
ARCHERR:

Runtime Environment Driven Program Safety

Ramkumar Chinchani, Anusha Iyer, Bharat Jayaraman, and
Shambhu Upadhyaya

University at Buffalo (SUNY), Buffalo, NY 14260
{rc27, aa44, bharat, shambhu}@cse.buffalo.edu

Abstract. Parameters of a program’s runtime environment such as the
machine architecture and operating system largely determine whether a
vulnerability can be exploited. For example, the machine word size is an
important factor in an integer overflow attack and likewise the memory
layout of a process in a buffer or heap overflow attack. In this paper,
we present an analysis of the effects of a runtime environment on a lan-
guage’s data types. Based on this analysis, we have developed Archerr, an
automated one-pass source-to-source transformer that derives appropri-
ate architecture dependent runtime safety error checks and inserts them
in C source programs. Our approach achieves comprehensive vulnera-
bility coverage against a wide array of program-level exploits including
integer overflows/underflows. We demonstrate the efficacy of our tech-
nique on versions of C programs with known vulnerabilities such as Send-
mail. We have benchmarked our technique and the results show that it
is in general less expensive than other well-known runtime techniques,
and at the same time requires no extensions to the C programming lan-
guage. Additional benefits include the ability to gracefully handle arbi-
trary pointer usage, aliasing, and typecasting.

1 Introduction

Several research efforts have been invested in detecting and preventing vulnera-
bilities such as buffer overflows and heap corruption in programs. Static bounds
checking approaches [1] attempt to detect overflows in arrays and strings. How-
ever, due to the undecidability of pointer aliasing [2, 3], some pointer approxi-
mations have to be used, which result in false positives. Other techniques like
CCured [4] have augmented the C programming language type system to sup-
port safety properties, allowing programs to be statically checked based on this
new stronger type system. While these techniques provide a systematic way to
detect invalid memory accesses, the flexibility of the language is reduced. There
is also an additional burden on the programmer to familiarize himself with the
new dialect. Finally, runtime safety techniques [5] defer the actual process of
checking till program execution. However, they are known to cause significant
slowdown in program execution time.

In terms of coverage, while these approaches are able to detect and catch com-
mon vulnerabilities such as buffer overflows [6], there are other vulnerabilities in

2

software which manifest in most unexpected ways and have proven very difficult
to catch. For example, innocuous-looking errors such as arithmetic overflows and
integer misinterpretation have been successfully exploited in ssh [7] and apache

[8] daemons. The code snippet in Figure 1 illustrates the possible repercussions
of an integer overflow. The function alloc mem allocates memory of a specified

1. char * alloc mem(unsigned size) {
2. unsigned default size = 4096;

3. unsigned max size = 0;

4. char *retval = (char *)NULL;

5.
6. size = size + 4; /* Add padding */

7. max size = (default size > size) ? default size : size;

8. retval = (char *) malloc(sizeof(char) * max size);

9. return retval;

10. }

Fig. 1. A strawman integer overflow vulnerability

size. Now assume that another subroutine calls this function in order to copy a
large string. On a 16-bit architecture, if an attacker is able to send a string whose
length lies in the interval [216 − 4, 216 − 1], then in line 6 when some padding
is added, an arithmetic overflow will occur. This results in a smaller amount of
memory being allocated in lines 7 and 8 than expected. On architectures with
wider register words, strings of a much larger length will produce the same effect.
Therefore, the same program behaves differently when compiled and executed
on different architectures. Such overflow errors also occur in strongly typed lan-
guages like Java 1. These kinds of errors do not speak well about portability and
safety. The vulnerability in Figure 1 could have been prevented if an appropriate
check was placed before line 6. But this is not a straightforward procedure since
it requires the knowledge of the runtime architecture. A strong indication of
the relationship between vulnerabilities and runtime architecture is seen in the
information provided by CERT alerts which not only report the program which
is vulnerable but also the relevant platforms.

1.1 Approach Overview

In this paper, we discuss a comprehensive, architecture-driven approach for stat-
ically analyzing and annotating C programs with runtime safety checks.

– Runtime Environment Dependent Type Analysis

Our technique uses runtime environment information to define constraints
on the domain of values corresponding to different data types and the oper-
ations defined on them. During the course of program execution, variables
may assume different values, but from a program safety point of view, only a

1 However, actual out of bound array accesses in Java do raise the
java.lang.ArrayIndexOutOfBoundsException exception.

3

subset of them must be allowed. Pointer aliasing and dynamic binding pre-
vents us from deriving all the constraints statically; for example, the set of
valid addresses that can be accessed through pointer dereferencing changes
dynamically with program execution. We achieve what compile-time type
safety techniques like CCured can but without extending the programming
language. Therefore, our technique is cleaner, but we pay a small price in
terms of execution slowdown due to runtime checks.

– Runtime Safety Checks for Data Types; Not Individual Variables

Our technique also differs from other runtime bounds checking approaches
[5] in terms of the nature of the checks. Protection is achieved by deriving
and asserting safety checks for each data type rather than enforcing separate
bounds for individual data variables/objects. This allows us to perform the
same check on all variables of a given data type. As a result, in spite of
pointer aliasing and arbitrary typecasting, the runtime checks incur smaller
overheads (∼2-2.5X). We demonstrate that our technique performs compa-
rably to CCured [4] (∼1.5X) and significantly better than Jones and Kelly’s
bounds checking [9] (> 30X) on the same suite of benchmarks. Moreover,
the ability to detect vulnerabilities is not compromised as is evident from
running Archerr on vulnerable versions of common C programs. We have
been able to detect and preempt heap corruption attacks, buffer overflows,
null pointer dereferences, and integer overflow attacks.

– Checks Not Limited to Only Pointers

Pointers and integers are the primary data types of the C programming lan-
guage. All other data types are either variations or some user-defined com-
bination of these types. As shown in the earlier illustration, vulnerabilities
can be directly attributed to not only pointers, but also integers. Therefore,
we derive safety checks for both pointers as well as integer operations. To
the best of our knowledge, this is the first technique to systematically handle
integer-based attacks.

