Knowledge Representation and
Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering
and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

copyright (©1995, 20042010 by Stuart C. Shapiro

Page 1

A S

© © 3 &

10.
11.

Contents
Part 1

Introduction o e 4
Propositional Logic i 19
Predicate Logic Over Finite Models.............. 173
Full First-Order Predicate Logic oo, 224
Summary of Part I....... 362
Part 11
Prolog . ..o 375
A Potpourri of Subdomains.......... 411
SN P S . 429
Belief Revision/Truth Maintenanceo i, 511
The Situation Calculus i i 569
SUIMINATY &« ¢ o ettt et ettt et e e e e e e e e e e e e e e e e 588

12. Production Systems
13. Description Logic..

14. Abduction.........

Part 111

Page 3

4 Full First-Order Predicate Logic (FOL)

4.1 CarPool World....... ... 225
4.2 The “Standard” First-Order Predicate Logic 227
4.3 Clause-Form First-Order Predicate Logic................... 260
4.4 Translating Standard Wfts into Clause Form 306
4.5 Asking Wh Questions............cooiiiiiiiiiiin ... 325

Page 224

4.1 CarPool World

We'll add Tom and Betty’s mothers:
motherOf (Tom) and motherOf (Betty)

Page 225

CarPool World Domain Rules
(Partial)

Va(Driver(z) = —Passenger(x))

Vz,y(Drives(z,y) = (Driver(x) A Passenger(y)))

Page 226

orok W

4.2 The “Standard” First-Order
Predicate Logic

L7 5 PP 228
SEIMANTICS « .ttt 240
Model Checking i 252
Hilbert-Style Proof Theory 253
Fitch-Style Proof Theory, 255

Page 227

4.2.1 Syntax of the “Standard”
First-Order Predicate Logic
Atomic Symbols

Individual Constants:
e Any letter of the alphabet (preferably early),
e any (such) letter with a numeric subscript,

e any character string not containing blanks nor other

punctuation marks.

For example: a, Bis, T'om, Tom’s_mother-in-law.

Page 228

Atomic Symbols, Part 2

Arbitrary Individuals:
e Any letter of the alphabet (preferably early),

e any (such) letter with a numeric subscript.

Indefinite Individuals:
e Any letter of the alphabet (preferably early),

e any (such) letter with a numeric subscript.

Page 229

Atomic Symbols, Part 3

Variables:
e Any letter of the alphabet (preferably late),
e any (such) letter with a numeric subscript.

For example: x, ys.

Page 230

Atomic Symbols, Part 4

Function Symbols:
e Any letter of the alphabet (preferably early middle)
e any (such) letter with a numeric subscript
e any character string not containing blanks.

For example: f, g2, motherOf, familyOf .

Page 231

Atomic Symbols, Part 5

Predicate Symbols:
e Any letter of the alphabet (preferably late middle),
e any (such) letter with a numeric subscript,
e any character string not containing blanks.

For example: P,), , Passenger, Drives.

Page 232

Atomic Symbols, Part 6

Each Function Symbol and Predicate Symbol must have a

particular arity.
Use superscript for explicit arity.

For example: motherOf?!, Drives®, familyOf~, g3

Page 233

Atomic Symbols, Part 7

In any specific predicate logic language

Individual Constants,
Arbitrary Individuals,
Indefinite Individuals,
Variables,

Function Symbols,
Predicate Symbols

must be disjoint.

Page 234

Terms

e Lvery individual constant, every arbitrary individual, every

indefinite individual, and every variable is a term.

o If f™ is a function symbol of arity n, and ¢4, ...,¢, are terms,
then f"(t1,...,t,) is a term.
(The superscript may be omitted if no confusion results.)
For example: familyOf~®(Tom, motherOf ! (Betty))

e Nothing else is a term.

Page 235

Atomic Formulas

If P™ is a predicate symbol of arity n,
and t1,...,t, are terms,
then P"(t1,...,t,) is an atomic formula.

E.g.: ChildIn® (Betty, familyOf * (Tom, motherOf 1 (Betty)))

(The superscript may be omitted if no confusion results.)

Page 236

Well-Formed Formulas (wffs):

Every atomic formula is a wit.

If P is a wif, then so is —=(P).

If P and () are wits, then so are
(PAQ) (PVQ)

(P=Q) (PsQ)
If P is a wif and x is a variable, then Vx(P) and Jz(P) are wifs.

Parentheses may be omitted or replaced by square brackets if

no confusion results.
We will allow (P, A---AP,)and (PLV---V Py,).

Va(Vy(P)) may be abbreviated as Ve, y(P).
Jz(dy(P)) may be abbreviated as Jz, y(P).

Page 237

Open, Closed, Ground, and Free For

A wif with a free variable is called open.

A wif with no free variables is called closed,

An expression with no variables is called ground.
Note: expressions now include functional terms.

A term t is free for a variable x in the wif A(x) if

no free occurrence of x in A(x) is in the scope

of any quantifier Vy or dy whose variable y is in .

E.g., f(a,y,b) is free for x in Vuadv(A(x,u) V B(x,v))

but f(a,y,b) is not free for x in Vudy(A(x,u) VvV B(x,y)).
Remedy: rename y in A(z). E.g., Vudv(A(x,u) V B(z,v))

Page 238

Substitutions with Functional Terms

Notice, terms may now include functional terms.

E.g.

P(z, f(y), z){a/z,9(b)/y, f(a)/z} = Pla, f(g(b)), f(a))

Page 239

4.2.2 Semantics of the “Standard”
First-Order Predicate Logic

Assumes a Domain, D, of
e individuals,
e functions on individuals,
e sets of individuals,
e relations on individuals

Let Z be set of all individuals in D.

Page 240

Semantics of Constants

Individual Constant:

la] = [a] = some particular individual in Z.

Arbitrary Individual:
la] = [a] = a representative of all individuals in Z. Everything
True about all of them, is True of it.

Indefinite Individual:
|s] = [s] = a representative of some individual in Z, but it’s

unspecified which one.

There is no anonymous individual.
I.e. for every individual, ¢ in Z, there is a ground term ¢ such that

[t] = i. (But not necessarily an individual constant.)

