
Proceedings of the 2003 IEEE
Workshop on Information Assurance
llnited States Military Academy, West Point, NY June 2003

Insecure Programming: How Culpable is a Language’s Syntax?

R. Chinchani, A. Iyer, B. Jayaraman and S. Upadhyaya
Dept. of Computer Science and Engineering

University at Buffalo, SUNY
Buffalo, NY 14260

Email : { rc27,aa44,bharat ,shambhu } @ cse. buffalo.edu

Abstracr-Vulnerabilities in software stem from poorly written code. In-
advertent errors may creep in due to programmers not being aware of the
security implications of their code. Writing secure code is largely a soft-
ware engineering issue requiring the education of programmers about safe
coding practices. Various projects and efforts such as memory usage profil-
ing, meta-compilation and typing proofs that verify correctness of the code
at compile-time and run-time provide additional assistance in this regard.
In this paper, we point out that in the context of security, one aspect that
is perhaps underrated or overlooked is that vulnerabilities may be inherent
in the syntax and grammar of a programming language itself. We leverage
on some well-studied problems to show that small syntactic discrepancies
may lead to vast semantic differences in programs and in turn, correlate
to hard security errors. Our work will help caution programmers on the
types of errors to avoid as well as serve as a guideline for language design-
ers to lay emphasis not only on richness of language features but also the
unambiguity of the syntax.

Keywords- Programming Language Security, Syntax Errors

I. INTRODUCTION AND MOTIVATION

Security breaches of computer systems and data are often due
to vulnerabilities in software. Buffer overflows [I] and heap
corruption [2] are some common types of vulnerabilities. Pro-
grams that contain such vulnerabilities are at the mercy of an
attacker’s perseverance and creativity. Many of these vulnerabil-
ities are due to undesirable side-effects of the features provided
by popular programming languages. For example, pointers in
the C programming language are very useful in accessing arbi-
trary memory locations. This is essential for producing systems-
level code. On the other hand, the same flexibility provided by
these pointers can be blamed for invalid memory accesses and
resulting vulnerabilities.

Consequently, several research efforts have been invested to-
wards securing programs while maintaining programming flex-
ibility. Currently known techniques pertaining to programming
language security can be generally categorized as: (1) proactive
compile-time static analysis and detection, and (2) reactive as-
sertion based runtime checking. Compile-time techniques [3]
attempt to detect errors before actual execution of the program.
These are often implemented as compiler extensions or separate
tools. Runtime techniques [4], [5] use assertions or code anno-
tations to detect violations during program execution.

Not all errors that have security implications can be directly
attributed to pointers and invalid memory accesses. For exam-

ple, consider the infamous FORTRAN bug [6] that found its way
into some critical code. Since FORTRAN is not whitespace-
sensitive, a loop construct was misinterpreted as a variable as-
signment resulting in erroneous computations. We give another
example in C of such off-by-one errors resulting in valid but
potentially dangerous statement constructions.
An inadvertent semi-colon on line #4 causes the ‘for’ loop to
iterate over an empty statement. At the end of the loop, the
variable ‘i’ has a value 100. Consequently when it is used as an
array index to the variable ‘buffer’, it causes a buffer overrun.

1 int i;
2 char buffer[100];
3
4 for (i = 0; i < 100; i++) ;
5 {

7 1

6 buf€er[i] = (char)NULL;

The correct code is as follows:

1 int i;
2 char buffer[100];
3
4 for (i = 0 ; i < 100; i++)

6 buffer[i] = (char)NULL;
5 c

7 1

These kinds of software bugs occur because there is not
enough distance between two valid sentences in the language.
Some errors are programming language-specific, and it may not
be possible to replicate them in a different language. These er-
rors are generally easy to commit and difficult to detect. The C
programming language notoriously abounds in such errors; and
languages that are based on C, such as C++ and Java, also inherit
some of these undesirable properties.

