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Abstracr-Vulnerabilities in software stem from poorly written code. In- 
advertent errors may creep in due to programmers not being aware of the 
security implications of their code. Writing secure code is largely a soft- 
ware engineering issue requiring the education of programmers about safe 
coding practices. Various projects and efforts such as memory usage profil- 
ing, meta-compilation and typing proofs that verify correctness of the code 
at  compile-time and run-time provide additional assistance in this regard. 
In this paper, we point out that in the context of security, one aspect that 
is perhaps underrated or overlooked is that vulnerabilities may be inherent 
in the syntax and grammar of a programming language itself. We leverage 
on some well-studied problems to show that small syntactic discrepancies 
may lead to vast semantic differences in programs and in turn, correlate 
to hard security errors. Our work will help caution programmers on the 
types of errors to avoid as well as serve as a guideline for language design- 
ers to lay emphasis not only on richness of language features but also the 
unambiguity of the syntax. 

Keywords- Programming Language Security, Syntax Errors 

I. INTRODUCTION AND MOTIVATION 

Security breaches of computer systems and data are often due 
to vulnerabilities in software. Buffer overflows [I] and heap 
corruption [2] are some common types of vulnerabilities. Pro- 
grams that contain such vulnerabilities are at the mercy of an 
attacker’s perseverance and creativity. Many of these vulnerabil- 
ities are due to undesirable side-effects of the features provided 
by popular programming languages. For example, pointers in 
the C programming language are very useful in accessing arbi- 
trary memory locations. This is essential for producing systems- 
level code. On the other hand, the same flexibility provided by 
these pointers can be blamed for invalid memory accesses and 
resulting vulnerabilities. 

Consequently, several research efforts have been invested to- 
wards securing programs while maintaining programming flex- 
ibility. Currently known techniques pertaining to programming 
language security can be generally categorized as: (1) proactive 
compile-time static analysis and detection, and (2) reactive as- 
sertion based runtime checking. Compile-time techniques [3] 
attempt to detect errors before actual execution of the program. 
These are often implemented as compiler extensions or separate 
tools. Runtime techniques [4], [ 5 ]  use assertions or code anno- 
tations to detect violations during program execution. 

Not all errors that have security implications can be directly 
attributed to pointers and invalid memory accesses. For exam- 

ple, consider the infamous FORTRAN bug [6] that found its way 
into some critical code. Since FORTRAN is not whitespace- 
sensitive, a loop construct was misinterpreted as a variable as- 
signment resulting in erroneous computations. We give another 
example in C of such off-by-one errors resulting in valid but 
potentially dangerous statement constructions. 
An inadvertent semi-colon on line #4 causes the ‘for’ loop to 
iterate over an empty statement. At the end of the loop, the 
variable ‘i’ has a value 100. Consequently when it is used as an 
array index to the variable ‘buffer’, it causes a buffer overrun. 

1 int i; 
2 char buffer[100]; 
3 
4 for (i = 0; i < 100; i++) ; 
5 {  

7 1  

6 buf€er[i] = (char)NULL; 

The correct code is as  follows: 

1 int i; 
2 char buffer[100]; 
3 
4 for (i = 0 ;  i < 100; i++) 

6 buffer[i] = (char)NULL; 
5 c  

7 1  

These kinds of software bugs occur because there is not 
enough distance between two valid sentences in the language. 
Some errors are programming language-specific, and it may not 
be possible to replicate them in a different language. These er- 
rors are generally easy to commit and difficult to detect. The C 
programming language notoriously abounds in such errors; and 
languages that are based on C, such as C++ and Java, also inherit 
some of these undesirable properties. 

In this paper, we develop a technique to evaluate the potential 
for such serious syntactic errors in popular languages such as C ,  
Java and Perl. This technique is based on looking for certain 
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patterns in the syntax of a language such that a small syntactic 
change can cause a large change in the structure and control 
flow of the program. These changes may have some security 
implications as a result of buffer overruns and invalid memory 
accesses. Currently, we are developing a tool that automates this 
process. As security awareness grows, more and more emphasis 
is  laid on good and safe programming practices. Our work finds 
practical use in this context. Programmers can be warned about 
the possibility of these errors in a particular language that they 
must produce code in. 