– Ability to Handle Typecasting

A significant positive side-effect of our approach is the ability to handle arbi-
trary pointer usage, typecasting and complex array definitions. The coarse-
grained data type checks on pointer variables implicitly assume that mem-
ory that they point to is not immutable. Therefore, typecasting is allowed
as long as the variables satisfy the appropriate safety conditions. We explain
this with examples in later sections.

1.2 ARCHERR Implementation

Archerr is implemented as a preprocessor for C source programs. Figure 2 gives
an overview of the entire code transformation procedure. The original source
program passes through a source transformation stage where annotations are
inserted into the code. These annotations serve as hooks through which control
can be transferred to safety checking routines (implemented as an external li-
brary) during runtime. The process of code transformation requires the runtime

4

Parsing
Preprocessing
Safety Check Insertion

ARCHERR

Annotated
code Executable

Runtime environment
specification

Source program

and Linkage
Compilation

Runtime checks
library

Fig. 2. Modifying the compilation process to integrate runtime specific safety proper-
ties

environment specification as a parameter, which is discussed further in the next
section. The transformed source code when compiled and statically linked with
the safety checking routines produces a safer version of the program. The entire
process of code transformation is transparent to the programmer.

The rest of the paper is organized as follows. Section 2 presents the method-
ology that forms the core of our work. Section 3 enumerates a few optimizations
to our main technique to reduce the runtime overhead. Section 4 reports the
results that we have obtained through security and performance testing. Section
5 discusses the related efforts and puts our work in perspective, and Section 6
presents conclusions and gives suggestions for future work.

2 Runtime Environment Dependent Type Analysis

The environment we have chosen for our discussion and demonstration is 32-
bit Intel architecture running Linux (kernel 2.4.19) and the object file format is
executable and linking format (ELF) [10]. This is a popular and open develop-
ment environment and we believe that our work would be most useful in these
settings. We provide a brief background on some aspects of this runtime environ-
ment that are relevant to our technique as well as describe how they are specified
in Archerr. Unless otherwise specified, any discussion will be in the context of
only this runtime environment.

Machine Word Size. The ubiquitous Pentium belongs to a 32-bit processor
family. The width of a register word is 32 bits and it can hold an absolute
binary value in the interval [0, 232 − 1]. This defines the domain for meaningful
and consistent integer operations. The machine word size by default is 32-bit in
the Runtime Environment Specification (REspec). It may also be specified as a
command line argument to Archerr.

Memory Layout. When an ELF executable is produced using a compiler, it
not only contains the machine code, but also directives to the operating sys-
tem regarding the memory layout of the various parts of the binary. All this
information is contained in the ELF executable header. We can think of the ex-
ecutable as two parts: 1) one containing code and data that directly pertains to
the source program, and 2) the other containing control information for purposes
like dynamic linking and loading (note: statically linked programs may not have

5

this part). Memory violations can occur if information outside the first part is
accessed or modified. Although the information in an ELF executable is created
during link-time, it is still possible to create a memory map of the first part by
inserting bookkeeping code at compile-time, which groups together variables of
similar nature.

Various data types in a program are affected differently by a given runtime
environment. We perform a runtime environment dependent type analysis to
establish these relationships.

2.1 Analysis of Numerical Types

Let the entire set of signed integers be denoted by I. Let I be represented by
the interval (−∞, +∞). For the sake of simplicity, we say that a variable is of
type int if it assumes values in I and is closed under the successor (succ) and
predecessor (pred) operations, that is,

x : int ⇒ x ∈ I (1)

succ(x : int) = x + 1 : int (2)

pred(x : int) = x − 1 : int (3)

The succ and pred primitives are defined at all points in I. Moreover, the basic
integer operations such as addition, subtraction, multiplication and division can
all be expressed using these two primitives.

Taking into account the machine architecture, we denote the set of signed
integers as In where the subscript n represents the size of a word. For example,
the set of signed integers on a 16-bit architecture is I16. Similarly, we can define
the machine architecture dependent integer type as intn where the subscript n
denotes the size of a word.

x : intn ⇒ x ∈ In (4)

Since the width of a machine word restricts the values that a signed integer
can assume on a given architecture, the set In is represented by the interval
[−2(n−1), 2(n−1)−1]. Now, the operations succ and pred can no longer be applied
an arbitrary number of times on a given integer and still yield another valid
integer. Therefore, the succ and pred operations are correctly defined only as:

succ(x : intn) =

{

x + 1 for x ∈ [−2(n−1), 2(n−1) − 2]
undefined elsewhere

(5)

pred(x : intn) =

{

x − 1 for x ∈ [−2(n−1) + 1, 2(n−1) − 1]
undefined elsewhere

(6)

Given a program, performing classical type based analysis at the programming
language level ensures that operations are correct only at a level described by
equation (2) and (3). Clearly, this is not adequate as demonstrated by equations
(5) and (6) where n becomes an important factor. We can present arguments on
the similar lines for other numerical types such as unsigned int, long int, etc.

6

Interpreting floating point types is a little more complicated. However, the IEEE
standard [11] requires the width of a single precision value to be 32 bits and a
double precision value to be 64 bits. This makes them relatively independent of
the machine architecture.

Ensuring Safety Properties of Numerical Types

Safety properties of numerical types are ensured by asserting their correctness
of operations in terms of set closure. For every operation over numerical types,
it is important to assert that the properties (5) and (6) hold. The algorithm to
generate assertions for some basic operations on the int type are given Table 1.

Let ¦ be an operator such that ¦ ∈ {+,−,×,÷,%}. Let a : int, b : int
be the two operands of this operator. Let MAXINT be 2n−1 − 1 and MININT

be −2n−1. Then, in order to ensure the safety of the operator ¦, the asser-
tions in Table 1 must be placed before the actual operation. For an insight into

if a ≥ 0, b ≥ 0, then

a + b ⇒ assert : a ≤ (MAXINT − b)

if a ≥ 0, b < 0, then

a − b ⇒ assert : a ≤ (MAXINT + b)

if a < 0, b ≥ 0, then

a − b ⇒ assert : a ≥ (MININT + b)

if a < 0, b < 0, then

a + b ⇒ assert : a ≥ (MININT − b)
∀ a, b,

a × b ⇒ assert: a ≥ bMININT/bc ∧ a ≤ b(MAXINT/bc

a ÷ b ⇒ assert: b 6= 0

a % b ⇒ assert: b 6= 0

Table 1. Assertions for basic numerical operators

the validity of these assertions, consider the first assertion. When a, b are both
nonnegative, there is no danger of an underflow under the operator +. All that
remains is to check that a+b ≤ MAXINT . This can be safely done by asserting
a ≤ (MAXINT − b). Consider the bitwise operators {&, |, ^, <<,>>}. Among
these, only the shift operators, << and >> are unsafe. They are equivalent to
multiplication and division by 2 respectively, and similar checks in Table 1 apply.
The assignment operator = does not cause any changes in values if it is applied
to variables of identical types. Therefore, type correctness properties will ensure
the right use of the assignment operator.