In this paper, we develop a technique to evaluate the potential
for such serious syntactic errors in popular languages such as C ,
Java and Perl. This technique is based on looking for certain

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 158

http://buffalo.edu

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

patterns in the syntax of a language such that a small syntactic
change can cause a large change in the structure and control
flow of the program. These changes may have some security
implications as a result of buffer overruns and invalid memory
accesses. Currently, we are developing a tool that automates this
process. As security awareness grows, more and more emphasis
is laid on good and safe programming practices. Our work finds
practical use in this context. Programmers can be warned about
the possibility of these errors in a particular language that they
must produce code in.

A . Paper Organization

We discuss some relevant contemporary research in Section I1
to put our work in perspective. The main technique is discussed
in Section 111. We evaluate some popular languages in Section
IV and report our results. We conclude the paper with discussion
about the work accomplished and the future direction in Section
V.

11. BACKGROUND AND RELATED WORK

Some of the work that we present in this paper finds its basis
in well-studied problems of software engineering and algorithm
design.

A. Secure SofhYare Engineering

Due to the nature of the data that they process, military es-
tablishments have traditionally required high assurance systems
long before security became a mainstream concern. The U.S.
effort of the "rainbow series" of books, including the "orange
book," [7] aims to address these concerns. They specify security
and corresponding verification requirements, placing systems
into different security classes. Due to its heightened emphasis,
recent research efforts have focused on bringing security into
earlier cycles of software development. At the requirements en-
gineering stage, high-level modeling tools such as UML [SI are
being modified to relate security requirements with functional
requirements. Aspect-oriented programming proves another in-
teresting solution to implementing security policies throughout
various pieces of a system while still isolating the concern [9].
As the role of software systems have shifted and expanded, the
goal of sound software engineering practices are also shifting to
create fault-tolerant, reusable, and secure code [101 [111.

This work finds a finds its place in both the design as well
as implementation and testing phases of software engineering.
At the design level, the specified security policy may influence
the language chosen to implement a particular module. This
tool will aid in making this choice. At the implementation and
testing phases, this tool can caution programmers on the types
of language-specific errors to avoid.

B. Existing Critiques of Latiguages

In general, languages are compared and contrasted based on
their expressive power, feature set, and efficiency [121 [13]. C

is known for its efficiency and flexibility, Java for its object-
oriented nature and strong type system, Per1 for its scripting
power and regular expression manipulation. Beyond base con-
structions, the feature set of each of these languages is tailored to
these specific qualities. As program security is becoming more
of an imminent concern, the inherent security features of lan-
guages are being examined. Research efforts have been primar-
ily focused on type systems, language flexibility, and the per-
missible feature set [14] [151 [16]. We seek to take a more low-
level look at language security, and examine the implications of
a language's abstract syntax and semantics.

C. Edit Distances

Given a language and the grammar based on which strings
belonging to that language can be generated, the minimum edit
diytunce between two strings is defined as the minimum num-
ber of deletions, insertions, or substitutions necessary to trans-
form one string into the other. This notion was formalized
by Wagner and Fisher [17] in 1974 and has largely been used
in dictionary look-up algorithms [181, spell-checkers, and text
auto-completion tools. Currently, the minimum edit distance of
strings is being re-examined and has found applications in the
field of syntactic pattern and speech recognition [19].

With respect to programming languages, edit distances are
used in compiler design to automatically correct or recover from
syntax errors. These compilers may repair an incorrect input
string by performing a least-errors analysis and replacing it with
valid strings of distance k away from that input string [20] [21].
The error-correcting compilers seek to transform invalid strings
into valid sentences in a given language. In our paper, we seek
to examine the edit distances between two valid sentences of a
given language, a step beyond error-correcting compilers in the
process of code analysis. We argue that very small edit distances
between two valid sentences in a language may lead to hard-to-
detect errors and possible security vulnerabilities.

D. Type Correctness

Type theory provides a formal framework to express and ver-
ify certain correctness properties of programs. Imposing types
on all variables, functions, structures, etc., declared in a pro-
gram, allows compilers to statically detect numerous common
programmer errors. This level of ensuring program correctness
has been employed to guarantee certain safety properties of pro-
grams. The system of enforced types can be used, for example,
to provide a proof of program correctness at execution time [22]
or secure information flow between variables at various degrees
of privacy [23].

