
58 communications of the acm | december 2008 | vol. 51 | no. 12

contributed articles

While phenomenally successful in terms of amount
of accessible content and number of users, today’s
Web is a relatively simple artifact. Web content
consists mainly of distributed hypertext and
hypermedia, accessible via keyword-based search and
link navigation. Simplicity is one of the Web’s great
strengths and an important factor in its popularity and
growth; even naive users quickly learn to use it and
even create their own content.

However, the explosion in both the range and
quantity of Web content also highlights serious
shortcomings in the hypertext paradigm. The required
content becomes increasingly difficult to locate via
search and browse; for example, finding information
about people with common names (or famous
namesakes) can be frustrating. Answering more
complex queries, along with more general information
retrieval, integration, sharing, and processing, can be
difficult or even impossible; for example, retrieving a
list of the names of E.U. heads of state is apparently

beyond the capabilities of all existing
Web query engines, in spite of the fact
that the relevant information is read-
ily available on the Web. Such a task
typically requires the integration of in-
formation from multiple sources; for
example, a list of E.U. member states
can be found at europa.eu, and a list of
heads of state by country can be found
at rulers.org.

Specific integration problems are
often solved through some kind of soft-
ware “glue” that combines informa-
tion and services from multiple sourc-
es. For example, in a so-called mashup,
location information from one source
might be combined with map informa-
tion from another source to show the
location of and provide directions to
points of interest (such as hotels and
restaurants). Another approach, seen
increasingly in so-called Web 2.0 appli-
cations, is to harness the power of user
communities in order to share and an-
notate information; examples include
image- and video-sharing sites (such as
Flickr and YouTube) and auction sites
(such as eBay). In them, annotations
usually take the form of simple tags
(such as “beach,” “birthday,” “family,”
and “friends”). However, the meaning
of tags is typically not well defined and
may be impenetrable even to human
users; examples (from Flickr) include
“sasquatchmusicfestival,” “celebrity-
lookalikes,” and “twab08.”

Despite their usefulness, these ap-
proaches do not solve the general
problem of how to locate and integrate
information without human interven-
tion. This is the aim of the semantic
Web3 according to the World Wide Web
Consortium (W3C) Semantic Web FAQ;
the goal is to “allow data to be shared
effectively by wider communities, and
to be processed automatically by tools
as well as manually.” The prototypical
example of a semantic Web application
is an automated travel agent that, given
constraints and preferences, gives the
user suitable travel or vacation sugges-
tions. A key feature of such a “software
agent” is that it would not simply ex-
ploit a predetermined set of informa-

doi:10.1145/1409360.1409377

How ontologies provide the semantics,
as explained here with the help
of Harry Potter and his owl Hedwig.

By Ian Horrocks

Ontologies
and the
Semantic Web

contributed articles

december 2008 | vol. 51 | no. 12 | communications of the acm 59

providing definitive information about
owls. RDF is a language that provides a
flexible mechanism for describing Web
resources and the relationships among
them.14 A key feature of RDF is its use
of internationalized resource identifi-
ers (IRIs)—a generalization of uniform
resource locators (URLs)—to refer to
resources. Using IRIs facilitates infor-
mation integration by allowing RDF to
directly reference non-local resources.
IRIs are typically long strings (such
as hogwarts.net/HarryPotter),
though abbreviation mechanisms are
available; here, I usually omit the prefix
and just write HarryPotter.

RDF is a simple language; its un-
derlying data structure is a labeled
directed graph, and its only syntactic
construct is the triple, which consists
of three components, referred to as
subject, predicate, and object. A triple
represents a single edge (labeled with
the predicate) connecting two nodes
(labeled with the subject and object);
it describes a binary relationship be-
tween the subject and object via the
predicate. For example, we might de-
scribe the relationship between Harry
and Hedwig using this triple:

tion sources but search the Web for
relevant information in much the same
way a human user might when plan-
ning a vacation.

A major difficulty in realizing this
goal is that most Web content is pri-
marily intended for presentation to
and consumption by human users;
HTML markup is primarily concerned
with layout, size, color, and other pre-
sentation issues. Moreover, Web pages
increasingly use images, often with ac-
tive links, to present information; even
when content is annotated, the annota-
tions typically take the form of natural-
language strings and tags. Human us-
ers are (usually) able to interpret the
significance of such features and thus
understand the information being pre-
sented, a task that may not be so easy
for software agents.

This vision of a semantic Web is ex-
tremely ambitious and would require
solving many long-standing research
problems in knowledge representa-
tion and reasoning, databases, compu-
tational linguistics, computer vision,
and agent systems. One such problem
is the trade-off between conflicting re-
quirements for expressive power in the
language used for semantic annota-
tions and the scalability of the systems
used to process them7; another is that
integrating different ontologies may
prove to be at least as difficult as inte-
grating the resources they describe.18
Emerging problems include how to
create suitable annotations and ontol-
ogies and how to deal with the variable
quality of Web content.

Notwithstanding such problems,
considerable progress is being made
in the infrastructure needed to support
the semantic Web, particularly in the
development of languages and tools
for content annotation and the design
and deployment of ontologies. My aim
here is to show here that even if a full
realization of the semantic Web is still
a long way off, semantic Web technolo-
gies already have an important influ-
ence on the development of informa-
tion technology.

Semantic Annotation
The difficulty of sharing and process-
ing Web content, or resources, derives
in part from the fact that much of it
(such as text, images, and video) is un-
structured; for example, a Web page

might include the following unstruc-
tured text:

Harry Potter has a pet named Hed-
wig.

As it stands, it would be difficult or
impossible for a software agent (such
as a search engine) to recognize the fact
that this resource describes a young
wizard and his pet owl. We might try
to make it easier for agents to process
Web content by adding annotation
tags (such as Wizard and Snowy Owl).
However, such tags are of only limited
value. First, the problem of under-
standing the terms used in the text is
simply transformed into the problem

of understanding the terms in the tags;
for example, a query for information
about raptors may not retrieve the text,
even though owls are raptors. More-
over, the relationship between Harry
Potter and Hedwig is not captured in
these annotations, so a query asking
for wizards having pet owls might not
retrieve Harry Potter.