2.2 Analysis of Pointer Types

We now extend the architecture-dependent analysis to pointer types. A pointer
variable has two aspects - a memory location and an association to a type. We

7

will use the notation p : q(τ) to refer to a pointer variable p that points to a
memory location q which holds a value of type τ . For example, a pointer of
type char **p is represented as p : q(char *) and it implies p is a pointer to a
variable of type char *. The possible values for a pointer variable, like numerical
types, are dependent on a given architecture and runtime environment. They
are governed by the address format and the address space used. While a pointer
variable may be assigned any arbitrary address, a safe assignment requires that
the pointer variable be assigned a valid address. We evolve some theoretical
machinery before any further discussion.

For the convenience of representation of sets, we use interval ranges. The set
{a, a + 1, a + 2, . . . , b} is denoted as [a, b]. The insertion and deletion of ranges
are defined in terms of set union and set difference as follows, where S is a given
set and [a, b] is a range that is inserted or deleted.

append(S, [a, b]) : S = S ∪ [a, b] (7)

remove(S, [a, b]) : S = S − [a, b] (8)

Let P be the set of all valid addresses. The elements of P are represented as
interval ranges [ai, bi] and P =

⋃

i

[ai, bi]. Then a pointer p is said to be safe if

the following is true.

p : q(τ) ⇒ ∃ [ai, bi] ∈ P s.t. p ∈ [ai, bi] ∧ p + |τ | ∈ [ai, bi] (9)

where |τ | denotes the size allocated to data types of type τ and p used alone
on the right hand side represents an address. Let us denote the function or
primitive that enforces this property as validate(p).

Pointer arithmetic is generally allowed in a language supporting pointers
and we can define this arithmetic in terms of the successor and predecessor
operations but unlike integer arithmetic these are interpreted slightly differently.
An operation on a pointer variable containing an address yields another address.
Note that these operations defined by (10) and (11) are safe only if they too obey
(9).

succ(p : q(τ)) ⇒ p + |τ | (10)

pred(p : q(τ)) ⇒ p − |τ | (11)

(d)
a bp

a b,c

b

(a)

(c)

b a d
(b)

a

p

p

p

ca b dp
(e)

Fig. 3. (a), (b) Safe pointer assignments whereas (c), (d), (e) unsafe pointer assign-
ments

8

Fig. 3 (a) and (b) show safe pointer assignments. The outer rectangle rep-
resents a valid address range and the shaded inner rectangle represents some
variable or data object that pointer p points to. If the entire object lies com-
pletely inside a valid address range, then the assignment is safe. Fig. 3 (b) shows
an object that straddles two valid address ranges but as these ranges are con-
tiguous, they collapse into one and no part of the object lies in an invalid region.
However, when one of the address ranges becomes invalid, then any references
to this object become invalid. In Fig. 3 (c), (d) and (e), the pointer p points to
data objects or variables which are not completely inside a valid address range.
This is possible because C language allows arbitrary type casting and memory
referencing as illustrated by the example in Figure 4. In line 11, an unsafe pointer
assignment allows a member of the structure to be accessed that actually lies
outside the memory region allocated in line 7. This is an example of the scenario
represented by Fig. 3 (c).

1. struct st { char ch; int i; };
2.
3. int main() {
4. char *p;

5. struct st *pst;

6.
7. p = (char *) malloc(sizeof(char));

8. pst = (struct st *) p;

9. pst->i = 10;

10.
11. return 0;

12. }

Fig. 4. An unsafe pointer assignment

The key to enforcing pointer safety within the Archerr framework involves
bookkeeping of the various objects allocated/deallocated during the lifetime of
a process’ execution. This is accomplished through the premise that they must
reside in one of the following regions and are accessible through the program
itself.

Valid Address Map For Data Segment. The data segment holds all initial-
ized and uninitialized global and static variables. The data segment is initialized
based on the information present in the object file, which contains more than
just these variables. Therefore, not all memory in the data segment should be
accessible from the program. From a program’s perspective, the memory that
corresponds to only the global and static variables should be visible. However,
virtual addresses and bounds for these sections are known only at link-time
when all symbols and names have been resolved. But it is still possible to con-
struct this address map at compile-time using a simple workaround. Let vari

be some variable declared in a C program as either a static, extern or a
global variable. Then the address range which bounds this variable is given by
[&vari, &vari + |τi|], where & represents the ‘address-of’ operator and |τi| is the
size allocated for this ith variable which is of type τi. Some examples are the
first three declarations and their corresponding ranges below:

9

int i; [&i, &i + sizeof(i)];

char *str1; [&str1, &str1 + sizeof(str1)];

char str2[10]; [&str2, &str2 + sizeof(str2)];

char *str = ‘‘abc’’; [&str, &str + sizeof(str)] ∪
[str, str + strlen(str)]

String literals which are used to initialize pointer variables of type char * are
allocated in the data segment. They, however, do not have an l-value and have
to be handled differently as shown in the last declaration above. The accessible
portion of the data segment, denoted by D is the union of all such memory ranges,
i.e., D =

⋃

i

[&vari, &vari + |τi|]. Since the data segment persists unaltered until

the termination of the program execution, D needs to be constructed only once
and no further modifications are required. D is constructed at the program’s
entry point, typically the first executable statement of main().