111. EVALUATION CRITERIA

The primary focus of this work is to look at low level lan-
guage features such as a language's syntax and semantics, and
investigate whether certain security problems are rooted there.
We identify and formalize certain criteria before proceeding to
evaluate some popular programming languages.

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 159

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

Consider a programming language L with alphabet C . Let s
be a string belonging to the language, then, s E !L 3 s E C*, but
the converse is not generally true. Every string in the language is
generated using a set of rules called the syntax production rules
and semantics of the language.

We define two tests to evaluate the potential for programmer
errors.

1. Simple Hamming Distance Test
Let be a set of terminal symbols such that x C E*. Let x
and y be two terminal symbols belonging to K. Then, dist(x,y)
represents the hamming distance in terms of symbols rather than
bits. For example, &st(‘+’, ‘++’) = 1 and dist(‘if’, ‘for’) =
3. The set of terminals K, represents the keywords and basic
building blocks of a programming language. In order to prevent
one valid keyword or symbol from being easily transformed into
another valid keyword or symbol, at least the following should
hold true.

b’t;,tj E and t; # t j , dist(t; , t j) > 1 (1)

It can be easily seen that this is a weaker kind of test. Although
the distance between symbols or keywords may be one, replac-
ing one by the other does not always result in another valid
phrase. For example, consider the statements ‘i++’ and ‘i+=’.
The terminal ‘++’ is replaced by ‘+=’ and while the first phrase
is valid, the second one in isolation is not. Therefore, prop-
erty (1) is not sufficient since invalid phrases may be flagged as
off-by-one syntactic changes. This test can raise too many such
false positives.

2. Substring Construction and Comparison Test
The syntax rules of a programming language form a directed
AND-OR graph with a single root node, which is the start sym-
bol. The edges represent valid productions and non-terminal ex-
pansions. The leaf nodes typically contain the terminal symbols.
Recursion in the grammar rules generates cycles in the graph.
Valid strings or programs are obtained by expanding these rules
starting from the root node or the start symbol. Consider the
following grammar,

S := A I B
A := X Y
B := ab
X := a
Y := bc

The graphical representation of this grammar is given by Fig.
1.

Expanding using production rules only ensures syntactic cor-
rectness of phrases, but not all generated phrases are rneaning-
ful. At one step higher, the semantic rules are more context-

B

I
ab

X

i
a

.1
bc

Fig. 1. A graphical representation of a simple grammar

sensitive and serve to limit the set of valid productions and non-
terminal expansions.

Clearly, generation of all possible strings or equivalent pro-
grams in a general-purpose language is not feasible or practi-
cal because of the exponential explosion in their number. We
employ some heuristics to keep the number of strings man-
ageable. After constructing the directed graph, we expand the
non-terminals, using bottom-up traversal, starting from the leaf
nodes. This results in the generation of substrings or phrases
in an incremental fashion. We may encounter two kinds of rules
when generating these substrings: (1) rules that immediately ex-
pand to terminals, and (2) rules that are recursive. We begin ex-
panding rules of the first kind. After d such iterations, we have
generated all possible terminal substrings at a depth d starting
from the leaf nodes. We handle recursion by limiting the sub-
string generation process tc produce only value-added strings.
Consider the following production rules:

S := Sa
S := b

Given a and b are terminals, the only value-added strings to be
generated is the set {a, ab, abb}. Recursing these rules any
further only results in redundancy for the purposes of our off-
by-one string comparison. For example, the structure of the C
statement ‘x = a + b + b + b + b + b ... ;’ is effectively captured
by ‘x = a + b;’. Since not all phrases that are generated are
meaningful, we prune them using semantic rules.

Disjunction in the digraph at some point means that a single
non-terminal can be expanded in many ways and one expansion
can be replaced by the other. All that remains to be determined
is whether these substrings are close enough to cause an inad-
vertent programming error. Of particular interest are those re-
placements that result in large structural changes in a program.