We might also want to integrate
information from multiple sources;
for example, rather than coin our own
term for Snowy Owl, we might want to
point to the relevant term in a resource Ill

u
s

t
r

a
t

i
o

n
 b

y
 M

i
a

 An

g
el

i

c
a

 B
a

l
a

q
u

i
o

t

60 communications of the acm | december 2008 | vol. 51 | no. 12

contributed articles

HarryPotter hasPet Hedwig .
where HarryPotter is the subject,
hasPet is the predicate, and Hed-
wig is the object. The subject of a
triple is either an IRI or a blank node
(an unlabeled node), while the ob-
ject is an IRI, a blank node, or a lit-
eral value (such as a string or integer).
For example, we could use the triple:
HarryPotter hasemail
“harry.potter@hogwarts.net”.
to capture information about Harry’s
email address. The predicate of a triple
is always an IRI called a “property.” IRIs
are treated as names that identify par-
ticular resources. Blank nodes also de-
note resources, but the exact resource
being identified is not specified, behav-
ing instead like existentially quantified

variables in first-order logic.
A set of triples is called an RDF graph

(see Figure 1). In order to facilitate the
sharing and exchanging of graphs on
the Web, the RDF specification in-
cludes an XML serialization. In RDF/
XML the triples can be written as

<rdf:Description
rdf:about=”#HarryPotter”>

<hasPet
rdf:resource=”#Hedwig”/>

<hasEmail>harry.potter@
hogwarts.net

</hasEmail>
</rdf:Description>

where #HarryPotter and #Hedwig
are fragment identifiers.

The RDF specification also extends
the capabilities of the language by giv-
ing additional meaning to certain re-
sources. One of the most important is
rdf:type, a special property that cap-
tures the class-instance relationship;
where rdf is an abbreviation (called
a “namespace prefix”) for the string
www.w3.org/1999/02/22-rdf-syntax-ns#.
For example, we could use the triple:
HarryPotter rdf:type Wizard .
to represent the fact that Harry is an in-
stance of Wizard.

RDF provides a flexible mechanism
for adding structured annotations but
does little to address the problem of
understanding the meaning, or se-
mantics, of the terms in annotations.
One possible solution would be to fix
a set of terms to be used in annota-
tions and agree on their meaning. This
works well in constrained settings like
annotating documents; the Dublin
Core Metadata Initiative (dublincore.
org/schemas/) defines just such a set
of terms, including, for example, the
properties dc:title, dc:creator,
dc:subject, and dc:publisher.
However, this approach is limited with
respect to flexibility and extensibility;
only a fixed number of terms is defined,
and extending the set typically requires
a lengthy process in order to agree on
which terms to introduce, as well as on
their intended semantics. It may also
be impractical to impose a single set of
terms on all information providers.

 An alternative approach is to agree
on a language that can be used to de-
fine the meaning of new terms (such
as by combining and/or restricting ex-
isting ones). Such a language should
preferably be relatively simple and pre-

Figure 1: Example RDF graph.

Harry Potter

harry.potter@hogwarts.net

hasPet

hasEmail

Hedwig

Figure 2: Tree of Porphyry.

Substance

di
ff

er
en

tia
e

di
ff

er
en

tia
e

di
ff

er
en

tia
e

di
ff

er
en

tia
e

su
bo

rd
in

at
e

ge
ne

ra
su

bo
rd

in
at

e
ge

ne
ra

sp
ec

ie
s

su
pr

em
e

ge
nu

s

material

in
di

vi
du

al

immaterial

Body

Human Beast

Spirit

animate

Living Mineral

sensitive insensitive

pr
ox

im
at

e
ge

ne
ra

Animal Plant

rational irrational

Socrates Plato Aristotle etc.

inanimate

contributed articles

december 2008 | vol. 51 | no. 12 | communications of the acm 61

cisely specified so as to be amenable to
processing by software tools. This ap-
proach provides greatly increased flex-
ibility, as new terms can be introduced
as needed. This is the approach taken
in the semantic Web, where ontologies
are used to provide extensible vocabu-
laries of terms, each with a well-defined
meaning; for example, a suitable ontol-
ogy might introduce the term Snow-
yOwl and include the information that
a SnowyOwl is a kind of owl and that
owl is a kind of raptor. Moreover, if this
information is represented in a way
that is accessible to our query engine,
the engine would be able to recognize
that Hedwig should be included in the
answer to a query concerning raptors.

Ontology, in its original philosophi-
cal sense, is a branch of metaphysics
focusing on the study of existence; its
objective is to study the structure of the
world by determining what entities and
types of entities exist. The study of on-
tology can be traced back to the work
of Plato and Aristotle, including their
development of hierarchical categori-
zations of different kinds of entity and
the features that distinguish them; for
example, the “tree of Porphyry” identi-
fies animals and plants as subcatego-
ries of living things distinguished from
each other by animals having “sensi-
tive” souls, with powers of sense, mem-
ory, and imagination (see Figure 2).

In computer science, an ontology
is an engineering artifact, usually a
model of (some aspect of) the world; it
introduces vocabulary describing vari-
ous aspects of the domain being mod-
eled and provides an explicit specifica-
tion of the intended meaning of that
vocabulary. However, the specification
often includes classification-based in-
formation, not unlike Porphyry’s tree;
for example, Wizard may be described
as a subcategory of human, with distin-
guishing features (such as the ability to
perform magic).