Valid Address Map For Heap Segment. Memory can also be allocated and
deallocated dynamically during program execution via the malloc() and free()
family of library calls. This memory resides in the heap segment, denoted by H.
Let malloc(), for example, allocate a chunk of memory, referenced by a pointer
p, of type τ and size n. The corresponding address range is represented by [p, p+
n×|τ |]. Then, H =

⋃

i

[p, p+n×|τ |]. An additional level of verification is required

for deallocation, i.e. the free() library function, to prevent heap corruption. The
only addresses that can be passed as an argument to free() are those that were
obtained as a return value of the malloc() family of calls.

Valid Address Map For Stack Segment. The stack segment contains mem-
ory allocated to not only the automatic and local variables, but also other in-
formation such as the caller’s return address. This makes it one of the primary
targets for an attacker since control flow can be diverted to a malicious payload
by overflowing a buffer. We take advantage of the fact that variables on the stack
are allocated within well-defined frames. Let S denote the set of valid addresses
allocated on the stack. The stack frames on the Intel architecture are defined
by the contents of the registers EBP and ESP at the function entry points. The
address range corresponding to a stack frame is [ESP, EBP]. This range is added
to S at a function’s entry point and it is removed at each function exit point.
Note even before the program begins execution, some information is already on
the stack, i.e., argc, argv and env as described in [12]. The corresponding address
ranges remain valid until the program terminates and they should be added only
once to S at the program entry point. For our implementation, we used inline
assembly to capture the values of the EBP and ESP registers. We observed that
gcc (version 2.95.4) allocates all the memory required in increments of 16 bytes
at function entry point whether there are nested blocks or not, hence making
it relatively easy to obtain the bounds of a stack frame. Other compilers may
implement this differently. For this reason, the above method gives a slightly
coarse-grained bound on the stack frame. A tighter bound would be provided by
the union of memory ranges occupied by variables on the stack just as in the case

10

of the data segment. But this construction could cause significant computational
overheads.

Unannotated version Annotated version

1. struct st { 1. struct st {
2. char ch; 2. char ch;

3. int i; 3. int i;

4. }; 4. };
5. 5.

6. struct st glbl; 6. struct st glbl;

7. 7.

8. int foo(int arg) 8. int foo (int arg)

9. { 9. {
10. static int sta; 10. static int sta;

11. · · · 11. append(P, current stack frame)
12. 12. append(P, [&sta, &sta + sizeof(sta)])
13. return 0; 13. · · ·
14. } 14. remove(P, current stack frame)
15. 15. return 0;

16. 16. }
17. 17.

18. int main(int argc, char *argv[]) 18. int main(int argc, char *argv[])

19. { 19. {
20. char *buf; 20. char *buf;

21. 21. append(P, address ranges of argc, argv)
22. buf = (char *) 22. append(P, current stack frame)

malloc(sizeof(char)*32);

23. · · · 23. append(P, [&glbl, &glbl + sizeof(glbl)])
24. foo(32); 24.

25. · · · 25. buf = (char *)malloc(sizeof(char)*32);

26. free(buf); 26.

27. return 0; 27. if (buf) {
28. } 28. append(P, [buf, buf + sizeof(char)*32])
29. 29. H = H ∪ buf

30. 30. }
31. 31. · · ·
32. 32. foo(32);

33. 33. · · ·
34. 34. if (buf /∈ H) then raise exception

35. 35. remove(P, [buf, buf + sizeof(char)*32])
36. 36. H = H − buf

37. 37. free(buf);

38. 38. remove(P, current stack frame)
39. 39. return 0;

40. 40. }

Fig. 5. The construction of the map of valid address ranges P in a program.

11

The bookkeeping operations that were described construct a map of valid ad-
dress ranges, i.e., P = D ∪ H ∪ S. Figure 5 gives a simple example to show how
P is constructed in a C program. More examples are provided in the appendix.
Initially, P is an empty set and is populated and maintained as the program ex-
ecutes. In our implementation, address ranges belonging to the stack, data and
heap are maintained in three separate linked lists. During address range search,
these lists are indexed by the higher order bits of an address, for example, a stack
address starts with 0xbfff—-. Also, in order to exploit spatial and temporal lo-
cality of programs, we perform insertions and subsequent deletions at the head
of the lists. We also maintain a LRU cache of range entries to speed up address
range lookups. In spite of these careful optimizations, the worst case is still O(n)
in the number of address ranges. However, production level programs are rarely
written in the manner which achieves this worst-case and our empirical obser-
vations have shown the common case to be O(1). All the memory corresponding
to the bookkeeping operations of Archerr have to be kept private and not be a
part of P or else the set of valid addresses may reach an inconsistent or incorrect
state defeating the very purpose of this technique. This is accomplished through
the pointer checks which also assert that pointer dereferences never access this
private memory.

Handling Function Aliasing Through Function Pointers

The stack segment is generally not marked non-executable 2 because some impor-
tant operating system mechanisms (such as signal delivery) and software (such
as xfree86 4.x) require that code be executed off of the stack. This makes it diffi-
cult to specify safety properties for function pointers since they need not point
only to the text segment. Currently, Archerr handles function aliasing through
function pointers by raising warnings during preprocessing if function names
are encountered which are neither previously defined not already recognized by
Archerr such as the malloc family of system calls. We extend this checking to
runtime by maintaining a list of known function addresses and raising warnings
when function pointers are assigned values not belonging to this list.

Handling String Library Functions

Most string functions operate on character pointers of type char * either through
assignment or pointer increments. For example, strlen() function takes a variable
of type char * and increments it till it finds the end of string marker, i.e., the
NULL character. We have specified earlier that if p is assigned a valid address,
then the operations that increment or decrement are safe only when properties
(10) and (11) hold. It is useful to define primitives that determine the amount
by which p can be safely incremented or decremented. Since these primitives are
essentially delta operators, they are denoted as ∆+ and ∆−. Let p : q(τ) be a
pointer, then

∆+(p) =

{

b(b − p)/|τ |c if ∃[a, b] and a ≤ p ≤ b
0 otherwise

(12)

2 Kernel patches are available that make the stack non-executable, but it breaks some
applications and in any case, attacks exist that can bypass it.