IV. SECURITY IMPLICATIONS

To evaluate the efficacy of our tool, we have compared three
commonly-used general purpose languages: C, Java, and Perl.
To each of these languages, we apply the two tests described
above: the Simple Hamming Distance Test and the Substring
Construction and Comparison Test. An overview of the evalua-
tion process is given in Fig. 2.

Certain patterns of errors emerge that provide an insight into

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 160

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

Language Syntax Lo Engme
Potentially Constructions Identical

Semantics A

Fig 2 Syntax-directed processing engine

the relationship between small syntactic changes and their secu-
rity implications.

A. Similar Variable Names

When variable names that represent buffers and pointers to
memory locations are very similar, a small syntactical change
may transform one variable name to another, resulting in an in-
valid memory access. The following piece of code illustrates
this effect.

1 char *bufl;
2 char *buf2;
3
4 bufl = malloc(...);
5 strcpy(buf2, “bad string copy”);

These errors are more or less language-independent and can-
not be attributed to an inherent flaw in the syntax of any specific
programming language. Although our tool reports such errors,
we recognize that they are primarily due to carelessness on the
part of a programmer.

B. Operator Switching

The syntactical notation of operators in C can cause small
changes very easily. For example, ‘i += j’ may be changed to
‘i -= j’. If the variable ri’ is used as an index into an array, it
is quite possible that the array bounds are violated. Since Java
and Perl have a similar syntax notation to that of C, this pattern
of errors is common to all of these languages. Another example
of interest involves the operators ‘==’ and ‘=’. The former is
a boolean conditional operator while the latter is an assignment
operator. This is the source of many errors in the conditional part
of the ‘if’ statement. Java has eliminated this by requiring only a
boolean operator in an ‘if’ statement. Perl is often the program-
ming language of choice for CGI scripts. It is renowned for
its mastery of text processing through strong support for regu-
lar expressions. However, numerous syntax-directed errors may
be the result of this regular expression manipulation. A differ-
ence of one symbol within a regular expression can yield vastly
different results than expected.

I if (m/$username/[fF]red/) { ... allow access . _ .]
2
3 if (m/$username/[f-F]red/) { ... allow access . }

The condition in line #I allows access only when username
matches either ‘Fred’ or ‘fred’, whereas the condition in line #3
inadvertently allows access to other users.

C. Overloaded Terminal Symbols

Consider the operators ‘&’ and ‘*’ in C. ‘&’ is used as a bit-
wise binary operator as well as the ‘address-of’ unary operator.
Similarly, ‘*’ is used both for multiplication and dereferencing.
Since C is a weakly typed language, inadvertent typecasts may
occur. The following piece of code illustrates this error.

1 int i, j , k;
2 int rightsiae, wrongsize
3 int *p;
4

5
6
7
8
9

rightsize = i * j & k;
p = malloc(siaeof(int) * rightsiae);

wrongsize = i * & k;
p = malloc(sizeof(int) * wrongsize);

The right hand sides of statements in lines #5 and #8 are dif-
ferent only in one symbol, but they compute two very different
values. The variable ‘i’ is multiplied with the address of the
variable ‘k’ and the variable ‘wrongsize’ in line #8 is very likely
to be assigned a smaller value due to an integer overflow. Any
use of this memory thus incorrectly allocated could result in a
program crash. Such errors are less likely to happen in Java due
to a stronger notion of type correctness and absence of pointers.

D. Ambiguous Syntactic Constructs

The semi-colon in C acts as a statement terminator. It has the
capability of ending a statement and marking the beginning of
another. It is very likely that insertion of semi-colon in a piece
of C code can cause drastic changes in the program’s structure
and control flow. An example is presented in Section I. The
syntactical construction of the ‘for’ statement is as follows:

for (expressionopt ; expressionopt ; expressionopt)
statement

A snapshot of the graphical representation of the grammar in-
volving the non-terminal symbol statement is given by Fig. 3.
Here, the non-terminal ‘statement’ may be expanded in multi-

stufenient

expression-sta lenient OR ronipound-stutenient

1 1
expression-opt ; {dec.laration_list_opt stutenient-list-opt)

