by Fenner et al. [FHOS93].

Now we describe oracle Turing machines with oracles
that compute partial functions. For the moment, we assume
that theoraclegisasingle-valued partial function. Let | be
asymbol not belonging to thefinite alphabet X. In order for
amachine M to accessapartial function oracle, M contains
awrite-only input oracle tape, a separate read-only output
oracle tape, and a special oracle call state . When M en-
ters state q, if the string currently on the oracle input tape
belongs to the domain of the oracle partial function, then
the result of applying the oracle appears on the oracle out-
put tape, and if the string currently on the oracleinput tape
doesnot belong to the domain of the oracle partial function,
then the symbol L appearson the oracle output tape. Thus,
given an input x to the oracle, the oracle, if called, returns
avalue of g(x) if one exists, and returns L otherwise. (It
is possible that M may read only a portion of the oracle’s
output if the oracle’s output istoo long to read with the re-
sources of M.) We shall assume, without loss of generality,
that M never makes the same oracle query more than once,
i.e, all of M’s queries (on any possible computation path)
are distinct.

If g isasingle-vaued partia function and M is a de-
terministic oracle transducer as just described, then we let
M][g] denotethe single-valued partial function computed by
M with oracle g.

Definition 1 Let f and g be partial multivalued functions.
We say that f ispolynomial-time Turing reducibleto g, de-
noted by f <Fg, if there is a deterministic oracle Turing
machine M such that for every single-valued refinement ¢
of g, M[¢'] isa single-val ued refinement of f.

The definition insists that the oracle g responds with a
value of g(x) whenever possible, which value does not mat-
ter; with this condition, M will compute somevalueof f on
input x. Thisreducibility isreflexive and transitive over the
class of all partial functions.

We can define nondetermini stic reducti ons between par-
tial functions with identical oracle access mechanism. In
the casethat g isasingle-valued partial functionand N isa
polynomial time nondeterministic oracle Turing machine,
then N[g] denotes a partial multival ued function computed
by N with oracle g in accordance with the prescription that
when N asks about avaluey € dom(g), then g returnsg(y),
and when N asks about avaluey ¢ dom(g), then g returns
1. Observe that the function f = N[g] is multivalued be-
cause N is nondeterministic. In the case that g is multival-
ued, the definition follows.



Definition 2 Let f and g be partial multivalued functions.
We say that f is nondeterministic polynomial-time Turing
reducibleto g, denoted by f <}P g, if thereis a polynomial
time nondeter ministic Turing machineN such that for every
single-valued refinement ¢’ of g, N[d'] is a refinement of f.

Let ¥ be a class of partial multivalued functions.
NPMV? denotes the class of partial multivalued functions
that are <|YP-reducibleto someg € 7.

For k > 1, define ZMV\, inductively so that

_‘NPMV
IMVy = NPMV'
k

These classes form a function analogue of the polynomial
hierarchy, and unless the polynomial hierarchy collapses,
they form a proper hierarchy. Observe that a partial mul-
tivalued function f belongs to NPMV if and only if f is
polynomial-bounded and graph(f) € NP. It is not hard
to prove for k > 1, that f € EMVy if and only if f hasa
polynomial-bounded refinement g such that graph(g) € £F.
From thisfact, the following theorem is straightforward.

Theorem 5 ([FHOS93]) For everyk > 1,
IMViy 1 =EMVy & IF  =2F

Now we return to consider the deterministic reduction.
Let F be a class of partial multivalued functions. Then,
PF’7 denotes the class of partial multivalued functions f
that are S-Pr-reduci bleto some g € ¥. PF{{ denotes the
class of partial functions f that are g-'?—reduci ble to some
g € ¥ viaan oracle Turing machine that queries its ora-
clenonadaptively. PF?{ and PF;] ¥ indicate that the num-
ber of queries is bounded by k, but we retain the nota-
tion PF# (O(log n)) for the class of functionsthat are com-
putable with oracles in ¥ by making O(log n) adaptive
queries.

Identifying a language with its characteristic function,
for any class of sets C, the classes PFC, PF§, and so on, are
defined. Thus, we define such classes as PFNP and PF)" as
classes of partial multivalued functions. To see that PFNP
contains partial functions that are not single-valued under
this new definition, observe that maxsat € PFN® and that
sat <P maxsat. Thus, sat € PFNP. Nevertheless, thisexten-
sion and confusion of notation will not cause us problems.
We will not go into the technical details here, but theinclu-
sion relationsthat held before are exactly the onesthat hold
under the new interpretation of these class names.