Page 241

Intensional Semantics of Functional

Terms

Function Symbols: [f"] is some n-ary function in D,

Functional Terms:
If f™ is some function symbol and t4,...,%, are ground terms,
then [f™(t;,...,t,)] is a description of the individual in Z that
is the value of [f"] on [t;], and ..., and [t,].

Page 242

Extensional Semantics of Functional

Terms

Function Symbols: [f™] is some function in D,
"l Ix--xT -1

~"

n times

Functional Terms:

If f™ is some function symbol and ¢q,...,t, are ground terms,

then [f" (2, ta)] = [FI([2], - -5 [n])-

Page 243

Semantics of Predicate Symbols

Predicate Symbols:

P1] is some category/property of individuals of Z

|P™] is some n-ary relation in D.

[P1] is some particular subset of Z.

[P™] is some particular subset of the relation

\ZX"'XZ}.

-~

n times

Page 244

Intensional Semantics

of Ground Atomic Formulas

e If P! is some unary predicate symbol,
and t is some ground term,
then [PZ(t)] is the proposition that [¢] is an instance of the
category [P!] (or has the property [P1]).

e If P™ is some n-ary predicate symbol,

and t1,...,t, are ground terms,
then [P"(t;,...,t,)] is the proposition that the relation [P"]
holds among individuals [¢;], and ..., and [¢,].

Page 245

Extensional Semantics

of Ground Atomic Formulas

Atomic Formulas:

e If P! is some unary predicate symbol,
and t is some ground term,
then [P1(t)] is True if [t] € [P1],

and False otherwise.

e If P" is some n-ary predicate symbol,

and t1,...,t, are ground terms,
then [P"(t;,...,t,)] is True

if ([t:], ..., [t.]) € [P"],

and False otherwise.

Page 246

Semantics of WFF's, Part 1

[_'P]v [P/\ Q]v [P\/ Q]? [P = Q]v [P(:) Q]
[[_'P]]7 [[P/\ Q]]? [[P\/ Q]]v [[P = Q]]? and [[P<:> Q]]

are as they are in Propositional Logic.

Page 247

Semantics of WFFs, Part 2

[VxP]| is the proposition that every individual ¢ in Z, with name
or description t;, satisfies [P{t;/z}].

[JzP] is the proposition that some individual ¢ in Z, with name
or description t;, satisfies [P{t;/z}].

[VxP] is True if [P{t/z}] is True for every ground term, t.
Otherwise, it is False.

[3xP] is True if there is some ground term, ¢ such that
[P{t/x}] is True. Otherwise, it is False.

Page 248

Intensional Semantics

of a 2-Car CarPool World 1

Individual Constants:

| Tom| = The individual named Tom.

| Betty] = The individual named Betty.

Functions:
motherOf (x)] = The mother of [z].

Page 249

Intensional Semantics
of a 2-Car CarPool World 2

Predicates:
Driver! (x)] = [z] is the driver of a car.
Passenger! (z)] = [z] is the passenger in a car.
Drives®(x,y)] = [z] drives [y] in a car.

Page 250

Extensional Semantics of
a 2-Car CarPool World Situation

[Tom] = the individual named Tom.
| Betty] = the individual named Betty.
[motherOf] = {([Betty], [motherOf (Betty)]),
([Tom], [motherOf(Tom)])}.
| Driver| = {[motherOf (Betty)], [motherOf(Tom)]}.
| Passenger| = {[Betty], [Tom]}.
| Drives] = {([motherOf (Betty)], [Betty]),
([motherOf (Tom)], [Tom])}.

Page 251

4.2.3 Model Checking in Full FOL

n Individual Constants.

At least one function yields co terms.*Decreasoner.

E.q., motherOf (Tom), motherOf (motherOf (Tom)),
motherOf (motherOf (motherOf (Tom)))

So oo ground atomic propositions.
So oo situations (columns of truth table).
So can’t create entire truth table.

Can’t do model checking
by expanding quantified expressions
into Boolean combination of ground wifs.

There still could be a finite domain if at least one individual in 7
has an oo number of terms describing it, but we’ll assume not.

Page 252

4.2.4 Hilbert-Style Proof Theory
for First-Order Predicate Logic

(Al). (A= (B=A))

(A2). (A= (B=C)=(A=DB)=(A=C()))
(A3). ("B=-A)= ((-B=A) = DB))

(A4). Va2 A = A{t/z}

where t is any term free for x in A(x).

(A5). (Vx(A=B)) = (A= VzBb)

if A is a wif containing no free occurrences of x.

Page 253

Hilbert-Style Rules of Inference for
“Standard” First-Order Predicate Logic

A A= B

A
Vr A

Note: dzA is just an abbreviation of -Vz—A.

Page 254

4.2.5 Fitch-Style Proof Theory
for First-Order Predicate Logic
Additional Rules of Inference for V

) a Arb 1

i | VeP(x)

j | P(a) i+ 1| P{t/z} VE,i

j+1 VeP{z/a} VI,i—j

Where a is an arbitrary individual not otherwise used in the proof,
and t is any term, whether or not used elsewhere in the proof,
that is free for x in P(x).

Page 255

Example of V Rules

To prove Vax(P(x) = Q(x)) = (VxP(x) = VzQ(x))

B~ W N

© o N O o

10
11

| va(P(x) = Q)
_‘v’a:P(:E)

a

VP ()
P(a)

Ve(P(z) = Q())
P(a) = Q(a)
Q(a)

VzQ(z)

VaP(z) = YzQ(z)

Ve(P(x) = Q(z)) = (VxP(zx) = VaxQ(x))

Page 256

Additional Rules of Inference for -

i Jzx P(x)
i | P(t) J P{a/x} Indef 1,4
i+ 1| dzP(x) 3I,i
k Q
k+1 Q JF, j—k

Where P(x) is the result of replacing some or all occurrences of t in P(t) by =z,

t is free for z in P(x);
a is an indefinite individual not otherwise used in the proof,
P(a/x) is the result of replacing all occurrences of x in P(x) by a,

and there is no occurrence of a in). (Compare 3F to VE.)