A .  Paper Organization 

We discuss some relevant contemporary research in Section I1 
to put our work in perspective. The main technique is discussed 
in Section 111. We evaluate some popular languages in Section 
IV and report our results. We conclude the paper with discussion 
about the work accomplished and the future direction in Section 
V. 

11. BACKGROUND AND RELATED WORK 

Some of the work that we present in this paper finds its basis 
in well-studied problems of software engineering and algorithm 
design. 

A. Secure SofhYare Engineering 

Due to the nature of the data that they process, military es- 
tablishments have traditionally required high assurance systems 
long before security became a mainstream concern. The U.S. 
effort of the "rainbow series" of books, including the "orange 
book," [7] aims to address these concerns. They specify security 
and corresponding verification requirements, placing systems 
into different security classes. Due to its heightened emphasis, 
recent research efforts have focused on bringing security into 
earlier cycles of software development. At the requirements en- 
gineering stage, high-level modeling tools such as UML [SI are 
being modified to relate security requirements with functional 
requirements. Aspect-oriented programming proves another in- 
teresting solution to implementing security policies throughout 
various pieces of a system while still isolating the concern [9]. 
As the role of software systems have shifted and expanded, the 
goal of sound software engineering practices are also shifting to 
create fault-tolerant, reusable, and secure code [ 101 [ 111. 

This work finds a finds its place in both the design as well 
as implementation and testing phases of software engineering. 
At the design level, the specified security policy may influence 
the language chosen to implement a particular module. This 
tool will aid in making this choice. At the implementation and 
testing phases, this tool can caution programmers on the types 
of language-specific errors to avoid. 

B. Existing Critiques of Latiguages 

In general, languages are compared and contrasted based on 
their expressive power, feature set, and efficiency [ 121 [13]. C 

is known for its efficiency and flexibility, Java for its object- 
oriented nature and strong type system, Per1 for its scripting 
power and regular expression manipulation. Beyond base con- 
structions, the feature set of each of these languages is tailored to 
these specific qualities. As program security is becoming more 
of an imminent concern, the inherent security features of lan- 
guages are being examined. Research efforts have been primar- 
ily focused on type systems, language flexibility, and the per- 
missible feature set [14] [ 151 [16]. We seek to take a more low- 
level look at language security, and examine the implications of 
a language's abstract syntax and semantics. 

C. Edit Distances 

Given a language and the grammar based on which strings 
belonging to that language can be generated, the minimum edit 
diytunce between two strings is defined as the minimum num- 
ber of deletions, insertions, or substitutions necessary to trans- 
form one string into the other. This notion was formalized 
by Wagner and Fisher [17] in 1974 and has largely been used 
in dictionary look-up algorithms [ 181, spell-checkers, and text 
auto-completion tools. Currently, the minimum edit distance of 
strings is being re-examined and has found applications in the 
field of syntactic pattern and speech recognition [19]. 

With respect to programming languages, edit distances are 
used in compiler design to automatically correct or recover from 
syntax errors. These compilers may repair an incorrect input 
string by performing a least-errors analysis and replacing it with 
valid strings of distance k away from that input string [20] [21]. 
The error-correcting compilers seek to transform invalid strings 
into valid sentences in a given language. In our paper, we seek 
to examine the edit distances between two valid sentences of a 
given language, a step beyond error-correcting compilers in the 
process of code analysis. We argue that very small edit distances 
between two valid sentences in a language may lead to hard-to- 
detect errors and possible security vulnerabilities. 

D. Type Correctness 

Type theory provides a formal framework to express and ver- 
ify certain correctness properties of programs. Imposing types 
on all variables, functions, structures, etc., declared in a pro- 
gram, allows compilers to statically detect numerous common 
programmer errors. This level of ensuring program correctness 
has been employed to guarantee certain safety properties of pro- 
grams. The system of enforced types can be used, for example, 
to provide a proof of program correctness at execution time [22] 
or secure information flow between variables at various degrees 
of privacy [23]. 