Theorem 6 ([FHOS93]) PFNPMV — ppENP,

Proof. Obviously PFNP € PENPMV | Conversely, for ev-
ery function f € NPMV, maxf is a single-valued refine-
ment of f that belongsto PFNP. SoNPMV C PFNPMV This

implies that PFNPMY ¢ prPP™Y — pENPMV gince <Pis
transitive. m|

It is unlikely that PFYP™MV is the same as PF}F. Recall
from Section 2.4.2 the centrality of the question of whether
PFNP contains a refinement of max_zero_sat. In contrast,
max_zero_sat belongsto theclassPFYPMV . Let f beafunc-
tion that maps a pair (x,n) to y if and only if y is a sat-
isfying assignment of x with n 0's. Since the number of
variables in a formula is bounded by its length, it holds
that max_zero_sat(x) = f(x,nx), where ny is the largest n,
1< n < |x|, such that (x,n) € dom(f). Thisimplies that
max_zero_sat € PFYPMV,

3.1 Bounded query hierarchy

The bounded adaptive and nonadaptive query hierar-
chies over NPMV are mostly analogous to those over NP.
The reason seemsto be that argumentsthat are reminiscent
of the “mind-change”’ technique [Bei91, WW85] apply in
this new setting. The basic results are the following:

Theorem 7 ([FHOS93]) For every k> 1,

PENPMVIK _ PFtI;IPMV[Zk—l]‘

We do not know whether PENPMVIKI — pENPK - pyt for
reduction classes of sets, thisistrue.

Theorem 8 ([FHOS93]) For everyk > 1,
pNPMV[K _ pNPK]

and PMVIK K
PPMVIK _ P

For every k > 1, PFNPMVIK  ppNPMV[k+1] The next re-
sults show that these classes form hierarchies.

Proposition 4 ([FHOS93]) Letk > 1.

1. If PENPMVIk+L] — ppNPMVIK  then for every ¢ > k,
PENPMV[] _ pENPMVK

2. If PEYPMVIHI — peElNPMVIK then for every £ > k,
PFtl\thMV[Z] _ PFtl;lPMV[k].

The bounded adaptive and nonadaptive query hierar-
chies over NPMV collapse only if the Boolean hierarchy
over NP collapses. The Boolean hierarchy over NP was
defined by Wechsung and Wagner [WW85] and has been
studied extensively [CGH88, CGH'89, CH86, Kadg8].
We denotethek-th level of the Boolean hierarchy asNP(K).
Recall that



1. NP(1) = NP, and
2. for every k> 2, NP(k) = NP— NP(k—1).

The Boolean hierarchy over NP, denoted by BH is the
union of all NP(k), k > 1. Kadin [Kad88] proved that the
Boolean hierarchy collapsesonly if the polynomial-timehi-
erarchy collapses.

Theorem 9 ([FHOS93]) Letk > 1.

1. 1f pRyPMVIHY — pENPMVIKL then BH collapsesto its
(K+ 1)-st level.

2. 1f PENPMVIk+1] — ppNPMVIK then BH collapses to its
2%-th level.

Proof. We prove the first statement. If

PFtl;lPMV[kﬁ—l] _ PFtl;lPMV[k]’

then by Proposition 4, for every m > Kk,

PFtl\thMV[m] - PFtl\thMV[k]‘

So, by Theorem 8, the query hierarchy over NP collapses:

for every m> Kk, Pt'\t'P[m] = P{}'P[k]. Thusby resultsof Kobler,
Schoning, and Wagner [KSW87] that show that levels of
the nonadaptive query hierarchy over NP and levels of the
Boolean hierarchy interleave, for every m > k,

PYA™ = PP € NP(k + 2).

Thus, BH = NP(k+ 1). O

Finally, because the mind-change argument worksusing
NPMV as the oracle class, we have the following result.
This result stands in strong contrast to the results of Sec-
tion 2.4.3.

Theorem 10 ([FHOS93)])

PFNPMV[|OQ] — PFP[IPMV .

3.2 Single-valued oracles

Most of the results that we stated in the previous sec-
tion for reductions to NPMV hold as well if the oracle is
NPSV. However, comparison of the adaptive and nonadap-
tivequery hierarchiesisproblematical. Thefollowing sum-
marize the known results.