Page 257

Example of 4 Rules

To prove dz(P(x) A Q(x)) = (FxP(x) A JxQ(x))

1

© o N o ot ks W N

e
)

Jz(P(z) A Q(x))

| P(a) A Q(a)
P(a)
JxP(x)

Jzx P(x)

| P(b) A Q)
Q(b)
wQ(x)

Q(x)

JzP(x) A JxzQ(x)
Jz(P(z) N Q(x)) = (FzP(x) N JzQ(x))

Page 258

Hyp
Indef I, 1
ANE, 2

I, 3

JE, 24
Indef I, 1
ANE, 5

I, 6

JE, 5-7
AL, 5,9

=1, 1-10

CarPool Situation Derivation

Vz(Driver(z) = —Passenger(z))
VaVy(Drives(z,y) = (Driver(z) A Passenger(y)))

VzDrives(motherOf (x), x) Hyp

Drives(motherOf (Tom), Tom) VE,3
Vy(Drives(motherOf (Tom), y)
= (Driver(motherOf (Tom)) N\ Passenger(y))) VE,2
Drives(motherOf (Tom), Tom)

= (Driver(motherOf(Tom)) N\ Passenger(Tom)) VE,5

Driver(motherOf (Tom)) N\ Passenger(Tom) = F,4,6
Driver(motherOf (Tom)) NE, T
JxDriver(motherOf (z)) 31,8

Page 259

L.

2
3
4

4.3 Clause-Form First-Order Predicate

. Proof Theory..... ...

. Resolution Refutation

Logic

ooooooooooooooooooooooooooooooooooooo

Page 260

4.3.1 Syntax of Clause-Form First-Order
Predicate Logic
Atomic Symbols

Individual Constants:
e Any letter of the alphabet (preferably early),
e any (such) letter with a numeric subscript,

e any character string not containing blanks nor other

punctuation marks.

For example: a, By, Tom, Tom’s_mother-in-law.

Skolem Constants: Look like individual constants.

Page 261

Atomic Symbols, Part 2

Variables:
e Any letter of the alphabet (preferably late),
e any (such) letter with a numeric subscript.

For example: u, vg.

Page 262

Atomic Symbols, Part 3

Function Symbols:
e Any letter of the alphabet (preferably early middle)
e any (such) letter with a numeric subscript
e any character string not containing blanks.
For example: f, gs.

Use superscript for explicit arity.

Skolem Function Symbols: Look like function symbols.

Page 263

Atomic Symbols, Part 4

Predicate Symbols:
e Any letter of the alphabet (preferably late middle),
e any (such) letter with a numeric subscript,

e any character string not containing blanks.

For example: P, ()4, odd.

Use superscript for explicit arity.

Page 264

Terms

e Every individual constant, every Skolem constant, and every

variable is a term.

e If f is a function symbol or Skolem function symbol of arity n,

and t1,...,t, are terms,
then f"(t1,...,t,) is a term.

(The superscript may be omitted if no confusion results.)

e Nothing else is a term.

Page 265

Atomic Formulas

If P™ is a predicate symbol of arity n,
and t1,...,t, are terms,
then P"(t1,...,t,) is an atomic formula.

(The superscript may be omitted if no confusion results.)

Page 266

Literals and Clauses

Literals: If P is an atomic formula,
then P and —P are literals.

Clauses: If Lq,..., L, are literals,
then the set {L1,...,L,} is a clause.

Sets of Clauses: If (';,..., (), are clauses,
then the set {C1,...,C,} is a set of clauses.

Page 267

4.3.2 Semantics of Clause-Form
First-Order Predicate Logic

Individual Constants, Function Symbols, Predicate Symbols,

Ground Terms, and Ground Atomic Formulas as for Standard
FOL.

Skolem Constants are like indefinite individuals.
Skolem Function Symbols are like indefinite function symbols.

Ground Literals, Ground Clauses, and Sets of Clauses as for

Clause-Form Propositional Logic.

Page 268

Semantics of Open Clauses

If clause C contains variables v1,...,v,,
then C{ty/v1,...,tn/v,} is a ground instance of C' if it contains

no more variables.

If C' is an open clause,
[C] is True if every ground instance of C' is True.

Otherwise, it is False.

That is, variables take on universal interpretation,

with scope being the clause.

Page 269

4.3.3 Proof Theory of Clause-Form FOL

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of

assumption clauses Aq,..., A,.

Rule of Inference: A clause may be added to a set of clauses if

justified by a rule of inference.

Derived Clause: If clause () has been added to a set of clauses
initialized with the set of assumption clauses Aq,..., A, by one

or more applications of resolution,

then Al,...,Anl_Q.

Page 270

Clause-Form FOL Rules of Inference

Version 1

{P7L17"'7Ln}7{_'P7Ln—|—17°'°7Lm}

{Li,..., Ly, Loi1,..., Ly}

Resolution:

C

Universal Instantion (temporary):

Co

Page 271

Example Derivation

{=Drives(x,y), Driver(z)} Assumption
{=Driver(z), ~Passenger(z)} Assumption

{ Drives(motherOf (Tom), Tom)} Assumption

{=Drives(motherOf (Tom), Tom),

Driver(motherOf (Tom))} UT, 1, {motherOf (Tom)/z, Tom/y}
{ Driver(motherOf (Tom))} R, 3,4
{~Driver(motherOf (Tom)),

— Passenger(motherOf (Tom))Y UI 2, {motherOf (Tom)/z}

{ = Passenger(motherOf(Tom))} R,5,6

Page 272

Motivation for a Shortcut

Page 273

Most (General Unifier

A most general unifier (mgu), of atomic formulas A and B
is a substitution, u,
such that Ay = By = a common instance of A and B

and such that every other common instance of A and B is an

instance of it.

Le., Au = Bu = a most general common instance of A and B.

Example:

Unifier of P(a,x,y) and P(u,b,v) is {a/u,b/x,c/y,c/v}
giving P(a, b, c)

But more general is {a/u,b/x,y/v} giving P(a,b,y)

Page 274

Clause-Form FOL Rules of Inference

Version 2

{A7L17 . °7Ln}7 {_'BaLn—i—la . 7Lm}

Resolution:

{Laty o Lopts L1ty -« Lt}

where 1 is an mgu of A and B.

Assume two parent clauses have no variables in common.