111. EVALUATION CRITERIA 

The primary focus of this work is to look at low level lan- 
guage features such as a language's syntax and semantics, and 
investigate whether certain security problems are rooted there. 
We identify and formalize certain criteria before proceeding to 
evaluate some popular programming languages. 
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Consider a programming language L with alphabet C .  Let s 
be a string belonging to the language, then, s E !L 3 s E C*, but 
the converse is not generally true. Every string in the language is 
generated using a set of rules called the syntax production rules 
and semantics of the language. 

We define two tests to evaluate the potential for programmer 
errors. 

1. Simple Hamming Distance Test 
Let be a set of terminal symbols such that x C E*. Let x 
and y be two terminal symbols belonging to K. Then, dist(x,y) 
represents the hamming distance in terms of symbols rather than 
bits. For example, &st(‘+’, ‘++’) = 1 and dist(‘if’, ‘for’) = 
3. The set of terminals K, represents the keywords and basic 
building blocks of a programming language. In order to prevent 
one valid keyword or symbol from being easily transformed into 
another valid keyword or symbol, at least the following should 
hold true. 

b’t;,tj E and t; # t j ,  dist(t; , t j)  > 1 (1) 

It can be easily seen that this is a weaker kind of test. Although 
the distance between symbols or keywords may be one, replac- 
ing one by the other does not always result in another valid 
phrase. For example, consider the statements ‘i++’ and ‘i+=’. 
The terminal ‘++’ is replaced by ‘+=’ and while the first phrase 
is valid, the second one in isolation is not. Therefore, prop- 
erty (1) is not sufficient since invalid phrases may be flagged as 
off-by-one syntactic changes. This test can raise too many such 
false positives. 

2.  Substring Construction and Comparison Test 
The syntax rules of a programming language form a directed 
AND-OR graph with a single root node, which is the start sym- 
bol. The edges represent valid productions and non-terminal ex- 
pansions. The leaf nodes typically contain the terminal symbols. 
Recursion in the grammar rules generates cycles in the graph. 
Valid strings or programs are obtained by expanding these rules 
starting from the root node or the start symbol. Consider the 
following grammar, 

S := A I B  
A := X Y  
B := ab 
X := a 
Y := bc 

The graphical representation of this grammar is given by Fig. 
1. 

Expanding using production rules only ensures syntactic cor- 
rectness of phrases, but not all generated phrases are rneaning- 
ful. At one step higher, the semantic rules are more context- 

B 

I 
ab 

X 

i 
a 

.1 
bc 

Fig. 1. A graphical representation of a simple grammar 

sensitive and serve to limit the set of valid productions and non- 
terminal expansions. 

Clearly, generation of all possible strings or equivalent pro- 
grams in a general-purpose language is not feasible or practi- 
cal because of the exponential explosion in their number. We 
employ some heuristics to keep the number of strings man- 
ageable. After constructing the directed graph, we expand the 
non-terminals, using bottom-up traversal, starting from the leaf 
nodes. This results in the generation of substrings or phrases 
in an incremental fashion. We may encounter two kinds of rules 
when generating these substrings: (1) rules that immediately ex- 
pand to terminals, and (2) rules that are recursive. We begin ex- 
panding rules of the first kind. After d such iterations, we have 
generated all possible terminal substrings at a depth d starting 
from the leaf nodes. We handle recursion by limiting the sub- 
string generation process tc produce only value-added strings. 
Consider the following production rules: 

S := Sa 
S := b 

Given a and b are terminals, the only value-added strings to be 
generated is the set {a,  ab, abb}.  Recursing these rules any 
further only results in redundancy for the purposes of our off- 
by-one string comparison. For example, the structure of the C 
statement ‘x = a + b + b + b + b + b ... ;’ is effectively captured 
by ‘x = a + b;’. Since not all phrases that are generated are 
meaningful, we prune them using semantic rules. 

Disjunction in the digraph at some point means that a single 
non-terminal can be expanded in many ways and one expansion 
can be replaced by the other. All that remains to be determined 
is whether these substrings are close enough to cause an inad- 
vertent programming error. Of particular interest are those re- 
placements that result in large structural changes in a program. 