12

∆−(p) =

{

b(p − a)/|τ |c if ∃[a, b] and a ≤ p ≤ b
0 otherwise

(13)

Since strlen() merely attempts to find the end of string marker, i.e., the NULL
character, we consider this function to be safe in terms of memory accesses.
Other string functions potentially modify memory locations and the goal is to
prevent any invalid accesses. Assertions are inserted before statements in the
code to ensure safety properties. When an assertion fails, the program raises an
exception and terminates gracefully. If the requirement is continued execution,
then there is yet another approach. We can simply modify these statements to
produce a safer version. Table 2 enumerates a few of such conversions. The min

operator has its usual meaning of finding the argument with the smallest value.
Note that all the arguments should first be valid addresses and hence, property
(9) should be asserted before these annotated statements.

Original statement Safer annotated statement

strlen(str) strlen(str)
strcpy(dest, src) strncpy(dest, src, min(∆+(dest), ∆+(src)))
strncpy(dest, src, n) strncpy(dest, src, min(n, ∆+(dest), ∆+(src)))
gets(dest) fgets(dest, ∆+(dest), stdin)
fgets(dest, n, fp) fgets(dest, min(n, ∆+(dest)))
strcat(dest,src) strncat(dest, src, min(∆+(dest + strlen(dest)), ∆+(src)))
strncat(dest, src, n) strncat(dest, src,

min(n , ∆+(dest + strlen(dest), ∆+(src), strlen(src))))

Table 2. Modified string library functions to support safety properties

2.3 User Defined Types

User defined data types are constructed using the basic data types. The opera-
tions on these new data types can be translated to equivalent operations of the
constituent basic data types and safety properties may be individually asserted
on these members. For example, consider a user defined structure containing a
pointer variable as in Figure 6. One can assign an instance of this structure to
another and this implicitly results in the addresses contained by the pointer vari-
ables to be copied. As long as a member variable is validated before use, unsafe
behavior will not occur. Similarly, union types are simply an instance of implicit
typecasting. Since we validate data types and not objects, it is straightforward
to handle union types.

2.4 Typecasting

void * is the generic pointer type in C and typecasting is done to retrieve the
actual object. This type of conversion is commonly seen in C programs. In our
approach, since the only enforced constraint is that a program’s memory accesses
remain confined to the map of valid addresses, it results in a minimal set of safety

13

1. typedef struct {
2. char *str;

3. int i;

4. } USERDEF;

5.
6. int main() {
7. USERDEF a, b;

8.
9. a.str = malloc(sizeof(char)*2);

10. a.i = 0;

11. b = a;

12. strcpy(b.str, ‘‘a’’); /*safe*/

13.
14. return 0;

15. }

Fig. 6. Handling user defined types

1. typedef struct { int a; int b; } LG;

2. typedef struct { int a; } SM;

3.
4. int main() {
5. SM *a = (SM *) malloc(sizeof(SM));

6. SM *b = (SM *) malloc(sizeof(SM));

7. LG *a alias;

8.
9. a alias = a;

10. a alias->a = b->a;

11.
12. return 0;

13.}

Fig. 7. Undisciplined typecasting

properties. Data within these confines can now be interpreted as required and
therefore, there is no loss of flexibility even in the presence of pointer arithmetic
and typecasting. However, there are instances where typecasting could introduce
false positives in Archerr’s framework. Consider the unannotated example in
Figure 7. Before line 10, a alias would be validated as of type LG * using rule
(9). The code is valid, yet the check would signal a violation. This is due to
the fact that our technique relies in small part on the static types of pointers
at the preprocessing stage. This style of programming although not unsafe, is
undisciplined. Archerr inadvertently discourages this style and therefore, false
positives in such cases are acceptable.

3 Optimizations

An overly aggressive approach to code annotation introduces a large number
of redundant checks causing an unnecessary overhead during execution. Fortu-
nately, many aspects of our technique are amenable to optimization, reducing
the slowdown significantly. Currently, some of these optimizations are done in
an ad-hoc manner. Also, this is a partial list and research in this direction is a
part of our ongoing and future work.

Arithmetic Operations. Our observation was that correctness of most of the
arithmetic operations could be verified statically and therefore, checks do not
have to be inserted for these operations. Typically, checks have to be inserted
only for operations on integers whose values are determined at runtime and
operations involving dereferenced integer pointers. Otherwise Archerr validates
all statically resolvable operations during the preprocessing stage, significantly
reducing the number of inserted runtime checks.

Pointer Dereferencing. Property (9) implies that when a pointer variable is
encountered in a program either in simple assignment or dereference, it must
be validated. This results in a large number of checks, many of which are re-
dundant. Mere address assignments to pointer variables have no direct security

14

implications. The only locations where checks are mandatory are those where
pointer dereferencing occurs through the ∗ and − > operators. This reduces the
number of checks and improves the execution performance without loss of safety.
However, a downside to this optimization is that the point where an exception
is raised due to an invalid memory access need not be the actual source of the
problem; it could be several statements earlier.

Loops. When the primary purpose of a loop is to initialize or access data using
an index, then the safety checks instead of being placed inside the loop can be
placed outside. The following example shows an unoptimized piece of code fol-
lowed by its optimized version. Note that Archerr currently does not implement
this optimization, however it is on our list of future work.

Unoptimized version Optimized version

1. char *buffer; 1. char *buffer;

2. 2.

3. buffer = (char *) 3. buffer = (char *)

malloc(sizeof(char)*100); malloc(sizeof(char)*100);

4. 4.

5. for (i = 0; i < 100; i++) { 5. validate(buffer) ∧
6. validate(&buffer[i]) assert(∆+(buffer) < 100)
7. buffer[i] = (char)0; 6. for (i = 0; i < 100; i++) {
8. } 7. buffer[i] = (char)0;

8. }

4 Experiments and Results

We have evaluated Archerr both for vulnerability coverage and overheads due
to runtime checks. Our test machine was a 2.2GHz Pentium 4 PC with 1024MB
of RAM.

4.1 Security Testing

Our technique is a passive runtime checking approach that can detect vulnera-
bilities only when an exploit causes a safety violation in some execution path.
Therefore, our security tests involve programs with known vulnerabilities and
publicly available exploit code. The SecurityFocus website is an excellent repos-
itory of such vulnerabilities and corresponding exploit code.

sendmail-8.11.6. sendmail is a widely used mail server program. This partic-
ular version of sendmail shipped with RedHat Linux 7.1 has a buffer overflow
vulnerability [13]. We installed this distribution and tested the exploit code,
which successfully obtained a root shell. We rebuilt the sources after running it
through Archerr and ran the same exploit. The attack was detected as soon as
a pointer variable dereferenced an address outside the valid map.