Page 275

Example Derivation Revisited

{=Drives(x,y), Driver(z)} Assumption
{=Driver(z), ~Passenger(z)} Assumption

{ Drives(motherOf (Tom), Tom)} Assumption

{ Driver(motherOf (Tom))} R, 1,3,{motherOf(Tom)/x, Tom/y}
{ = Passenger(motherOf (Tom))} R, 2, 4,{motherOf(Tom)/z,}

Page 276

Unification

To find the mgu of A and B.

Some Examples:

A B mgu mgci
P(a,b) P(a,b) {} P(a,b)
P(P(b) FAIL

P(a, x) P(y,b) {a/y,b/z} P(a,b)
P(a, z) P(y,9(y)) | {a/y,9(a)/x} P(a,g(a))
P(z, f(z)) Ply,y) | FAIL (occurs check)

Page 277

Substitution Composition

cWr=cU{t/v|({t/veT)Nv o}

B.g: {z/y,y/z} o{u/y,v/w} = {x/y,u/z,v/w}

Page 278

Manual Unification Algorithm

(P x (g x) (g (£ 2))) (P (£ w v v)
po={}

Page 279

Manual Unification Algorithm

(P x (g x) (g (£ 2))) (P (£ w v v)
po=1{}

x| (g x) (g (£ @))) o (E W) vov)
io= {o{ (£ w/x}={(£ w/x}

Page 280

Manual Unification Algorithm

(P x (gx) (g (£ 2))) (P (f w) v v)
po={}

x| (g x) (g (£ 2))) o] E W v ov)
io= ol w/x)={t w/x)

J (g x)| (g (£ 2))) ce V| V)

Page 281

Manual Unification Algorithm

(P x (g x) (g (£ 2))) (P (f w v v)
po= 1t

x| (g x) (g (£ 2))) o] (E 0| vov)
io= {Yo{ (£ w/x}={(£ w)/x)

J (g x)| (g (£ 2))) ce V| V)

J(@g (£ w)| (g (f 2))) SRR

Page 282

Manual Unification Algorithm

(P x (g x) (g (£ a))) (P (f u) v v)
po=1{}

x| (g x) (g (£ 2))) o] (Ew) | vov)
io= {Jo{ (£ w/x}={(£ w)/x)

lE x| @ ¢ a))) SEAR

(g (Fw) | (g (£ a))) SRR
p = {E w/x}o{(g (£ W)/v} = {{ w/x, (g (£ w)/v}

Page 283

Manual Unification Algorithm

(P x (g x) (g (f 2)))

po={}

x| (g x) (g (£ 2)))
po= {}o{(f W/x}={(f w)/x}

J (g x)| (g (f a)))
J(g (£ w)| (g (£ 2)))
J(g (£ @) v

)

(P (f w) v v)

(£ u)

v V)

v v)

. V

Page 284

V)

p = {E w)/x}o{(g (£ W)/v} = {(f w/x, (g (f w)/v}

Manual Unification Algorithm

®x (g x) (g (fa))

po=1{}

J (g x)| (g

J (g (£ w)

| (g (£ a))

J (g (£ a))

x| (g x) (g (£ a)))
u = Qo w/xb={(w/x)

(f a)))
(g (£ a)))

) R

(P (f u) v v)

(£ u)

Vv V)

v v)

. V

)

) o (g (£ W) P

Page 285

V)

p = {E w)/x}o{(g (£ W)/v} = {{E w/x, (g (f w)/v}

Manual Unification Algorithm

(P x (g x) (g (£ a)))
po=1{}

. X

(g x) (g (f a)))

S (g x)| (g (f a)))

b= ol w/a)={ w/z)

|V

(P (f u) v v)

(£ u)

vV V)

v v)

. V

)

J g (£ w))

J(g (£ w)| (g (£ a)))
J(g (£ a)))

J(g (£ a))) ..
Jal))) Loquld))

Page 286

V)

p = {E w/x}o{(g (£ W)/v} = {{E w/x, (g (f w)/v}

Manual Unification Algorithm

(P x (g x) (g (£ 2))) (P (£ w v v)

po={}

o x] (g x) (g (£ @))) o (E W) | vov)

i o= (ol w/x}={(t w)/x)

@] @ ¢) e RS

. (g (£ w)) | (g (£ a))) SRR

p = {E w)/x}o{(g (£ W)/v} = {(w/x, (g (f w)/v}
J (g (£ a))) v D

(g (£)P (g (£ W) P

Jal)) cou)))

p={(E w/x, (g (£ w)/vio{a/u} = {(£ a)/x, (g (£ a))/v, a/u}

Px(gx) (gfa)))u=CEuw vvu=((E (fa) (g (fa) (g a)))

Page 287

Unification Algorithm

(defun unify (A B &optional mu)
(cond ((eql mu ’FAIL) °’FAIL)
((eql A B) mu)
((variablep A) (unifyVar A B mu))
((variablep B) (unifyVar B A mu))
(Cor (atom A) (atom B)) ’FAIL)
((/= (length A) (length B)) °’FAIL)
(t (unify (rest A)
(rest B)
(unify (first A) (first B) mu)))))

Note: a more efficient version is implemented in prover.cl

Page 288

Unify Var

(defun unifyVar (var term subst)
(if (var-in-substp var subst)
(unify (term-of-var-in-subst var subst) term subst)
(let ((newterm (apply-sub subst term)))
(cond ((eql var newterm) subst)
((occursIn var newterm) ’FAIL)
(t (compose subst

(list (pair newterm var))))))))

Page 289

Program Assertion

If original A and B have no variables in common,
then throughout the above program

no substitution will have one of its variables occurring in one of its

terms.

Therefore, for any expression £ and any substitution ¢ formed in

the above program, o0 = Eo.