The RDF vocabulary description
language (RDF schema) extends RDF
to include the basic features needed
to define ontologies. This extension is
achieved by giving additional meaning
to more “special” resources, includ-
ing rdfs:Class, rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain,
and rdfs: range , where rdfs is
an abbreviation for the string www.
w3.org/2000/01/rdf-schema#. The

rdfs:Class resource is the class of all
RDF classes; a resource (such as Wizard)
that is the object of an rdf:type triple
is itself an instance of the rdfs:Class
resource. The rdfs:subClassOf and
rdfs:subPropertyOf properties
can be used in an ontology to describe
a hierarchy of classes and properties,
respectively. For example, the triples:

SnowyOwl rdfs:subClassOf Owl .
Owl rdfs:subClassOf Raptor .
can be used to represent the fact that a
SnowyOwl is a kind of Owl and that an
Owl is a kind of Raptor. Similarly, the
triple:

hasBrother rdfs:subPropertyOf
hasSibling .
can be used to represent the fact that
if x has a brother y, then x also has a
sibling y. Additionally, a property’s do-
main and range can be specified using
rdfs:domain and rdfs:range. For
example, the triples:

hasPet rdfs:domain Human.
hasPet rdfs:range Animal.
can be used to represent the fact

that only Humans can have pets and
that all pets are Animals.

The Web Ontology Language OWL
Though obviously an ontology lan-
guage, RDF is rather limited; it is not
able to, for example, describe cardinal-
ity constraints (such as Hogwarts stu-
dents have at most one pet), a feature in
most conceptual modeling languages,
or describe even a simple conjunction
of classes (such as Student and Wiz-
ard). In the late 1990s, the need for a
more expressive ontology language was
widely recognized within the nascent
semantic Web research community
and resulted in several proposals for
new Web ontology languages, includ-
ing Simple HTML Ontological Exten-
sions (SHOE), the Ontology Inference
Layer (OIL), and DAML+OIL.

In 2001, recognizing that an ontolo-
gy-language standard is a prerequisite
for the development of the semantic
Web, the W3C set up a standardization
working group to develop a standard
for a Web ontology language. The re-
sult, in 2004, was the OWL ontology
language standard (www.w3.org/2004/
OWL/), exploiting the earlier work on
OIL and DAML+OIL while tightening
the integration of these languages with
RDF. Integrating OWL with RDF pro-
vided OWL with an RDF-based syntax,

with the advantage of making OWL
ontologies directly accessible to Web-
based applications, though the syntax
is rather verbose and difficult to read;
for example, in RDF/XML, the descrip-
tion of the class of Student Wizards
would be written as:

<owl:Class>
<owl:intersectionOf
rdf:parseType=”Collection”>
	<owl:Class

rdf:about=”#Student”/>
	<owl:Class

rdf:about=”#Wizard”/>
</owl:intersectionOf>
</owl:Class>

For this reason, here I use an informal
“human-readable” syntax based on the
one used in the Protégé 4 ontology de-

velopment tool (protege.stanford.edu/)
in which the description is written as:

Student and Wizard
A key feature of OWL is its basis in

Description Logics (DLs), a family of
logic-based knowledge-representation
formalisms descended from Semantic
Networks and KL-ONE but that have a
formal semantics based on first-order
logic.1 These formalisms all adopt an
object-oriented model like the one
used by Plato and Aristotle in which
the domain is described in terms of
individuals, concepts (called “classes”
in RDF), and roles (called “properties”
in RDF). Individuals (such as Hedwig)
are the basic elements of the domain;
concepts (such as Owl) describe sets
of individuals with similar charac-
teristics; and roles (such as hasPet)
describe relationships between pairs
of individuals (such as “HarryPotter
hasPet Hedwig”). To avoid confusion
here I keep to the RDF terminology,
referring to these basic language com-

62 communications of the acm | december 2008 | vol. 51 | no. 12

contributed articles

ponents as individuals, classes, and
properties.

Along with atomic-class names like
Wizard and Owl, DLs also allow for
class descriptions to be composed
from atomic classes and properties. A
given DL is characterized by the set of
constructors provided for building
class descriptions. OWL is based on a
very expressive DL called shoin(D), a
sort of acronym derived from the fea-
tures of the language.11 The class con-
structors available in OWL include the
Booleans and, or, and not, which in
OWL are called, respectively, intersec-
tionOf, unionOf, and complementOf,
as well as restricted forms of existential
(

E

) and universal (

A

) quantification,
which in OWL are called, respec-
tively, someValuesFrom and allValues-
From restrictions. OWL also allows for
properties to be declared transitive; if
hasAncestor is a transitive property,
then Enoch hasAncestor Cain and
Cain hasAncestor Eve implies
that Enoch hasAncestor Eve. The
S in SHOIN(D) stands for this basic set
of features.

In OWL, someValuesFrom restric-
tions are used to describe classes, the
instances of which are related via a giv-
en property to instances of some other
class. For example,

Wizard and hasPet some Owl
describes Wizards having pet Owls.
Note that such a description is itself
a class, the instances of which are ex-
actly those individuals that satisfy the
description; in this case, they are in-
stances of Wizard and are related via
the hasPet property to an individual
that is an instance of Owl. If an individ-
ual is asserted (stated) to be a member
of this class, we know it must have a pet
Owl, though we may be unable to iden-
tify the Owl in question; that is, some-
ValuesFrom restrictions specify the
existence of a relationship. In contrast,
allValuesFrom restrictions constrain
the possible objects of a given property
and are typically used as a kind of lo-
calized range restriction. For example,
we might want to state that Hogwarts
students are allowed to have only owls,
cats, or toads as pets without placing a
global range restriction on the hasPet
property (because other kinds of pet
may be possible). We can do this in
OWL like this:

Class: HogwartsStudent

SubClassOf: hasPet only
(Owl or Cat or Toad)

OWL also allows for property hier-
archies (the H in SHOIN(D)), extension-
ally defined classes using the oneOf
constructor (O), inverse properties
using the inverseOf property construc-
tor (I), cardinality restrictions using
the minCardinality, maxCardinality,
and cardinality constructors (N) and
XML Schema datatypes and values (D)
(www.w3.org/TR/xmlschema-2/). For
example, we might also state that the
instances of HogwartsHouse are Gry-
findor, Slytherin, Ravenclaw, and Huf-
flepuff, that Hogwarts students have
an email address (a string), and at most
one pet, that isPetOf is the inverse of
hasPet, and that a Phoenix can be the
pet only of a Wizard:

Class: HogwartsHouse
	 EquivalentTo: {Gryffin-

dor, Slytherin, Ravenclaw,
Hufflepuff}

Class: HogwartsStudent
	 SubClassOf: hasEmail some

string
	 SubClassOf: hasPet max 1
ObjectProperty: hasPet
	 Inverses: isPetOf
Class: Phoenix
	 SubClassOf: isPetOf only

Wizard
An OWL ontology consists of a set of

axioms. As in RDF, the axioms subClassOf
and subPropertyOf can be used to define
a hierarchy of classes and properties. In
OWL, an equivalentClass axiom can also
be used as an abbreviation for a sym-
metrical pair of subClassOf axioms. An
equivalentClass axiom can be thought of
as an “if and only if” condition; given the
axiom C equivalentClass D, an individual
is an instance of C if and only if it is an in-
stance of D. Combining the axioms sub-
ClassOf and equivalentClass with class de-
scriptions allows for easy extension of the
vocabulary by introducing new names as
abbreviations for descriptions. For exam-
ple, the axiom

Class: HogwartsStudent
	 EquivalentTo: Student and

attendsSchool
			 value Hogwarts

introduces the class name Hog-
wartsStudent, asserting that its
instances are exactly those Students
who attend Hogwarts. Axioms can also
be used to state that a set of classes is
disjoint and describe additional char-

A key feature of
OWL is its basis
in Description
Logics, a family
of logic-based
knowledge-
representation
formalisms that
are descendants
of Semantic
Networks and
KL-ONE but that
have a formal
semantics based on
first-order logic.

contributed articles

december 2008 | vol. 51 | no. 12 | communications of the acm 63

by applications to help them “under-
stand” the knowledge captured in a
DL-based ontology.

Ontology Reasoning
Though there are clear analogies be-
tween databases and OWL ontologies,
there are also important differences.
Unlike databases, OWL has a so-called
open-world semantics in which miss-
ing information is treated as unknown
rather than as false and OWL axioms
behave like inference rules rather than
as database constraints. For example,
we have asserted that Fawkes is a Phoe-
nix and a pet of Dumbledore and that
only a Wizard can have a pet Phoenix.
In OWL, this leads to the implication
that Dumbledore is a Wizard; if we
were to query the ontology for instanc-
es of Wizard, then Dumbledore would
be part of the answer. In a database set-
ting the schema could include a similar
statement about the Phoenix class, but
it would (in this case) be interpreted as
a constraint on the data. Adding the
fact that Fawkes isPetOf Dumbledore
without Dumbledore being known to
be a Wizard would lead to an invalid
database state; such an update would
be rejected by a database management
system as a constraint violation.

Unlike databases, OWL makes no
unique name assumption; for exam-
ple, given that isPetOf is a functional
property, then additionally asserting
that Fawkes isPetOf AlbusDumbledore
would imply that Dumbledore and Al-
busDumbledore are two names for the
same Wizard. In a database setting this
would again be treated as a constraint
violation. Note that in OWL it is possi-
ble to assert (or infer) that two different
names do not refer to the same indi-
vidual; if such an assertion were made
about Dumbledore and AlbusDumb-
ledore, then asserting that Fawkes is-
PetOf AlbusDumbledore would make
the ontology inconsistent. Unlike da-
tabase management systems, ontology
tools typically don’t reject updates that
result in the ontology becoming wholly
or partly inconsistent; they simply pro-
vide a suitable warning.

The treatment of schema and con-
straints in a database setting means
they can be ignored when answering
queries; in a valid database instance,
all schema constraints must already be
satisfied. This treatment makes query

acteristics of properties. Besides being
Transitive, a property can be Symmet-
ric, Functional, or InverseFunctional; for
example, the axioms

DisjointClasses: Owl Cat Toad
Property: isPetOf
	 Characteristics: Functional

state that Owl, Cat, and Toad are dis-
joint (that is, they have no instances in
common) and that isPetOf is func-
tional (that is, pets can have only one
owner).

These axioms describe constraints
on the structure of the domain and play
a role similar to the conceptual schema
in a database setting; in DLs, such a set
of axioms is called a terminology box
(TBox). OWL also allows for axioms
that assert facts about concrete situa-
tions, like data in a database setting;
in DLs, such a set of axioms is called
an assertion box (ABox). These axioms
might, for example, include the facts

Individual: HarryPotter
	 Types: HogwartsStudent
Individual: Fawkes
	 Types: Phoenix
	 Facts: isPetOf Dumbledore

Basic facts, or those using only atomic
classes, correspond directly to RDF
triples; for example, the facts just dis-
cussed correspond to the following
triples:

HarryPotter rdf:type, Hog-
wartsStudent .

Fawkes rdf:type Phoenix .
Fawkes isPetOf Dumbledore .
The term “ontology” is often used to

refer to a conceptual schema or TBox,
but in OWL an ontology can consist of
a mixture of both TBox and ABox axi-
oms; in DLs, this combination is called
a knowledge base.

DLs are fully fledged logics and so
have a formal semantics. They can,
in fact, be understood as decidable
subsets of first-order logic, with indi-
viduals being equivalent to constants,
concepts to unary predicates, and roles
to binary predicates. Besides giving a
precise and unambiguous meaning to
descriptions of the domain, the formal
semantics also allows for the develop-
ment of reasoning algorithms that can
be used to correctly answer arbitrarily
complex queries about the domain. An
important aspect of DL research is the
design of such algorithms and their
implementation in (highly optimized)
reasoning systems that can be used

answering highly efficient; for exam-
ple, in order to determine if Dumble-
dore is in the answer to a query for Wiz-
ards, it is sufficient to check if this fact
is explicitly present in the database. In
OWL, the schema plays a much more
important role and is actively consid-
ered at query time. Considering both
the schema and the data can be very
powerful, making it possible to answer
conceptual, as well as extensional, que-
ries; for example, we can ask not only if
Dumbledore is a Wizard but if anybody
having a Phoenix for a pet is necessar-
ily a Wizard. This power does, however,
make query-answering much more
difficult (at least in the worst case);
for example, in order to determine if
Dumbledore is in the answer to a query

for Wizards, it is necessary to check if
Dumbledore would be an instance of
Wizard in every possible state of the
world that is consistent with the axi-
oms in the ontology. Query answering
in OWL is thus analogous to theorem
proving, and a query answer is often
referred to as an “entailment.” OWL is
therefore most suited to applications
where the schema plays an important
role, where it is not reasonable to as-
sume that complete information about
the domain is available, and where in-
formation has high value.