Fig. 3. Expansion of the non-terminal symbol staternerif in C syntax

ple ways. If the left subtree is used, then ‘statement’ expands to
just ‘;’. On the other hand, the right subtree expands to ‘{ body
)’. As statements can appear sequentially, both of the following

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 161 , *

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

expansions are valid.

for(. . .) compound-statement
for(. . .) expression-statement compound-statement

These subtle differences in syntax expansions lead to a string
difference of one between the two blocks of code in Section I.
This induces vastly different program behavior with potentially
serious security implications. Java suffers from this type of er-
ror as well. Since this error is not type-specific, it eludes even
a strongly-typed system. Per1 prevents this type of error by re-
quiring that a ‘for’ loop declaration be followed by ‘{ body }’.

We have observed that the semi-colon also causes some
strange constructs in the C programming language. The follow-
ing piece of code illustrates one such scenario:

1

2 int size;
3 int *p;
4
5 s i z e = i > j ? k : l ;
6
7
8 s i z e = i > j ; k : l ;
9

int i, j , k, 1;

p = mdloc(sizeof(int) * size);

p = mdloc(sizeof(int) * size);

The ternary operator is used in line #5, but in line #S, a differ-
ence of only one symbol alters the semantics significantly. The
variable ‘k’ is now a label and the variable ‘size’ is assigned a
boolean value. As a result, the amount of memory is not allo-
cated as intended.

v. CONCLUSION AND FUTURE W O R K

In this paper, we have enumerated some criteria for evaluating
the culpability of a language’s syntax and grammar in the con-
text of insecure programming. The syntax and semantics rep-
resent the expressive power of a programming language. While
designing a language, focus is predominantly laid on the fea-
tures of a language. However, the task of determining a proper
syntactic notation, while mundane, is also very important. With
a limited set of symbols, chances of syntactic collisions and er-
rors are greatly increased. Our suggestion to language design-
ers is to provide a less ambiguous syntax, as this will prevent
inadvertent errors. Also, based on our findings, we make the
following suggestions to programmers:
1. Variable names that are very similar to each other or the key-
words should be avoided.
2. Care must be taken when using operators, especially in C, be-
cause an unintended operator switch may result in an undesired
typecast.
3. White space should be well-utilized in code, thereby reduc-
ing the number of unexpected interactions between operators.

4. Also, more caution should be exercised when working in the
context of weakly-typed languages, such as C. The lack of a type
system leaves more syntactic ambiguity with respect to valid
constructions of the language.

The number of production rules and recursive grammar used
to describe the syntax of these general-purpose languages cur-
rently limit our evaluation capability. Also, depending on the
language, a single sentence can have many alternate syntacti-
cally valid constructions, which are off by one symbol. But not
all of them are meaningful phrases and this raises too many false
positives.

Some parts of the evaluation process currently require manual
intervention. Our short-term goal is to identify immediate issues
and completely automate the process.

On the long run, we speculate that this tool can be integrated
into modem rapid development tools or program development
environments. As programs are written, they could be dynami-
cally checked for potential erroneous constructions. Similar to
error-correcting compilers, a stochastic model could be applied
to transform (or suggest a transformation thereof) a possibly er-
roneous construction into a more likely sentence that is a small
distance away. Such a tool will greatly reduce the number of
errors which fall through the previous levels of analysis.

VI. ACKNOWLEDGMENTS

This research was supported in part by National Security
Agency through Grant No. MDA 904-02-1-0215.