Page 290

4.3.4 Resolution Refutation

Example

To decide if

{=Driwes(z,y), Driver(x)}, {—-Driver(z), - Passenger(zx)},
{ Drives(motherOf (Tom), Betty)}

= {—Passenger(motherOf (Tom))}

1. {—-Drives(z;,y1), Driver(z;)} Assumption

2. {—Driver(zz2), Passenger(zz)} Assumption

3. {Drives(motherOf(Tom), Betty)} Assumption

5. {Passenger(motherO f(Tom))} From query

6. {—Driver(motherOf(Tom))} R,2,5, {motherO f(Tom)/x2}
7. {—Drives(motherOf(Tom), y7)} R,1,6,{motherOf(Tom)/x1}
8. {} R,3,7,{Betty/y7}

Page 291

Example Using prover

prover(21): (prove ’((or (not (Drives ?7x 7y)) (Driver 7x))
(or (not (Driver 7x)) (not (Passenger 7x)))
(Drives (mother0f Tom) Betty))
’(not (Passenger (mother0Of Tom))))

1 ((Drives (mother0f Tom) Betty)) Assumption
2 ((not (Drives 73 75)) (Driver 73)) Assumption
3 ((not (Driver 79)) (not (Passenger 79))) Assumption
4 ((Passenger (mother0f Tom))) From Query
5 ((not (Driver (motherOf Tom)))) R,4,3,{(mother0f Tom)/?79}
6 ((not (Drives (motherOf Tom) 786))) R,5,2,{(mother0f Tom)/73}
7 il R,6,1,{Betty/786}
QED

Page 292

Example Using snark

snark-user(84): (initialize)
snark-user(85): (assert ’(or (not (Drives ?x ?y)) (Driver 7x)))
snark-user(86): (assert ’(or (not (Driver 7?x))

(not (Passenger 7x))))
snark-user(87): (assert ’(Drives (mother0f Tom) Betty))
snark-user(88): (prove ’(not (Passenger (motherOf Tom))))
(Refutation

(Row 1 (or (not (Drives 7x 7y)) (Driver 7x)) assertion)

(Row 2 (or (not (Driver 7x)) (not (Passenger 7x))) assertion)
(Row 3 (Drives (motherOf Tom) Betty) assertion)

(Row 4 (Passenger (mother0f Tom)) ~“conclusion)

(Row 5 (not (Driver (mother0f Tom))) (resolve 2 4))

(Row 6 (not (Drives (mother0f Tom) 7x)) (resolve 5 1))

(Row 7 false (resolve 6 3))

)

:proof-found

Page 293

Resolution Refutation is Incomplete
for FOL

L {P(u), P(v)}

2. {~P(x),~P(y)}
3. {P(w),=P(2)} R,1,2{u/z,w/v,z/y}

Page 294

Clause-Form FOL Rules of Inference
Version 3 (Last)

. {A,Ly,...,L,},{=B,Lys1,-.., L}
Resolution:

{LLLL? s 7Ln,u7 L’n—|-1,u7 s 7Lm:u}
where 1 is an mgu of A and B.
{A,B,Ly,...,L,}

{Aﬂa Lllua s 7Lnu}

Factoring;:

where 1 is an mgu of A and B.
(Note: Special case of Ul.)

Page 295

Resolution Refutation with Factoring
is Complete
If Ay,...,An EQ, then Ay,..., Ap, —Q Frer {}.

For example,
L. {P(u), P(v)}
2. {=P(x),~P(y)}

3. {P(w)} F. 1, {w/u,w/v}
4. {=P(2)} F.2{z/x,z/y}
5. {} R,3,4,{w/z}

However, resolution refutation with factoring is still not a decision

procedure—it is a semi-decision procedure.

Page 296

Factoring (Condensing) by snark

snark-user(30): (initialize)

; Running SNARK from ...

nil

snark-user(31): (assert ’(or (P 7u) (P ?7v)))
nil

snark-user(32): (prove ’(and (P 7x) (P 7y)))

(Refutation
(Row 1
(or (P 7x) (P 7y))
assertion)
(Row 2
(P 7x)
(condense 1))
(Row 3
(or (not (P 7x)) (mot (P ?7y)))
negated_conjecture)
(Row 4
false
(rewrite 3 2))

:proof-found

SNARK has both factoring and condensing, which is factoring combined with immediate
subsumption elimination when the factored clause subsumes the original clause. The clause ’(or (p
a ?x) (p ?y b)) gets factored, but not condensed. [Mark Stickel, personal communication, March,
2008]

Page 297

Efficiency Rules

Tautology Elimination: If clause C' contains literals L and —L,
delete C' from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause C' contains a literal A (—A)
and no clause contains a literal =B (B) such that A and B are
unifiable, delete C from the set of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses
(7 and (5 such that there is a substitution o for which
Cio C (s, delete Cy from the set of clauses. (Check
throughout.)

These rules delete unhelpful clauses.

Subsumption may be required to cut infinite loops.

Page 298

Subsumption Cutting a Loop

prover(22): (prove ’((if (and (ancestor 7x 7y)
(ancestor 7y 7z))
(ancestor 7x 7z)))

> (ancestor ?x stu))
1 ((not (ancestor 70 71)) (not (ancestor 71 72))

(ancestor 70 72)) Assumption

2 ((not (ancestor 73 stu))) From Query

Page 299

Initial Resolution Steps

((not (ancestor 70 71)) (not (ancestor 71 72))

(ancestor 70 72)) Assumption
((not (ancestor 73 stu))) From Query
((not (ancestor 74 75)) (not (ancestor 7?5 stu)))

R,2,1,{stu/72, 70/73}
((not (ancestor 76 stu)) (not (ancestor 77 78))

(not (ancestor 78 76))) R,3,1,{72/75, ?0/74}
((not (ancestor 79 710)) (not (ancestor 710 711))

(not (ancestor 711 stu))) R,3,1,{stu/?2, 70/75}

Page 300

Subsumption Cuts the Loop

1 ((not (ancestor 70 71)) (not (ancestor 71 72))
(ancestor 70 72)) Assumption
2 ((not (ancestor 73 stu))) From Query
(not (ancestor 74 75)) (not (ancestor 75 stu)))
R,2,1,{stu/72, 70/73}
4 ((not (ancestor stu stu))) F,3,{stu/?5, stu/?4}
Deleting 4 ((not (ancestor stu stu)))
because it’s subsumed by 2 ((not (ancestor 73 stu)))
Deleting 3 ((not (ancestor 74 75)) (not (ancestor 75 stu)))
because it’s subsumed by 2 ((not (ancestor 73 stu)))

nil

Page 301

Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Least Symbol Count Version: Count symbols, not literals.