Ontologies may be very large and
complex; for example, the System-
atized Nomenclature of Medicine–
Clinical Terms (SNOMED CT) ontol-
ogy includes more than 400,000 class
names. Building and maintaining such
an ontology is costly and time-consum-
ing, so providing tools and services to
support the ontology-engineering pro-
cess is critical to both the cost and the
quality of the resulting ontology. Ontol-

64 communications of the acm | december 2008 | vol. 51 | no. 12

contributed articles

ogy reasoning therefore plays a central
role in both the development of high-
quality ontologies and the deployment
of ontologies in applications.

In spite of the complexity of reason-
ing with OWL ontologies, highly opti-
mized DL reasoning systems (such as
FaCT++, owl.man.ac.uk/factplusplus/,
Racer, www.racer-systems.com/, and
Pellet, pellet.owldl.com/) have proved
effective in practice; the availability of
such systems was one of the key motiva-
tions for the W3C to base OWL on a DL.
State-of-the-art ontology-development
tools (such as SWOOP, code.google.
com/p/swoop/, Protégé 4, and TopBraid
Composer, www.topbraidcomposer.
com) use DL reasoners to give feedback
to developers about the logical impli-
cations of their designs. This feedback
typically includes warnings about in-
consistencies and synonyms.

An inconsistent (sometimes called
“unsatisfiable”) class is one for which
its description is “overconstrained,”
with the result that it can never have
instances. This inconsistency is typi-
cally an unintended consequence of
the design (why introduce a name for
a class that can never have instances?)
and may be due to subtle interactions
among axioms. It is therefore useful to
be able to detect such classes and bring
them to the attention of the ontology
engineer. For example, during the re-
cent development of an OWL ontology
at NASA’s Jet Propulsion Laboratory,
the class “OceanCrustLayer” was found
to be inconsistent. Engineers discov-
ered (with the help of debugging tools)
that this was the result of its being de-
fined as both a region and a layer, one
(a layer) a 2D object and the other (a
region) a 3D object. The inconsistency
thus highlighted a fundamental error
in the ontology’s design.

It is also possible that the descrip-
tions in an ontology mean that two
classes necessarily have exactly the
same set of instances; that is, they are
alternative names for the same class.
Having multiple names for the same
class may be desirable in some situa-
tions (such as to capture the fact that
“myocardial infarction” and “heart
attack” are the same thing). However,
multiple names could also be the in-
advertent result of interactions among
descriptions or of basic errors by the
ontology designer; it is therefore use-

ful to be able to alert developers to the
presence of such synonyms.

In addition to checking for inconsis-
tencies and synonyms, ontology-devel-
opment tools usually check for implicit
subsumption relationships, updating
the class hierarchy accordingly. This
automated updating is also a useful de-
sign aid, allowing ontology developers
to focus on class descriptions, leaving
the computation of the class hierarchy
to the reasoner; it can also be used by
developers to check if the hierarchy in-
duced by the class descriptions is con-
sistent with their expert intuition. The
two may not be consistent when, for ex-
ample, errors in the ontology result in
unexpected subsumption inferences or
“underconstrained” class descriptions
result in expected inferences not being
found. Not finding expected inferences
is common, as it is easy to inadvertent-
ly omit axioms that express “obvious”
information. For example, an ontology
engineer may expect the class of pa-
tients with a fracture of both the tibia
and the fibula to be a subClassOf “pa-
tient with multiple fractures”; however,
this relationship may not hold if the on-
tology doesn’t include (explicitly or im-
plicitly) the information that the tibia
and fibula are different bones. Failure
to find this subsumption relationship
should prompt the engineer to add the
missing DisjointClasses axiom.

Reasoning is also important when
ontologies are deployed in applications,
when it is needed to answer standard
data-retrieval queries, and to answer
conceptual queries about the structure
of the domain. For example, biologists
use ontologies (such as the Gene On-
tology, or GO, and the Biological Path-
ways Exchange ontology, or BioPAX) to
annotate (Web-accessible) data from
gene-sequencing experiments, making
it possible to answer complex queries
(such as “What DNA-binding products
interact with insulin receptors?”). An-
swering requires a reasoner to not only
identify individuals that are (perhaps
only implicitly) instances of DNA-bind-
ing products and of insulin receptors
but to identify which pairs of individu-
als are related (perhaps only implicitly)
via the interactsWith property.

Finally, in order to maximize the
benefit of reasoning services, tools
should be able to explain inferences;
without explanations, developers may

Reliability and
correctness
are particularly
important when
ontology-based
systems are used
in safety-critical
applications; in
those involving
medicine, for
example, incorrect
reasoning could
adversely affect
patient care.

contributed articles

december 2008 | vol. 51 | no. 12 | communications of the acm 65

trally maintained and updated for use
in all NHS organizations and in re-
search” and as a key component of its
$6.2 billion “Connecting for Health” IT
program (www.connectingforhealth.
nhs.ukhow). An important feature of
the system is that it can be extended
to provide more detailed coverage if
needed by specialized applications; for
example, a specialist allergy clinic may
need to distinguish allergies caused by
different kinds of nut so may need to
add new terms to the ontology (such as
AlmondAllergy):

Class: AlmondAllergy
	 equivalentTo: Allergy and
	 causedBy some Almond

Using a reasoner to insert this new
term into the ontology ensures it is
recognized as a subClassOf NutAller-
gy, something that is clearly of crucial
importance for ensuring that patients
with an AlmondAllergy are correctly
identified in the national records sys-
tem as patients with a NutAllergy.