GNU indent-2.2.9. indent is a C program beautifier. This particular version of
indent has been reported to have a heap overflow vulnerability [14], which can be

15

exploited using a malicious C program. Supposedly, it copies data from a file to
a 1000 byte long buffer without sufficient boundary checking. The exploit code is
able to construct this malicious file, which we used to launch the attack. At first,
we caught a potential null pointer dereferencing bug. Once the corresponding
check was disabled, we were able to catch the actual heap overflow.

man 1.5.1. This program is reported to have a format string vulnerability [15].
The exploit code is supposed to give an attacker a root shell through a format
string argument to vsprintf(), which the attacker can control. However, when
we tried to replicate the same conditions for the exploit code to work, we got
a segmentation fault through the vsprintf() call. Nevertheless, this showed the
existence of a format string bug. Archerr’s annotations could not detect this
attack mainly because vsprintf() is a part of an external library that has not
been annotated. This attack could have been caught if Archerr annotations were
applied to vsprintf() code. This is one of the limitations of Archerr that it cannot
protect a source program if it has not been processed.

pine 4.56. pine is a popular mail client. Version 4.56 and earlier are susceptible
to an integer overflow attack [16]. No exploit code was publicly available for this
vulnerability. However, a mail posting [17] provided directions to construct an
attack. The problem can be traced to addition operations on a user-controlled
signed integer variable, which cause it to become negative. In the following code,
it is used as an index into a buffer, resulting in this vulnerability. Compiling this
version was very error-prone due to the non-standard build process. However,
once it was setup and annotations were inserted, the attack was detected before
an integer overflow could occur.

4.2 Performance Testing

We chose the Scimark 2 [18] benchmark for the purposes of evaluating the effect
of Archerr’s annotations on execution time. This benchmark uses the following
kernels: 1) Fast Fourier Transform (FFT) - this kernel exercises complex arith-
metic, shuffling, non-constant memory references and trigonometric functions, 2)
Jacobi Successive Over-relaxation (SOR) - this algorithm exercises basic mem-
ory patterns, 3) Monte Carlo integration (MC) approximates the value of PI, by
computing certain integrals, 4) Sparse Matrix Multiply (SMM) - this kernel ex-
ercises indirection addressing and non-regular memory references, 5) Dense LU
Matrix Factorization (LU) - this kernel exercises linear algebra kernels (BLAS)
and dense matrix operations.

In order to understand the overheads imposed by Archerr, we ran the original
benchmark without any source code annotations. Then we compiled only the
pointer checks. Subsequently, we enabled the full functionality of Archerr. The
overheads imposed are reported in Table 3. The overheads incurred by pointer
checks alone are in the range of 1.2-3.8X. Additional checks on integer arithmetic
causes an overall slowdown of 1.23-4.4X. The composite score of this benchmark
suite gives an average slowdown of 2.3X with pointer checks and 2.5X with both
pointer and integer checks. The overhead is noticeable but not excessive. We also
ran the Scimark2 suite against two well-known language security techniques -

16

CCured [4], a type-based approach, and Jones & Kelly’s bounds-checking [9], a
primarily runtime checking approach, for the purposes of comparison. CCuring
the Scimark2 benchmarks caused them to run 1.5X slower on an average, and
Jones and Kelly’s technique incurs a composite performance hit of > 30X. The
significant gains observed over Jones & Kelly’s technique is mainly because our
technique provides type-based coarse-grained safety as opposed to strict object-
centric safety. Our technique is also only 1X more expensive than CCured. We
noticed a peculiarity in our results that running the source code through some of
these techniques seemed to improve the performance. Such anomalies have also
been reported in [19] and are attributed to the compiler’s internal optimizations.

Kernel Original Ptr Slow Ptr and Slow CCured Slow J&K Slow
Checks down Int Checks down down down

FFT 89.36 31.80 2.81X 24.42 3.66X 60.23 1.49X 5.22 17.12X

SOR 178.42 149.93 1.19X 145.07 1.23X 295.55 -1.66X 7.80 22.87X

MC 30.93 19.70 1.57X 16.72 1.85X 32.90 -1.06X 3.60 8.59X

SMM 271.93 70.27 3.87X 61.80 4.40X 103.70 2.62X 3.76 72.32X

LU 341.33 121.90 2.80X 116.10 2.94X 130.78 2.61X 6.86 49.76X

Composite 182.39 78.28 2.33X 72.38 2.52X 124.63 1.46X 5.45 33.47X
score

Table 3. MFlops: original vs. only pointer checks vs. pointer and arithmetic checks,
and comparison with CCured and Jones & Kelly’s technique

4.3 Impact of Source Code Size and Runtime Image

The number of checks inserted is directly dependent on the number of pointer
dereferences and integer operations that could not be resolved statically. We have
seen a source code bloat in the order of 1.5-2.5X. Increase in the runtime image
can be attributed to the statically linked library and the in-memory housekeeping
information regarding address ranges. Our empirical results show that the overall
impact on the runtime image is nomimal (1.2-1.4X). This is due to the following
reasons. The Archerr library code is partly written in assembly and partly in
C, and the resulting library image is small. Address ranges are implemented
as very small data structures. Furthermore, our coarse-grained approach allows
multiple address ranges to be collapsed to a single address range when memory
on heap or new stack frames are allocated. Although addition or deletion of
address ranges could potentially result in O(n) behavior in the worst case, the
memory consumption is not significant in the general case.

5 Comparison With Related Work

Several important research efforts have attempted to empower the programmer
with techniques and tools to produce safe code. We briefly describe these ap-
proaches and compare them with the techniques proposed in this paper.