Set of Support: One clause in each pair being resolved must

descend from the query.
Many others

These are heuristics for finding {} faster.

Page 302

Least Symbol Count Version

of Unit Preference

Instead of counting literals,
count symbols
ignoring negation operator.

Equivalent to standard unit preference for Propositional Logic.

Page 303

1(1/2)
2(1/2)
3(2/5)
4(3/6)
5(1/2)
6(1/3)
7(1/4)
8(1/5)

9(1/6)

Problem with

Literal-Counting Unit Preference

((walkslikeduck daffy)) Assumption
((talkslikeduck daffy)) Assumption

((not
((not
((not
((not
((not
((not

((not

(duck (motherof ?71))) (duck 71)) Assumption
(walkslikeduck ?73)) (not (talkslikeduck 73)) (duck 73)) Assumption
(duck daffy))) From Query
(duck (motherof daffy)))) R,5,3,{daffy/71}
(duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/71}
(duck
(motherof
(motherof
(motherof daffy)))))) R,7,3,{(motherof (motherof daffy))/71}
(duck
(motherof
(motherof
(motherof
(motherof
daffy))))))) R,8,3,{(motherof (motherof (motherof daffy)))/?1}

Page 304

Solution with

Least Symbol Count Version

1(1/2) ((walkslikeduck daffy)) Assumption

2(1/2) ((talkslikeduck daffy)) Assumption

3(2/5) ((not (duck (motherof 75))) (duck 75)) Assumption

4(3/6) ((not (walkslikeduck ?713)) (not (talkslikeduck 713)) (duck 713)) Assumption
5(1/2) ((not (duck daffy))) From Query

6(1/3) ((not (duck (motherof daffy)))) R,5,3,{daffy/?1}

7(1/4) ((not (duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/71}
8(2/4) ((not (walkslikeduck daffy)) (not (talkslikeduck daffy))) R,5,4,{daffy/73}
9(1/2) ((not (talkslikeduck daffy))) R,8,1,{}

10(0/0) nil R,9,2,{}

QED

Page 305

4.4 Translating Standard FOL Wfls into
FOL Clause Form
Useful Meta-Theorems

e If A is (an occurrence of) a subformula of B,
and = A < C,
then = B < B{C/A}

o Vri(---Va,(---JyA(ry,...,2pn,y)) --) is consistent
if and only if
Ver(c Ve, (- Alxy, .oy, (21, oy Tn)) o0) o)
1s consistent,
where f™ is a new Skolem function.

Note: use a new Skolem constant instead of f9().

Page 306

Translating Standard FOL Wfls into FOL
Clause Form
Step 1

Eliminate occurrences of < using
=(Ae B)e (A= B)AN(B= A))

From:
Vx|[Parent(z) < (Person(x) A Jy(Person(y) A childO f(y, x)))]

To:
Va|(Parent(x) = (Person(x) A Jy(Person(y) A childOf(y,x)))
A((Person(x) A Jy(Person(y) A childOf(y,x))) = Parent(x))]

Page 307

Translation Step 2

Eliminate occurrences of = using
= (A= B) < (mAV B)

From:

Va|(Parent(x) = (Person(x) A Jy(Person(y) A childOf(y,x))))
A((Person(x) A Jy(Person(y) A childOf(y,x))) = Parent(x))]

To:

Va|[(—=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A(=(Person(x) A Jy(Person(y) A childO f(y,z))) V Parent(x))]

Page 308

Translation Step 3

Translate to miniscope form using

— A< A
— (AANB)< (mAVv-B) E-(AVB)& (-AA-B)

= —VrA(r) < dJr—A(x) = —dzA(x) & Vo-A(x)

From:

Vx|(=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A(=(Person(x) A Jy(Person(y) A childO f(y,x))) V Parent(x))]

To:

Va|[(—=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A((=Person(x) V Vy(—Person(y) V —childO f(y,x))) V Parent(x))]

Page 309

Translation Step 4

Rename apart: If any two quantifiers bind the same

variable, rename all occurrences of one of them.

From:

Vx|(=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A((=Person(x) V Vy(—Person(y) V =childO f(y,x))) V Parent(x))]

To:

Va|(=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A((—Person(x) V Vz(—Person(z) V —childOf(z,x))) V Parent(x))]

Page 310

Optional Translation Step 4.5

Translate into Prenex Normal Form using:
= (AAVzB(x)) © Ve(ANB(x)) E(AANJzB(x)) < dJx(A A B(x))
= (AVvVzB(x)) ©Vx(AV B(x)) E (AV3JdzB(x)) < Jdx(AV B(x))
as long as x does not occur free in A.

From:
Vx|(=Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A((=Person(x) V Vz(—Person(z) V —childOf(z,x))) V Parent(x))]
To:
VxAyVz|(—~Parent(x) V (Person(x) A (Person(y) A childOf(y,x))))
A((=Person(x) V (—mPerson(z) V =childOf(z,x))) V Parent(x))]

Page 311

Translation Step 5

Skolemize

From:

Vz[(—Parent(x) V (Person(x) A Jy(Person(y) A childO f(y,x))))
A((=Person(z) VVz(—Person(z) V =childOf(z,x))) V Parent(z))]

To:

Vz[(—Parent(x) V (Person(x) A (Person(f(x)) A childOf(f(x),x))))
A((—Person(z) V Vz(—Person(z) V —childOf(z,x))) V Parent(x))]

or

From:
VeIyVz[(—Parent(x) V (Person(xz) A (Person(y) A childO f(y,x))))
A((=Person(z) V (—Person(z) V —childO f(z,x))) V Parent(x))]
To:
VaVz[(—Parent(x) V (Person(x) A (Person(f(x)) A childOf(f(x),x))))
A((=Person(xz) V (=Person(z) V —childO f(z,x))) V Parent(x))]

Page 312

Translation Step 6

Discard all occurrences of “Vz” for any variable .