Ontologies are also widely used to
facilitate the sharing and integration
of information. The Neurocommons
project (sciencecommons.org/proj-
ects/data/) aims to provide a platform
for, for example, sharing and integrat-
ing knowledge in the neuroscience do-
main; a key component is an ontology
of annotations to be used to integrate
available knowledge on the Web, in-
cluding major neuroscience databases.
Similarly, the Open Biomedical Ontolo-
gies Foundry (www.obofoundry.org) is a
library of ontologies designed to facili-
tate international information sharing
and integration in the biomedical do-
main. In information-integration ap-

find it difficult to repair errors in an
ontology and may even start to doubt
the correctness of inferences. Such an
explanation typically involves comput-
ing a (hopefully small) subset of the
ontology that still entails the inference
in question and, if necessary, present-
ing the user with a chain of reasoning
steps.12 The explanation in Figure 3
(produced by the Protégé 4 ontology-
development tool) describes the steps
that lead to the inference mentioned
earlier with respect to the inconsisten-
cy of OceanCrustLayer.

Ontology Applications
The availability of tools and reasoning
systems has contributed to the increas-
ingly widespread use of OWL, which has
become the de facto standard for on-
tology development in fields as diverse
as biology,19 medicine,18 geography,8
geology (the Semantic Web for Earth
and Environmental Terminology proj-
ect, sweet.jpl.nasa.gov/), agriculture,20
and defense.15 Applications of OWL
are particularly prevalent in the life sci-
ences where OWL is used by developers
of several large biomedical ontologies,
including SNOMED, GO, and BioPAX,
mentioned earlier, as well as the Foun-
dational Model of Anatomy (sig.biostr.
washington.edu/projects/fm/) and the
U.S. National Cancer Institute thesau-
rus (www.cancer.gov/cancertopics/ter-
minologyresourceshow).

The ontologies used in these appli-
cations might have been developed spe-
cifically for the purpose or without any
particular application in mind. Many
ontologies are the result of collabora-
tive efforts within a given community

aimed at facilitating (Web-based) in-
formation sharing and exchange; some
commercially developed ontologies
are also subject to a license fee. Many
OWL ontologies are available on the
Web, identified by a URI and should,
in principle, be available at that loca-
tion. There are also several well-known
ontology libraries and even ontology
search engines (such as SWOOGLE,
swoogle.umbc.edu/) that are useful for
locating ontologies. In practice, how-
ever, applications are invariably built
around a predetermined ontology or
set of ontologies that are well under-
stood and known to provide suitable
coverage of the relevant domains.

The importance of reasoning sup-
port in ontology applications was high-
lighted in a paper describing a project
in which the Medical Entities Diction-
ary (MED), a large ontology (100,210
classes and 261 properties) used at the
Columbia Presbyterian Medical Center
in New York, was converted to OWL and
checked using an OWL reasoner.13 As re-
ported in the paper, this check revealed
“systematic modeling errors” and a
significant number of missed subClas-
sOf relationships that, if not corrected,
“could have cost the hospital many
missing results in various decision-sup-
port and infection-control systems that
routinely use MED to screen patients.”

In another application, an extended
version of the SNOMED ontology was
checked using an OWL reasoner that
found a number of missing subClas-
sOf relationships. This ontology is be-
ing used by the U.K. National Health
Service (NHS) to provide “a single and
comprehensive system of terms, cen-

Figure 3: An explanation from Protégé 4.

66 communications of the acm | december 2008 | vol. 51 | no. 12

contributed articles

plications the ontology could play sev-
eral roles: provide a formally defined
and extensible vocabulary for semantic
annotations; describe the structure of
existing sources and the information
they store; and provide a detailed mod-
el of the domain against which queries
are formulated. Such queries can be
answered by using semantic annota-
tions and structural knowledge to re-
trieve and combine information from
multiple sources.22 It should be noted
that the use of ontologies in informa-
tion integration is far from new and the
subject of extensive research within the
database community.2

With large ontologies, answering
conceptual and data-retrieval queries
may be a very complex task, and DL

reasoners allow OWL ontology ap-
plications to answer complex queries
and provide guarantees about the cor-
rectness of the result. Reliability and
correctness are particularly important
when ontology-based systems are used
in safety-critical applications; in those
involving medicine, for example, incor-
rect reasoning could adversely affect
patient care.

However, RDF and OWL are also
used in a range of applications where
reasoning plays only a relatively mi-
nor role in, for example, the Friend of
a Friend, or FOAF, project (www.foaf-
project.org) and the Dublin Core Meta-
data Initiative, (dublincore.org) and
when carrying annotations in Adobe’s
Extensible Metadata Platform (www.
adobe.com/products/xmp/). In them,
RDF is typically used to provide a flex-
ible and extensible data structure for
annotations, with the added advantage
that IRIs can be used to refer directly to
Web resources.

In FOAF, for example, a simple RDF/
OWL ontology provides a vocabulary of
terms for describing and linking peo-
ple and their interests and activities;
terms include the foaf:Person class
and properties, including foaf:name,
foaf:homepage, and foaf:knows.
OWL is used to declare that some prop-
erties (such as foaf:homepage) are
InverseFunctional; that is, they can be
used as a key to identify the subject of
the property, often a person. Howev-
er, the semantics of the vocabulary is
mainly captured informally in textual
descriptions of each term and proce-
durally interpreted by applications.
This informality reduces the need for
reasoning systems but limits the abil-
ity of applications to share and under-
stand vocabulary extensions.

Future Directions
The success of OWL also involves many
challenges for the future development
of both the OWL language and OWL
tool support. Central to them is the fa-
miliar tension between requirements
for advanced features, particularly in-
creased expressive power, and raw per-
formance, particularly the ability to deal
with large ontologies and data sets.