17

5.1 Bounds Checking

Several commercial and open-source tools [9, 20, 21] exist that perform memory
access and bounds checking. Jones et al. [9] describe a technique that checks both
pointer use and pointer arithmetic, and this work is the closest to our approach in
this regard. Safety is addressed through source code annotations by ascertaining
that pointer operations are only permitted to take place within an object and
not across objects. However, there are some drawbacks that we improve upon.
Most markedly, our technique is significantly more efficient than their technique.
Also, their technique only addresses pointer usage, while we present a more
holistic approach. By inserting dead space around each object, they can detect
violations at runtime. This rigid check structure results in inability to handle
complex data structures such as multi-dimensional arrays, arrays within arrays,
arbitrary typecasting, and finally, excessive runtime overhead. We are able to
address these aspects effectively in our approach, mainly due to the fact that
we relax the strict object-centric view. Finally, they have implemented their
technique as a GNU C compiler extension, while we make no modifications to
the C compiler.

Purify [20] is a widely-used tool, which processes binary code to insert run-
time memory access checks. However, Purify is used mainly for debugging pur-
poses because of its inefficiency. Also, it will some times permit stack corruption
by allowing a program to access past stack-allocated arrays. Archerr clearly
guards against this misuse by maintaining maps of delimited stack frames. Wag-
ner et al. [1] proposed a proactive static analysis technique that formulates the
buffer overruns as a integer range analysis problem by specifying integer bounds
on arrays and strings, and solving the constraint system. Since it is a compile-
time technique that actively pursues violations, it can detect many of them even
before compilation. In contrast, our technique is a runtime detection technique;
hence, it is passive and violations are detected only when the corresponding ex-
ecution path is active. However, [1] handles pointer typecasting and aliasing in
an ad-hoc manner and this approximation raises several false positives.

5.2 Stack Protection

StackGuard [22], StackShield [23] and ProPolice [24] are effective runtime tech-
niques that prevent stack overrun. StackGuard [22] is a compiler extension that
adds a random padding called the canary around the return address on the stack.
These bytes are checked at each function entry and exit. StackShield [23] moves
the return address to a location that cannot be overflowed. Manipulating the
stack frame affects compatibility and can break applications such as debuggers,
which probe the stack frame for function call information. Protection in ProPo-
lice [24] is accomplished by inserting checks during compilation and reordering
variables to prevent pointer corruption. All these techniques use architecture-
specific information about stack layout in a clever manner. Focussing mainly on
stack protection, although very efficient, can allow attacks [25] to bypass these
techniques.

18

5.3 Type Based Safety

Type theory provides a formal framework to express and verify certain cor-
rectness properties of programs. Statically analyzing programs based on type
correctness can detect many common programmer errors. Some of these correct-
ness notions have been extended to express safety properties. A few research
efforts have targeted the C programming language’s flexibility of pointers and
have augmented the type system to produce safer dialects. Cyclone [26] intro-
duces a notion of region based type theory into C. All variables apart from their
type, have an additional attribute called a region, which is determined based
on where the variable resides, i.e., stack or heap. Analysis with the help of this
concept allows the detection of invalid region based memory accesses in pro-
grams. CCured [4] describes an augmented type system for C to prevent invalid
memory accesses due to pointers. Based on their usage, pointers are segregated
as safe and unsafe. Programs can be statically analyzed and while most pointer
usage can be checked statically, some of them require runtime checks. There are
cases where a program will stop even when it is safe and manual intervention is
necessary. In the paper [4], they report a execution slowdown of up to 150% on
their benchmarks. We have observed similar slowdown on our benchmarks and
our technique is comparable to CCured in terms of overhead. The caveat to these
approaches is that safety is not achieved transparently and the programmer is
burdened by a possibly steep learning curve in both cases. Some of the concepts
in this paper, such as static analysis of basic types, region and pointer-based
analysis are similar. One advantage to our approach as well as to some of the
other techniques described in Section 5.1 is that source code need not be rewrit-
ten or ported and programmers are minimally affected. Again, we cover pointers
and more.

5.4 Other Relevant Techniques

From an attacker’s point of view, chances of successfully overflowing a buffer are
largely dependent on a good approximation of its address. Based on this premise,
pointers and location of objects can be randomized in order to render attacks
ineffective. Unlike the bounds-checking techniques, the following [19, 27] incur
much less overhead but possibly may be bypassable by attackers as discussed in
[19]. The PAX project [28] incorporates the technique of ASLR (Address Space
Layout Randomization). ASLR randomizes the location of key memory spaces,
such as the stack and the heap. Sekar et al. [27] work to randomize the absolute
locations of all code and data segments as well as the relative distance between
memory objects. Cowan et al. in [19] describe the a similar, yet more fine-grained
tool PointGuard that obfuscates all memory addresses via encryption using a
key that is generated at run-time. Orchestrating a buffer-overflow attack in this
scenario requires knowledge of the secret key. Similar to many of the above tools,
these approaches are focused solely on ensuring safe pointer manipulation.

Libsafe [29] is a binary level technique that provides protection against buffer
overflows by intercepting calls to ”unsafe” string functions and performing a
bounds check on the arguments. We address the problem of unsafe functions by
inserting sanity checks on the arguments in the source code prior to compilation.

19

6 Conclusion and Future Work

In this paper, we have described a novel approach for statically analyzing and
annotating code in order to ensure safe execution in a particular runtime en-
vironment. Access checks that are placed in the code ascertain that the code
is performing numerical computations and accessing memory in a safe manner.
Since there is no notion of well-defined and immutable objects per se, memory
within the valid address ranges can be typecast arbitrarily. This largely retains
the flexibility of the language. If code annotations are performed in an exhaustive
way, then the slowdown is not negligible but very useful for debugging purposes.
On the other hand, production systems require efficient execution and in such
a scenario, optimizations can reduce the number of annotations. By making the
runtime environment specification as a separate parameter, it is possible to gen-
erate annotated versions of the same source code that is safe for each instance
of the specified runtime environment, subsequently, providing tighter security.

Although our technique provides coverage against a wide variety of vulnera-
bilities, the coverage is limited to the source code that our technique processes.
Therefore, vulnerabilities in external libraries cannot be handled unless the li-
braries are also annotated. Like other code annotation techniques, there is little
protection against runtime process image tampering and manipulation using
programs such as gdb. This implies that protection against exploits is limited
to those which do not require direct access to the process image. Although this
technique is practical with small impacts on performance, it does not solve all the
problems by itself. Therefore, our recommendation is to use this tool in tandem
with more proactive approaches.