Theorem 11 ([FHOS93]) The following statements hold.
1. PRNPSY — pENP,

2. PNPSV — pNP,

3. ptl\thSV — Pt’\tlp-

4. For all k> 1, PNPSVIK — pNPIK gng
PNPSV(O(logn)) = PNP(O(logn)).

5. For all k> 1, PYPSVIK — pFIK,

Both the adaptive and nonadaptive NPSV query hierar-
chies are proper unlessthe Boolean and polynomial hierar-
chies collapse.

Theorem 12 (FHOS93]) Letk> 1.
1. 1f pry VIRl — pePSVIM then BH collapses to its
(k+1)-st level.

2. If PENPSVIk+1] — ppNPSVIK then BH collapses to its
2%-th level.

As a conseguence, because maxsat is complete for
PENPMV “for any k > 1, if maxsat € PFNPSVIK| then the
Boolean and polynomial hierarchies collapse. In the next
section we will learn that the polynomial hierarchy col-
lapses if for any k > 1, any refinement of sat belongs to
PENPSVIK [Ogi95].

Comparing adaptive with nonadaptive classes, we know
only the following:

Theorem 13 ([FHOS93]) The following inclusions hold.

1. PRNPSVIK ¢ pplPSVIZ-1],

2. PFNPSV(O(logn)) C PFYPSY.

It is an open question whether
PFNPV (O(logn)) = PRYPY.
Inthisregard, isNPSV more like NPMV or more like NP?
Whereas PFYPSV = PEYP, apparently, PFNPSV(O(logn))
and PFNP(O(logn)) are not equal.
NPSV C PENPSVIY ¢ pENPSY (O(logn)),

and NPSV C PFNP(O(logn)) implies P = UP. The im-
plication follows from the fact that P = UP if and only if

NPSVq = PFNP(O(logn)), the proof of which issimilar to
the proof of Proposition 3. Thus,

PFVPSY (O(logn)) € PF¥P(O(logn)) = P= UP.
Similarly,

PRNPMVIL € PFNP(O(logn)) = P= NP.



3.3 Difference hierarchy

In analogy to the Boolean hierarchy of languages, we
define a difference hierarcy of partial multivalued func-
tions. Thishierarchy isdefined by Fenner et al. [FHOS93]
and further developed in the new paper of Fenner et al.
[FGH*96]. The difference hierarchy is defined so that for
eachk > 1, f e NPMV(k) if and only if f is polynomial-
bounded and graph(f) € NP(k). As a consequence, for
every k > 1, NPMV(k+ 1) = NPMV(K) if and only if
NP(k + 1) = NP(k). However the contour of the differ-
ence hierarchy over NPMYV is astonishingly different from
the Boolean hierarchy over NP. For example, whereas the
levels of the Boolean hierarchy interleave with those of the
bounded query hierarchy over NP, and sit properly within
PFNP, the function maxsat, which recall is complete for
PFNP belongs to NPMV(2). We leave it to the paper of
Fenner et al. [FGH*96] to explain the reason for this.

4 Number of output values

Define the NPKV hierarchy as follows. Forall k> 1, a
partial multivalued function f € NPKV if some refinement
of f can be computed by apolynomial time-bounded trans-
ducer that has at most k distinct values on any input. Thus,
in particular, NP1V = NPSV. In his Ph.D. dissertation,
Naik [Nai94] raised the question of whether the NPkV hier-
archy isproper, that is, whether for all k> 1, NP(k+ 1)V #
NPKV. Assupporting evidenceof that possibility he proved
that this hierarchy is proper relative to arandom oracle.

Hemaspaandra et al. [HNOS94] effectively settled the
guestion of whether every functionin NPMV hasasingle-
valued refinement in NPSV (Recall the discussion in Sec-
tion 2.4.2) by showing that this hypothesis collapses
the polynomial hierarchy. Precisely, Hemaspaandra et al.
proved the following theorem.

Theorem 14 ([HNOS94]) If NP2V C¢ NPSV, then PH =
b,

Recently Ogihara [Ogi95] has extended the result of
Hemaspaandraet al. to show the following.

Theorem 15 ([Ogi95]) Let ¢ < 1 be a constant. If ev-
ery multivalued function in NPMV has a refinement in
PFNPSV(clog n), then PH = 5.