Researchers have addressed them
by investigating more expressive DLs,
developing new and more highly op-
timized DL reasoning systems and
identifying smaller logics that com-
bine still-useful expressive power with
better worst-case complexity or other
desirable computational properties.
Results from these efforts are being
exploited by the W3C in order to refine
and extend OWL, forming in October
2007 a new W3C Working Group for
this purpose (www.w3.org/2007/OWL/).
The resulting language is called OWL
2 (initially called OWL 1.1) based on
a more expressive DL called SROIQ.10
OWL 2 extends OWL with the ability
to “qualify” cardinality restrictions to,
say, describe the hand as having four
parts that are fingers and one part that
is a thumb; assert that properties are
reflexive, irreflexive, asymmetric, and
disjoint (such as to describe hasParent
as an irreflexive property); and com-
pose properties into property chains
(such as to capture the fact that a dis-
ease affecting a part of an organ affects
the organ as a whole). OWL 2 also pro-
vides extended support for datatypes

and for annotations.
Besides increasing the expressive

power of the complete language, OWL
2 also defines three so-called profiles,
in effect language fragments with desir-
able computational properties (www.
w3.org/TR/owl2-profileswww.w3.org/
TR/opw12-profiles/). One is based on
DL Lite, a logic for which standard rea-
soning problems can be reduced to
standard query language (SQL) query
answering; another is based on EL++,
a logic for which standard reasoning
problems can be performed in poly-
nomial time; and the third is based on
DLP, a logic for which query answering
can be implemented using rule-based
techniques that have been shown to
scale well in practice.

In some cases, even the increased
expressive power of OWL 2 may not
meet application requirements. One
way to further increase the expressive
power of the language would be to ex-
tend it with Horn-like rules; that is,
implications like parent (x, y) ∧ bother
(y, z) ⇒ uncle (x, z) stating that if y is a
parent of x and z is a brother of y (the
antecedent), then z is an uncle of x (the
consequent). A notable proposal along
these lines is the Semantic Web Rules
Language (www.w3.org/Submission/
SWRL/). If the semantics of Horn-like
rules is restricted so it applies only to
named individuals, then its addition
does not disturb the decidability of the
underlying DL; this restricted form of
rules is known as “DL-safe” rules.17 A
W3C working group was established
in 2005 to produce a W3C language
standard that will “allow rules to be
translated between rule languages and
thus transferred between rule systems”
(www.w3.org/2005/rules/).

As I discussed earlier, reasoning-
enabled tools provide vital support
for ontology engineering. Recent work
has shown how this support can be ex-
tended to modular design and module
extraction, important techniques for
working with large ontologies. When a
team of ontology engineers is develop-
ing a large ontology, they should divide
it into modules in order to make it eas-
ier to understand and facilitate parallel
work. Similarly, it may be desirable to
extract from a large ontology a module
containing all the information relevant
to some subset of the domain; the re-
sulting small(er) ontology is easier for

contributed articles

december 2008 | vol. 51 | no. 12 | communications of the acm 67

of knowledge to enable applications to
use resources more intelligently.

Although a wide range of semantic
Web applications is available today,
fully realizing the semantic Web still
seems a long way off and would first re-
quire the solution of many challenging
research problems, including those
in knowledge representation and rea-
soning, databases, computational lin-
guistics, computer vision, and agent
systems. Moreover, most of the Web is
yet to be semantically annotated, and
relatively few ontologies are available
(even fewer high-quality ones).

However, semantic Web research
already has a major influence on the
development and deployment of ontol-
ogy languages and tools (often called
semantic Web technologies). They
have become a de facto standard for
ontology development and are seeing
increased use in research labs, as well
as in large-scale IT projects, particu-
larly those where the schema plays an
important role, where information
has high value, and where information
may be incomplete. This emerging role
is reflected in extended support for se-
mantic Web technologies, including
commercial tools, implementations,
and applications, from commercial
vendors, including Hewlett-Packard,
IBM, Oracle, and Siemens.

Related challenges involve both ex-
pressive power and scalability. Howev-
er, the success of the technologies also
motivates research and development
efforts in academic institutions and
industry to address these challenges; it
seems certain these efforts will have a
major influence on the future develop-
ment of information technology.

Acknowledgment
I want to thank Uli Sattler of the Univer-
sity of Manchester and Franz Baader of
Dresden Technical University for let-
ting me borrow the idea of using Harry
Potter in the ontology examples. 	

References
1.	B aader, F., Calvanese, D., McGuinness, D., Nardi, D.,

and Patel-Schneider, P.F., Eds. The Description Logic
Handbook: Theory, Implementation and Applications.
Cambridge University Press, Cambridge, U.K., 2003.

2.	B atini, C., Lenzerini, M., and Navathe, S.B. A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys 18, 4
(Dec. 1986), 323–364.

3.	B erners-Lee, T., Hendler, J., and Lassila, O. The
semantic Web. Scientific American 284, 5 (May 2001),
34–43.

humans to understand and applica-
tions to use. New reasoning services
can be used to alert developers to un-
anticipated and/or undesirable inter-
actions when modules are integrated
and to identify a subset of the original
ontology that is indistinguishable from
it when used to reason about the rele-
vant subset of the domain.4

The availability of an SQL has been
an important factor in the success of
relational databases, and there have
been several proposals for a semantic
Web query language. As in the case of
RDF and OWL, the W3C in 2004 set up
a standardization working group that
in January 2008 completed its work
on the SPARQL query language stan-
dard (www.w3.org/TR/rdf-sparql-que-
ry). Strictly speaking, this language is
only for RDF, but it is easy to see how
it could be extended for use with OWL
ontologies, something already happen-
ing in practice.