From:

Vx|(=Parent(x) V (Person(x) A (Person(f(x)) A childOf(f(x),x))))
A((=Person(x) V Vz(—Person(z) V —childOf(z,x))) V Parent(x))]

Or from:

VaVz[(-mParent(x) V (Person(x) A (Person(f(x)) A childOf(f(x),x))))

A((=Person(x) V (—mPerson(z) V =childO f(z,x))) V Parent(x))]

To:

(= Parent(x) V (Person(xz) A (Person(f(x)) A childOf(f(x),x))))

A((=Person(z) V (mPerson(z) V —childO f(z,x))) V Parent(x))]

Page 313

Translation Step 7

CNF': Translate into Conjunctive Normal Form, using
= (AV(BAC)) < ((AVB)AN(AV(O))

= (BANC)VA) < (BVAAN(CVA)
From:

(= Parent(x) V (Person(x) A (Person(f(x)) A childOf(f(x),x))))
A((=Person(z) V (-mPerson(z) V —childO f(z,x))) V Parent(x))]
To:
[(((mParent(x) V Person(x))
A((=Parent(x) V Person(f(x)))
A(=Parent(z) V childOf(f(x),x)))))
A((=Person(x) V (-mPerson(z) V —childOf(z,x))) V Parent(x))]

Page 314

Translation Step 8

Discard extra parentheses using the associativity of A and V.

From:
[((mParent(x) V Person(x))

A((=Parent(z) V Person(f(x)))

A(—=Parent(z) V childOf(f(x),x)))))

A((=Person(x) V (mPerson(z) V —childOf(z,x))) V Parent(x))]
To:
(= Parent(z) V Person(x))

A(—=Parent(xz) V Person(f(x)))
A(—=Parent(x) V childOf(f(x),x))
A(—Person(z) V —Person(z) V =childO f(z,x) V Parent(x))]

Page 315

Translation Step 9

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

(= Parent(z) V Person(x))
A(—Parent(x) V Person(f(x)))
A(—=Parent(xz) V childOf(f(x),x))

A(=Person(x) V ~Person(z) V —childO f(z,x) V Parent(x))]

To:

{{—Parent(x), Person(x)},

{=Parent(x), Person(f(x))},

{=Parent(x), childOf(f(x),x)},
(z) (2

{=Person(x),~Person(z),~childOf(z,x), Parent(x)}}

Page 316

Translation Step 10

Rename the clauses apart

so that no variable occurs in more than one clause.

From:

{{—Parent(x), Person(x)},
{=Parent(x), Person(f(x))},
{=Parent(x),childOf(f(x),x)},

{=Person(x), ~Person(z), childO f(z,x), Parent(x)}}
To:
{{—Parent(x1), Person(x1)},
{=Parent(xs), Person(f(x2))},
{=Parent(xs), childOf(f(x3),x3)},
{=Person(xy), "Person(zy), ~childO f(z4,24), Parent(xs)}}

Page 317

Use of Translation

Ay,..., A, =B
iff
The translation of A; A--- A A,, A =B into a set of clauses is

contradictory.

Page 318

Example with ubprover

(prove
>((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))
> (Parent Betty))

1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((child0f Tom Betty)) Assumption
4 ((not (Parent 74)) (Person 74)) Assumption
5 ((not (Parent 75)) (Person (S3 75))) Assumption
6 ((not (Parent 76)) (child0f (S3 76) 76)) Assumption
7 ((not (Person 77)) (not (Person 78))

(not (child0f 78 ?7)) (Parent 77)) Assumption
8 ((not (Parent Betty))) From Query

Page 319

Resolution Steps

((Person Tom))
((Person Betty))
((childOf Tom Betty))

1
2
3
7 ((not
(not
8 ((not
9 ((not
(not
13 ((not
(not
14 ((not
15 nil
QED

(Person ?77)) (not (Person 78))
(child0f 7?8 ?7)) (Parent ?77))
(Parent Betty)))

(Person Betty)) (not (Person 79))
(child0f 7?9 Betty)))

(Person Betty))

(child0f Tom Betty)))

(child0f Tom Betty)))

Page 320

Assumption
Assumption

Assumption

Assumption

From Query
R,8,7,{Betty/?7}
R,9,1,{Tom/?9}

R,13,2,{}
R,14,3,{}

Example with SNARK

snark-user(42): (initialize)
; Running SNARK from ...
nil
snark-user(43): (assert
>(forall (x)
(iff (Parent x)
(and (Person x)
(exists (y)
(and (Person y) (childOf y x)))))))
nil
snark-user(44): (assert ’(Person Tom))
nil
snark-user (45): (assert ’(Person Betty))
nil
snark-user(46): (assert ’(child0Of Tom Betty))
nil

snark-user(47): (prove ’(Parent Betty))

Page 321

Initial Set of Clauses

(Row 1 (or (not (Parent 7x)) (Person ?7x)) assertion)

(Row 2 (or (not (Parent 7x)) (Person (skolembiryl ?x))) assertion)

(Row 3 (or (not (Parent 7x)) (childOf (skolembiryl ?x) ?x)) assertion)

(Row 4 (or (Parent 7x) (not (Person 7x)) (not (Person ?7y)) (not (child0f 7y 7
assertion)

(Row 5 (Person Tom) assertion)

(Row 6 (Person Betty) assertion)

(Row 7 (childOf Tom Betty) assertion)

(Row 8 (not (Parent Betty)) negated_conjecture)

(Row 9 (or (not (Person 7x)) (not (childOf 7x Betty))) (rewrite (resolve 8 4)

(Row 10 false (rewrite (resolve 9 7) 5))

Page 322

Refutation

(Refutation

(Row 4 (or (Parent 7x) (not (Person 7x)) (not (Person ?7y)) (not (child0f 7y 7
assertion)

(Row 5 (Person Tom) assertion)

(Row 6 (Person Betty) assertion)

(Row 7 (childOf Tom Betty) assertion)

(Row 8 (not (Parent Betty)) negated_conjecture)

(Row 9 (or (not (Person 7x)) (not (childOf 7x Betty))) (rewrite (resolve 8 4)

(Row 10 false (rewrite (resolve 9 7) 5))
)

:proof-found

Page 323

A ubprover Example
Using the Skolem Function

prover(72): (prove

~N O O W

[o0]

10
QED

’((forall x (iff (Parent x)

(and (Person x)

(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (Parent Betty))

’ (exists x (childOf x Betty)))

((Person Tom))
((Person Betty))
((Parent Betty))

((not
((not
((not
((not

(not
((not
((not

nil

(Parent 74)) (Person 74))

(Parent ?75)) (Person (S3 75)))
(Parent ?76)) (childOf (S3 ?76) 76))
(Person ?77)) (not (Person 78))
(child0f 78 ?7)) (Parent 77))
(child0f 710 Betty)))

(Parent Betty)))

Assumption
Assumption
Assumption
Assumption
Assumption

Assumption

Assumption

From Query

R,8,6,{Betty/76, (S3 Betty)/710}
R,9,3,{}

Page 324

4.5 Asking Wh Questions

Given

Vx|Parent(x) < (Person(xz) A Jy(Person(y) A childO f(y,x)))]

Person(Tom)
Person(Betty)

childO f(Tom, Betty)

Ask: “Who is a parent?”