This paper lays the basic groundwork for a useful and efficient runtime de-
tection technique to prevent exploits. We are investigating further improvements
to the technique. In its present form, this technique is reactive and can only be
used to prevent exploits. But there is scope to provide detection capabilities at
the preprocessing stage itself. For example, pseudo interval ranges can be cre-
ated even during compilation stage to represent the data segment and the stack
frames, and then program execution can be simulated partially to detect possible
violations. At this point, it is only a speculation and we are looking at issues
regarding this possibility. The runtime environment specified in Section 2 has
been the focus of this work. However, we are also looking at other combinations
that can serve as a viable runtime environment. For example, a runtime specifi-
cation for x86/win32/pe would certainly be very useful. As for the development
of Archerr, our immediate goals are to implement further optimizations as well
as mature the tool to handle large distributions without much manual interac-
tion. We are planning on releasing an alpha version of Archerr very shortly. The
long-term goal is to develop a robust, customizable tool that supports a myriad
of runtime environments.

20

References

1. Wagner, D., Foster, J.S., Brewer, E.A., Aiken, A.: A First Step towards Automated
Detection of Buffer Overrun Vulnerabilities. In: Network and Distributed System
Security Symposium, San Diego, CA (2000) 3–17

2. Landi, W.: Undecidability of Static Analysis. ACM Letters on Programming
Languages and Systems 1 (1992) 323–337

3. Ramalingam, G.: The Undecidability of Aliasing. ACM Transactions on Program-
ming Languages and Systems 16 (1994) 1467–1471

4. Necula, G.C., McPeak, S., Weimer, W.: CCured: Type-safe Retrofitting of Legacy
Code. In: Symposium on Principles of Programming Languages. (2002) 128–139

5. Jones, R.W.M., Kelly, P.H.J.: Backwards-Compatible Bounds Checking for Arrays
and Pointers in C Programs. In: Automated and Algorithmic Debugging. (1997)
13–26

6. One, A.: Smashing the Stack for Fun and Profit. Phrack 49, Vol. 7, Issue 49 (1996)

7. Bianco, D.J.: An Integer Overflow Attack Against SSH Version 1 Attack Detectors.
In: SANS Cyber Defense Initiatives. (2001)

8. Cohen, C.F.: CERT Advisory CA-2002-17 Apache Web Server Chunk Handling
Vulnerability (2002)

9. Jones, R., Kelly, P.: (Bounds Checking for C) http://www-
ala.doc.ic.ac.uk/ phjk/BoundsChecking.html.

10. TIS Committee: Tool Interface Standard (TIS), Executable and Linking Format
(ELF) Specification, Version 1.2 (1995)

11. Standard for Binary Floating Point Arithmetic. ANSI/IEEE Standard 754-1985
(1985)

12. Boldyshev, K.: Startup State of a Linux/i386 ELF Binary. An article hosted on
http://linuxassembly.org (2000) http://linuxassembly.org/articles/startup.html.

13. Bugtraq ID 7230: Sendmail Address Prescan Memory Corruption Vulnerability
(2003) http://www.securityfocus.com/bid/7230.

14. Bugtaq ID 9297: GNU Indent Local Heap Overflow Vulnerability (2003)
http://www.securityfocus.com/bid/9297/info/.

15. Bugtraq ID 7812: Man Catalog File Format String Vulnerability (2003)
http://www.securityfocus.com/bid/7812.

16. Bugtraq ID 8589: Pine rfc2231 get param() Remote Integer Overflow Vulnerability
(2003) http://www.securityfocus.com/bid/8589.

17. Posting on Bugtraq Mailing List: (2003)
http://archives.neohapsis.com/archives/bugtraq/2003-09/0181.html.

18. Scimark 2.0: (2003) http://math.nist.gov/scimark2/index.html.

19. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: Protecting Pointers
from Buffer Overflow Vulnerabilties. In: Proceedings of the 12th USENIX Security
Symposium, Washington, D.C. (2003)

20. (Rational PurifyPlus) http://www-306.ibm.com/software/awdtools/purifyplus/.

21. (NuMega BoundsChecker) http://www.numega.com/products/aed/vc more.shtml.

22. Cowan, C., Pu, C., Maier, D., Hinton, H., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q.: StackGuard: Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In: 7th USENIX Security Symposium, San Antonio, TX
(1998)

23. Vendicator: (StackShield: A “Stack Smashing” Technique Protection Tool for
Linux) http://www.angelfire.com/sk/stackshield/.

21

24. Etoh, H.: (GCC Extension for Protecting Applications from Stack-smashing At-
tacks) http://www.trl.ibm.co.jp/projects/security/ssp6.

25. Bulba, Kil3r: Bypassing StackGuard and StackShield. (Phrack Magazine, Volume
0xa Issue 0x38)

26. Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., Wang, Y.: Cyclone:
A Safe Dialect of C. In: USENIX Annual Technical Conference, Monterey, CA
(2002)

27. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address Obfuscation: An Efficient Ap-
proach to Combat a Broad Range of Memory Error Exploits. In: Proceedings of
the 12th USENIX Security Symposium, Washington, D.C. (2003)

28. PAX Project: (2003) ”http://pax.grsecurity.net/docs/aslr.txt”.
29. Bartaloo, A., Singh, N., Tsai, T.: Transparent Run-Time Defense Againsts Stack

Smashing Attacks. In: 2000 USENIX Annual Technical Conference, San Diego,
CA (2000)

APPENDIX

The following examples illustrate a few scenarios and how our technique han-
dles them. Some of these examples are borrowed from [5, 26] for the purpose of
comparison.

Dead Return Values

char * foo() {
char buffer[32];

return buffer;

}

int main() {
char *p;

p = foo();

validate(p);
strncpy(p, ‘‘abc’’,

min(∆+(p), strlen(‘‘abc’’), 3));

Multiple function exit points

int foo(void) {
P = P ∪ current stack frame
if (cond) {

P = P − current stack frame
return -1;

}
P = P − current stack frame
return 0;

}

Nested blocks

int foo() {
char *p = 0xBAD;

append(P, current stack frame)
{ char *p;

validate(p);
*p = ’a’;

}
p = 0xBAD2;

validate(p);
*p = ’a’;

Goto

int z;

{ int y = 0xBAD; goto L; }
{ int *y = &z;

L: validate(y); *y = 3;

}