As I mentioned earlier, major re-
search efforts have been directed to-
ward tackling some of the barriers to
realizing the semantic Web; consider-
able progress has been made in such
areas as ontology alignment (reconcil-
ing ontologies that describe overlap-
ping domains),18 ontology extraction
(extracting ontologies from text),16 and
the automated annotation of both text6
and images.5 Of particular interest is
the growth of Web 2.0 applications,
showing how it might be possible for
user communities to collaboratively
annotate Web content, as well as cre-
ate simple forms of ontology via the de-
velopment of hierarchically organized
sets of tags, or folksonomies.21 Prog-
ress has also been made in developing
the infrastructure needed to add struc-
tured annotations to existing Web re-
sources. For example, in October 2008
the W3C produced a Recommendation
for RDFa, a mechanism for embedding
RDF in existing XHTML documents
(www.w3.org/TR/rdfa-syntax/).

Conclusion
Semantic Web research aims to help
Web-accessible information and servic-
es be more effectively exploited, partic-
ularly by software agents and applica-
tions. As a first step, the W3C developed
new languages, including RDF and
OWL, that allow for the description of
Web resources and the representation

4.	C uenca Grau, B., Horrocks, I., Kazakov, Y., and Sattler,
U. Modular reuse of ontologies: Theory and practice.
Journal of Artificial Intelligence Research 31 (Apr.
2008), 273–318.

5.	D atta, R., Joshi, D., Li, J., and Wang, J.Z. Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys 40, 2 (Apr. 2008).

6.	D ill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R.,
Jhingran, A., Kanungo, T., Rajagopalan, S., Tomkins,
A., Tomlin, J.A., and Zien, J.Y. Semtag and seeker:
Bootstrapping the semantic Web via automated
semantic annotation. In Proceedings of the 12th
International World Wide Web Conference (Budapest,
Hungary, May). ACM Press, New York, 2003, 178–186.

7.	D oyle, J. and Patil, R.S. Two theses of knowledge
representation: Language restrictions, taxonomic
classification, and the utility of representation
services. Artificial Intelligence 48, 3 (Apr. 1991),
261–297.

8.	G olbreich, C., Zhang, S., and Bodenreider, O. The
foundational model of anatomy in OWL: Experience
and perspectives. Journal of Web Semantics 4, 3
(Sept. 2006), 181–195.

9.	G oodwin, J. Experiences of using OWL at the ordnance
survey. In Proceedings of the First OWL Experiences
and Directions Workshop (Galway, Ireland, Nov.).
CEUR-WS, 2005; CEUR-WS.org/Vol-188/.

10.	H orrocks, I., Kutz, O., and Sattler, U. The even more
irresistible SROIQ. In Proceedings of the 10th
International Conference on Principles of Knowledge
Representation and Reasoning (Lake District, U.K.,
June). AAAI Press, Menlo Park, CA, 2006, 57–67.

11.	H orrocks, I. and Sattler, U. A tableau decision
procedure for SHOIQ. Journal of Automated
Reasoning 39, 3 (Oct. 2007), 249–276.

12.	K alyanpur, A., Parsia, B., Sirin, E., and Hendler, J.
Debugging unsatisfiable classes in OWL ontologies.
Journal of Web Semantics 3, 4 (Dec. 2005), 243–366.

13.	K ershenbaum, A., Fokoue, A., Patel, C., Welty, C.,
Schonberg, E., Cimino, J., Ma, L., Srinivas, K., Schloss,
R., and Murdock, J.W. A view of OWL from the field:
Use cases and experiences. In Proceedings of the
Second OWL Experiences and Directions Workshop
(Athens, GA, Nov.). CEUR-WS, 2006; CEUR-WS.org/
Vol-216/.

14.	K lyne, G. and Carroll, J.J. Resource Description
Framework (RDF): Concepts and Abstract syntax. W3C
Recommendation, Feb. 10, 2004; www.w3.org/TR/rdf-
concepts/.

15.	 Lacy, L., Aviles, G., Fraser, K., Gerber, W., Mulvehill,
A., and Gaskill, R. Experiences using OWL in military
applications. In Proceedings of the First OWL
Experiences and Directions Workshop (Galway,
Ireland, Nov. 2005); CEUR-WS.org/Vol-188/.

16.	M aedche, A. and Staab, S. Ontology learning for the
semantic Web. IEEE Intelligent Systems 16, 2 (Mar./
Apr. 2001), 72–79.

17.	M otik, B., Sattler, U., and Studer, R. Query answering
for OWL-DL with rules. Journal of Web Semantics 3, 1
(July 2005), 41–60.

18.	S hvaiko, P. and Euzenat, J. A survey of schema-based
matching approaches. Journal on Data Semantics IV,
Lecture Notes in Computer Science 3730 (Nov. 2005),
146–171.

19.	S idhu, A., Dillon, T., Chang, E., and Sidhu, B.S. Protein
ontology development using OWL. In Proceedings of
the First OWL Experiences and Directions Workshop
(Galway, Ireland, Nov. 2005); CEUR-WS.org/Vol-188/.

20.	S oergel, D., Lauser, B., Liang, A., Fisseha, F., Keizer,
J., and Katz, S. Reengineering thesauri for new
applications: The AGROVOC example. Journal of
Digital Information 4, 4 (2004).

21.	S pyns, P., de Moor, A., Vandenbussche, J., and
Meersman, R. From folksologies to ontologies: How
the twain meet. In Proceedings of On the Move to
Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, Lecture Notes in Computer
Science 4275 (Montpellier, France, Oct. 29–Nov. 3).
Springer, 2006, 738–755.

22.	S tevens, R., Baker, P., Bechhofer, S., Ng, G., Jacoby,
A., Paton, N.W., Goble, C.A., and Brass, A. Tambis:
Transparent access to multiple bioinformatics
information sources. Bioinformatics 16, 2 (Feb. 2000),
184–186.

Ian Horrocks (Ian.Horrocks@comlab.ox.ac.uk) is a
professor of computer science in the Oxford University
Computing Laboratory and a fellow of Oriel College,
Oxford, U.K.

© 2008 ACM 0001-0782/08/1200 $5.00