IV. SECURITY IMPLICATIONS 

To evaluate the efficacy of our tool, we have compared three 
commonly-used general purpose languages: C, Java, and Perl. 
To each of these languages, we apply the two tests described 
above: the Simple Hamming Distance Test and the Substring 
Construction and Comparison Test. An overview of the evalua- 
tion process is given in Fig. 2. 

Certain patterns of errors emerge that provide an insight into 
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Language Syntax Lo Engme 
Potentially Constructions Identical 

Semantics A 

Fig 2 Syntax-directed processing engine 

the relationship between small syntactic changes and their secu- 
rity implications. 

A. Similar Variable Names 

When variable names that represent buffers and pointers to 
memory locations are very similar, a small syntactical change 
may transform one variable name to another, resulting in an in- 
valid memory access. The following piece of code illustrates 
this effect. 

1 char *bufl; 
2 char *buf2; 
3 
4 bufl = malloc( ...); 
5 strcpy(buf2, “bad string copy”); 

These errors are more or less language-independent and can- 
not be attributed to an inherent flaw in the syntax of any specific 
programming language. Although our tool reports such errors, 
we recognize that they are primarily due to carelessness on the 
part of a programmer. 

B. Operator Switching 

The syntactical notation of operators in C can cause small 
changes very easily. For example, ‘i += j’ may be changed to 
‘i -= j’. If the variable ri’ is used as an index into an array, it 
is quite possible that the array bounds are violated. Since Java 
and Perl have a similar syntax notation to that of C, this pattern 
of errors is common to all of these languages. Another example 
of interest involves the operators ‘==’ and ‘=’. The former is 
a boolean conditional operator while the latter is an assignment 
operator. This is the source of many errors in the conditional part 
of the ‘if’ statement. Java has eliminated this by requiring only a 
boolean operator in an ‘if’ statement. Perl is often the program- 
ming language of choice for CGI scripts. It is renowned for 
its mastery of text processing through strong support for regu- 
lar expressions. However, numerous syntax-directed errors may 
be  the result of this regular expression manipulation. A differ- 
ence of one symbol within a regular expression can yield vastly 
different results than expected. 

I if (m/$username/[fF]red/) { ... allow access . _ .  ] 
2 
3 if (m/$username/[f-F]red/) { ... allow access . } 

The condition in line #I allows access only when username 
matches either ‘Fred’ or ‘fred’, whereas the condition in line #3 
inadvertently allows access to other users. 

C. Overloaded Terminal Symbols 

Consider the operators ‘&’ and ‘*’ in C. ‘&’ is used as a bit- 
wise binary operator as well as the ‘address-of’ unary operator. 
Similarly, ‘*’ is used both for multiplication and dereferencing. 
Since C is a weakly typed language, inadvertent typecasts may 
occur. The following piece of code illustrates this error. 

1 int i, j ,  k; 
2 int rightsiae, wrongsize 
3 int *p; 
4 

5 
6 
7 
8 
9 

rightsize = i * j & k; 
p = malloc(siaeof(int) * rightsiae); 

wrongsize = i * & k; 
p = malloc(sizeof(int) * wrongsize); 

The right hand sides of statements in lines #5 and #8 are dif- 
ferent only in one symbol, but they compute two very different 
values. The variable ‘i’ is multiplied with the address of the 
variable ‘k’ and the variable ‘wrongsize’ in line #8 is very likely 
to be assigned a smaller value due to an integer overflow. Any 
use of this memory thus incorrectly allocated could result in a 
program crash. Such errors are less likely to happen in Java due 
to a stronger notion of type correctness and absence of pointers. 