NPMV C. PFN"¥(clog n) if and only if sat e
PFNPSV (clog n). As a consequence, if for some constant
k > 1, sat has a refinement in PFNPSVIK| then the polyno-
mial hierarchy collapses.

Naik [Nai95] has observed that Ogihara's proof can be
modified to show that Theorem 14 holdsfor all k> 1. That
is, the following theorem holds.

Theorem 16 ([Nai95]) Letk > 1. If
NPKV Cc NP(k—1)V,
then PH = £5.

Now we will describe the proof of Theorem 16, Naik’s
version of Ogihara's theorem. To begin, we want a partial
multivalued function f that obviously belongs to the class
NPKV but that intuitively has no refinement in NP(k— 1) V.
Thisconsiderationleadsusinto theworld of selectivity. Let
ussay that aset Aisk-selectiveif thereisapartial multival-
ued function f (We call f ak-selector of A.) such that

1. inputto f isasetY C X* suchthat ||Y|| =k,

2. every output vaue of f(Y) isasetZsuchthat ZCY
and||Z|| =k-1,and

3. if at least k — 1 of the stringsin Y belong to A, then
set-f(Y) # 0 and

Zesd-f(Y)=>ZCA.

Example3 Letk= 2. Then Ais2-selectiveif thereisa par-
tial multivalued function f defined on ordered pairs such
that

ﬁ_f(x7y) c {X7 y}
and suchthat if x e Aor y € A, then

set-f(x,y) # 0 and set-f(x,y) C A

For those familiar with previous discources on selectiv-
ity, we note that a set Ais p-selective [Sel 79] if A hasa 2-
selector that belongs to PR, and that A is NPMV-selective
if A hasa 2-selector that belongsto NPMV [HNOS94].

Let k > 1. We claim that every set A € NP has a k-
selector that belongsto NPKV. Define f oninput Y, where
|IY]| = k sothat f nondeterministically guessesasubset Z of
k—1strings. Then, f nondeterministically triesto discover
whether Z C A. If thistest is successful, then f outputsthe
set Z. SinceY has k distinct subsets of size k — 1, we see
that f € NPkV.

Thereader caneasily seethat if f isak-selector for Aand
gisarefinement of f, then gisak-selector for A. Assume
as hypothesis that NPkV C. NP(k— 1)V. Then, A has ak-
selector g that belongs to NP(k— 1)V. We will infer from
this assumption that I15 = x5.

Example 3, continued Let Abe SAT and let f bea
2-selector for SAT that belongsto NPMV. A
single-valued refinement of f isa single-valued partial
function g such that if either x € SAT or y € SAT, then
g(x,y) isdefined and g(x,y) € SAT.



Intuitively, one does not expect a single-valued function
to be able to determinewhich of two formulasis satisfiable.
This intuition is borne out by the result of Selman [Sel79]
that SAT isp-selectiveif and only if SAT € Pand by there-
sult of Hemaspaandra et a. [HNOS94] that SAT is NPSV-
selective only if NP C (NP coNP)/poly.

Continuing with the proof, let L € HS’. There exists a
polynomia p and aset A € NP such that

xeLeVyezPM (xy) e A

We may assume that there is a polynomial q such that for
all strings x of length n and al strings y of length p(n),
[(x,y)] = q(n). Let A=9M = AnE=dM  We are assum-
ing that A has a k-selector g that belongs to NP(k — 1)V.
Given a string x € 2= and a set Z C A= such that
[|Z]| = k—1, we say that x losesto Z if every output value
of g(ZU{x}) contains x.

If x losesto Z, then x € A: Since Z C A=), set-g(ZU
{x}) # 0. Furthermore, for every output valueY, Y C A.
Thus, for each suchY, xeY C A.

Example 3, continued For ze SAT=", astring x losesto
zif g(x,2) = x. By definition of a selector, x € SAT follows.

Lemmal For eery n > 1,  thee is a
set Syn) = {Z1,-.-,Zm}, m < q(n), such that for every i,
1<i<m,z CA=9M ||zl = k-1, and for all x € X4,
x € A=A if and only if there existsi, 1 < i < m, such that
x losesto Z;.

Example 3, concluded Lemma 1 asserts the existence of
a set of strings Sy = {z,...,Zm}, m< q(n), such that
Sym) € SAT=9" and for all x € SAT=", there existsi,
1<i<m, suchthat g(x,2) = x.