REFERENCES
A. One, “Smashing the Stack for Fun and Profit.” Phrack 49, Vol. 7, Issue
49, November 1996.
“Wu-Ftpd File Globbing Heap Corruption Vulnerability,” 2001.
http://ww w.securiteam.com/unixfocus/
6UOOV0035Q.htrnl.
D. Wagner, J. S . Foster, E. A. Brewer, and A. Aiken, “A First Step towards
Automated Detection of Buffer Overrun Vulnerabilities:’ in Network arid
Distributed System Security Symposium, (San Diego, CA), pp. 3-17,
February 2000.
C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S . Beattie, A. Grier,
P. Wagle, and Q. Zhang, “StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks,” in 7th USENIX Security Syrnpo-
siurn, (San Antonio, TX), January 1998.
C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and
J. Lokier, “FormatCuard: Automatic Protection From printf Format String
Vulnerabilities,” in 10th USENIX Security Symposium, (Washington DC),
August 2001.
M. Brader, “Fortran Story - The Real Scoop.” Forum on Risks to the Pub-
lic in Computer and Related Systems, Vol. 9 #54, ACM Committee on
Computers and Public Policy, 1989.
“Trusted computer security evaluation criteria,” DOD 5200.28-STD, 1985.
J. Jfurjens, “Towards development of secure systems using UML,” in Fun-
danierital Approaches to Sofrware Etigirieerirtg (FASEiETAPS, Interm-
tiunal Confererice).(H. Hutlrnann, ed.), LNCS, Springer, 2001.
G . Kiczales, J . Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Lo-
ingtier, and J . Irwin, “Aspect-oriented programming,” in Proceedings Eu-
rupeari Confereiice on Object-Oriented Programming; vol. 1241, pp. 220-
242. Berlin. Heidelberg. and New York: Springer-Verlag, 1997. . -

[IO] P. Devanbu and S. 6. Stubblebine, “Software engineering for security:
a roadmap,” in ICSE - Future of SE Track, pp. 227-239, 2000.

[I I] I. Jacobson, M. Griss, and P. Jonsson, “Software reuse: Architecture, pro-
cess and organization for business reuse,” 1997.

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 162

http://ww

Proceedings of the 2003 IEEE
Workshop on Information Assurance
United States Military Academy, West Point, NY June 2003

[12] M. Felleisen, “On the expressive power of programming languages,” in
ESOP ’90 3rd Europeari Syiiiposiuni on Prograriirriirrg, Copenhagen, Den-
mark (N. Jones, ed.), vol. 432, pp. 134-151, New York, N.Y.: Springer-
Verlag, 1990.

[I31 L. Prechelt, “An empirical comparison of seven programming languages,”
Cornputer, vol. 33, no. 10, pp. 23-29, 2000.

[141 D. Kozen, “Language-based security,” in Matheirlatical Fouridatiorts of
Computer Science, pp. 284-298, 1999.

[15] D. M. Volpano and G. Smith, “A type-based approach to program secu-
rity,” in TAPSOFT, pp. 607-621, 1997.

[I61 E B. Schneider, G. Momsett, and R. Harper, “A language-based approach
to security,” Lecture Notes bi Cornputer Scieitce, vol. 2000, pp. 86-??,
2001.

[171 R. Wagner and M. Fischer, “The string-to-string correction problem.”
Jourrial qfthe ACM (JACM), vol. 21, no. 1, pp. 168-173, 1974.

[18] R. Baeza-Yates and G. Navarro, “Fast approximate string matching in a
dictionary,” in Srririg Proressirig arid Ir~foriiiation Retrieval, pp. 14-22,
1998.

[I91 E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE
Trarisactioris on Pattern Analysis arid Machine Iritelligerice, vol. 20, no. 5,

[20] G. Lyon, “Syntax-directed least-errors analysis for context-free languages:
a practical approach,” Coiiiriiunicatioris of the ACM, vol. 17, no. 1, pp. 3-
14, 1974.

[2 11 S. Graham and S . Rhodes, “Practical syntactic error recovery,” Commurii-
cations of ihe ACM, vol. 18, pp. 639450, November 1975.

[22] G. C. Necula, “Proof-Canying Code,” in Proceedings of the 24th ACM
SICPUN-SIGACT Syniposiurn on Principles of Prograriiiiting Laitgauges
(POPL ’Y7), (Paris), pp. 106-119, Jan. 1997.

[23] G. Smith, “A new type system for secure information flow,” in CSFW14,
IEEE Computer Society Press, Jun 2001.

pp. 522-532, 1998.

ISBN 0-7803-7808-3/03/$17.00 0 2003 IEEE 163