D. Ambiguous Syntactic Constructs 

The semi-colon in C acts as a statement terminator. It has the 
capability of ending a statement and marking the beginning of 
another. It is very likely that insertion of semi-colon in a piece 
of C code can cause drastic changes in the program’s structure 
and control flow. An example is presented in Section I. The 
syntactical construction of the ‘for’ statement is as  follows: 

for ( expressionopt ; expressionopt ; expressionopt) 
statement 

A snapshot of the graphical representation of the grammar in- 
volving the non-terminal symbol statement is given by Fig. 3. 
Here, the non-terminal ‘statement’ may be expanded in multi- 

stufenient 

expression-sta lenient OR ronipound-stutenient 

1 1 
expression-opt ; {dec.laration_list_opt stutenient-list-opt ) 

Fig. 3. Expansion of the non-terminal symbol staternerif in C syntax 

ple ways. If the left subtree is used, then ‘statement’ expands to 
just ‘;’. On the other hand, the right subtree expands to ‘{ body 
)’. As statements can appear sequentially, both of the following 

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 161 , *  



Proceedings of the 2003 IEEE 
Workshop on Information Assurance 
United States Military Academy, West Point, NY June 2003 

expansions are valid. 

for(. . .) compound-statement 
for(. . .) expression-statement compound-statement 

These subtle differences in syntax expansions lead to a string 
difference of one between the two blocks of code in Section I. 
This induces vastly different program behavior with potentially 
serious security implications. Java suffers from this type of er- 
ror as well. Since this error is not type-specific, it eludes even 
a strongly-typed system. Per1 prevents this type of error by re- 
quiring that a ‘for’ loop declaration be followed by ‘{ body }’. 

We have observed that the semi-colon also causes some 
strange constructs in the C programming language. The follow- 
ing piece of code illustrates one such scenario: 

1 

2 int size; 
3 int *p; 
4 
5 s i z e = i > j ? k : l ;  
6 
7 
8 s i z e = i > j ; k : l ;  
9 

int i, j ,  k, 1; 

p = mdloc(sizeof(int) * size); 

p = mdloc(sizeof(int) * size); 

The ternary operator is used in line #5, but in line #S, a differ- 
ence of only one symbol alters the semantics significantly. The 
variable ‘k’ is now a label and the variable ‘size’ is assigned a 
boolean value. As a result, the amount of memory is not allo- 
cated as intended. 

v. CONCLUSION AND FUTURE W O R K  

In this paper, we have enumerated some criteria for evaluating 
the culpability of a language’s syntax and grammar in the con- 
text of insecure programming. The syntax and semantics rep- 
resent the expressive power of a programming language. While 
designing a language, focus is predominantly laid on the fea- 
tures of a language. However, the task of determining a proper 
syntactic notation, while mundane, is also very important. With 
a limited set of symbols, chances of syntactic collisions and er- 
rors are greatly increased. Our suggestion to language design- 
ers is to provide a less ambiguous syntax, as this will prevent 
inadvertent errors. Also, based on our findings, we make the 
following suggestions to programmers: 
1. Variable names that are very similar to each other or the key- 
words should be avoided. 
2. Care must be taken when using operators, especially in C, be- 
cause an unintended operator switch may result in an undesired 
typecast. 
3. White space should be well-utilized in code, thereby reduc- 
ing the number of unexpected interactions between operators. 

4. Also, more caution should be exercised when working in the 
context of weakly-typed languages, such as C. The lack of a type 
system leaves more syntactic ambiguity with respect to valid 
constructions of the language. 

The number of production rules and recursive grammar used 
to describe the syntax of these general-purpose languages cur- 
rently limit our evaluation capability. Also, depending on the 
language, a single sentence can have many alternate syntacti- 
cally valid constructions, which are off by one symbol. But not 
all of them are meaningful phrases and this raises too many false 
positives. 

Some parts of the evaluation process currently require manual 
intervention. Our short-term goal is to identify immediate issues 
and completely automate the process. 

On the long run, we speculate that this tool can be integrated 
into modem rapid development tools or program development 
environments. As programs are written, they could be dynami- 
cally checked for potential erroneous constructions. Similar to 
error-correcting compilers, a stochastic model could be applied 
to transform (or suggest a transformation thereof) a possibly er- 
roneous construction into a more likely sentence that is a small 
distance away. Such a tool will greatly reduce the number of 
errors which fall through the previous levels of analysis. 
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