We will not give the proof of Lemma 1. The proof is
similar to the proof of Ko [Ko83] and of later researchers
[LS93, HNOS94] that dealt essentially with the scenario of
Example 3. The combinatorics of Ogihara's argument is
necessarily more involved. The key idea of the proof isto
note that some set Z is a winner to more than the average
number of strings x (meaning that x losesto Z). Put such a
Zinto Sy, delete from consideration all strings that lose
to Z, and continue the process.

Define a string u to be correct for length g(n) if u en-
codes a tuple (SWIT) such that S = {Z;,...,Zn} and
WIT = {W4,...,Win}, m< q(n), that satisfy the following
conditions:

() forali, 1<i<m,||Z] =k—1,

(i) forali, 1<i<m, z C A=%" and W is a set of wit-
nesses proving that Z, C A=90" and

(iii) for al x € A=90 thereexistsi, 1 < i < m, such that x
losesto Z;.

If uiscorrect for length g(n), wewrite Loses(x, u) to mean
x losesto some Z;.
Then,

xeL <« 3Ju[(uiscorrectforg(|x|)) and
vy Loses((x,y), u)]-

The implication from left to right follows from Lemma 1.
Theimplication from right to left is straightforward.

To complete the argument that L € X5, we merely have
to prove that the predicates

1. “uiscorrect for q(|x|),” and

2. Loses({x,y),u)

arein coNP.

To prove that “u is correct for q(|x|)” belongs to coNP,
we give an NP-algorithm for the complement “u isnot cor-
rect for g(|x|).” If u does not encode atuple (SWIT) that
satisfies the defining conditions (i) and (ii), then accept.
Otherwise, S= {Z1,...,Zm} and for each i, Z, C A=9(M,
Thus, and this is the important observation, for each x €
¥9M and each Z;, g(Z; U {x}) is defined. Nondeterministi-
cally select x e A=9 . For eachi, compute an output value
Y of g(Z U{x}) and verify that x ¢ Y. If each of thesetests
is successful, then accept.

The proof that the second predicate belongsto coNP is
similar.

This completes the proof of Theorem 16.

5 Open problems

1. Letk> 1. Does NP(k+ 1)V Cc NPKV imply for all
m> k, NPmV C¢ NPkV?

2. Clearly, NP=coNPimpliesNPMV C NPSV. But, in
general, does a collapse of the polynomial hierarchy
imply a collapse of the NPkV hierarchy? If so, then,
since the NPKV hierarchy isinfinite relative to a ran-
dom oracle, it would follow that the polynomial hier-
archy isinfiniterelative to arandom oracle.

3. Define UPy to be the class of all languagesin NP that
are acceptable by an NP-machine that has at most k
accepting computations on every input. One can as-
sociate each language L € UPy with the partial func-
tion in NPkV g that maps each x € L to the accepting
computations of the UP-acceptor for L. For k > 1,
does UPy, 1 = UPy imply that the polynomial hierar-
chy collapses? Does UP = NP imply that the polyno-
mial hierarchy collapses? The results about function



classes seem not to imply anything about the corre-
sponding language classes. The problem is that some
strange unambiguous Turing machine might accept
SAT whose accepting paths have no connection with
the problem of computing satisfying assignments. If,
however, every machine that accepts SAT is natural
(as defined in Section 2.2), then UP = NP impliesthat
NPMV Cc NPSV. Hence, under the hypothesis that
every machine that accepts SAT is natural, UP = NP
impliesthat the polynomial hierarchy collapses.

In thisregard we mention that the proof technique that
yields arandom oracle relative to which the NPKV hi-
erarchy isinfinite also demonstratesthat UP # NPrel-
ative to arandom oracle, but does not seem to suffice
to separate the classes UPy, ; and UR.

4. Another related open question iswhether a conjecture
raised by Even, Selman, and Yacobi [ESY 84] holds
relative to arandom oracle. The conjecture states that
for al digoint Turing-complete sets A and B in NP,
thereexistsaset C such that C separatesAand BandC
isnot Turing-hard for NP. It isknown [ESY 84, GS88,
Sel94] that this conjectureimplies (i) NP # coNP, (i)
NP #£ UP, and (iii) NPMV &: NPSV. Each of the
these consequences holds relative to a random oracle
[BG81, Roy94, Nai94]. In fact, relative to a random
oracle, the same language separates the classesin (i)
and (ii), and a search function of this language sepa-
rates (iii).
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