Answer via constructive proof of dx Parent(x).

Page 325

Try to Answer Wh Question

(prove
>((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))

> (exists x (Parent x)))

1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((Parent Betty)) Assumption
4 ((not (Parent 74)) (Person 74)) Assumption
5 ((not (Parent 75)) (Person (S3 75))) Assumption
6 ((not (Parent 76)) (child0f (S3 76) 76)) Assumption
7 ((not (Person 77)) (not (Person 78))

(not (childOf 7?8 77)) (Parent ?77)) Assumption
8 ((not (child0f 710 Betty))) From Query

Page 326

Resolution Steps

1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((child0f Tom Betty)) Assumption
7 ((not (Person 77)) (not (Person 78))
(not (child0f 78 77)) (Parent 77)) Assumption
8 ((not (Parent 710))) From Query
9 ((not (Person 711)) (not (Person 712))
(not (child0f 712 ?711))) R,8,7,{?7/710}
15 ((not (Person 716)) (not (childOf Tom ?716))) R,9,1,{Tom/?712}
16 ((not (childOf Tom Tom))) R,15,1,{Tom/?16%}
17 ((not (childOf Tom Betty))) R,15,2,{Betty/716%}
18 nil R,17,3,{}
QED

Page 327

The Answer Predicate

Instead of query 3zq -+ -z, P(x1,...,Tp),

and resolution refutation with {—=P(z1,...,%,)}
until {},
use Vzrq - - -Vxn(P(:Ul, e ,:L’n) = ATLSUJGT(P(SCL e ,mn)))

and do direct resolution with

{=P(x1,...,2,), Answer(P(x1,...,2,))}

until {(Answer...)--- (Answer...)}.

Page 328

General Procedure for

Inserting The Answer Predicate

Let:
() be either V or d;

Q be either 3 or V, respectively:

Prenex Normal form of query be Q1x1 - Qpx, P(z1,...,25).

Do direct resolution with clause form of
Qix1 - -mxn(P(xl, .oy Ty) = Answer(P(x1,...,T,)))

until generate {(Answer...)--- (Answer...)}.

Page 329

Using the Answer Predicate

(setf *UseAnswer* t)
(prove
>((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))

> (exists x (Parent x)))

1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((childOf Tom Betty)) Assumption
4 ((not (Parent 73)) (Person 73)) Assumption
5 ((not (Parent 74)) (Person (S2 74))) Assumption
6 ((not (Parent 75)) (childOf (S2 7?5) 75)) Assumption
7 ((not (Person 76)) (not (Person ?77))

(not (childOf 7?7 76)) (Parent 76)) Assumption
8 ((not (Parent 79)) (Answer (Parent 79))) From Query

Page 330

Resolution Steps

1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((childOf Tom Betty)) Assumption
7 ((not (Person 76)) (not (Person ?77))

(not (child0f 77 76)) (Parent 76)) Assumption
8 ((not (Parent 79)) (Answer (Parent 79))) From Query

9 ((Answer (Parent ?710)) (not (Person 710))
(not (Person ?711)) (not (child0f 7?11 ?10))) R,8,7,{?6/79}
15 ((Answer (Parent Betty))

(not (Person Betty)) (not (Person Tom))) R,9,3,{Betty/710,
Tom/?711}
26 ((Answer (Parent Betty)) (mot (Person Tom))) R,15,2,{}
29 ((Answer (Parent Betty))) R,26,1,{}

QED

Page 331

Answer Predicate in snark

snark-user(11): (assert ’(forall x (iff (Parent x)
(exists y (and (Person y)
(childOf y x))))).
nil
snark-user (12): (assert ’(Person Tom))
nil
snark-user (13): (assert ’(Person Betty))
nil
snark-user (14): (assert ’(child0f Tom Betty))
nil
snark-user (15): (prove ’(exists x (Parent x))

:answer ’ (Parent x))

Page 332

snark Refutation

(Refutation

(Row 3
(or (Parent 7x) (not (Person 7y)) (mot (childOf ?y 7x)))
assertion)

(Row 4 (Person Tom) assertion)

(Row 6 (childOf Tom Betty) assertion)

(Row 7 (not (Parent 7x)) negated_conjecture
Answer (Parent 7x))

(Row 8 (or (not (Person 7x)) (not (child0f ?x ?7y))) (resolve 7 3)
Answer (Parent 7y))

(Row 9 false (rewrite (resolve 8 6) 4)
Answer (Parent Betty))

)

:proof-found

Page 333

Answer Predicate with ask

From same SNARK KB:

snark-user(18): (ask ’(exists x (Parent x)) :answer ’(Parent x))
(Parent Betty)

Page 334

Using :printProof

snark-user(19): (ask ’(Parent 7x) :answer ’(Parent 7x)
:printProof t)
(Refutation
(Row 3 (or (Parent 7x) (mot (Person 7y)) (not (childOf ?y 7x)))
assertion)
(Row 4 (Person Tom) assertion)
(Row 6 (childOf Tom Betty) assertion)
(Row 13 (not (Parent 7x)) negated_conjecture
Answer (Parent 7x))
(Row 14 (or (not (Person 7x)) (not (childOf ?x ?y)))
(resolve 13 3)
Answer (Parent 7y))
(Row 15 false (rewrite (resolve 14 6) 4)
Answer (Parent Betty))
)
(Parent Betty)

Page 335

Answer Predicate with query

From same SNARK KB:

snark-user(9): (query "Who is a parent?"
’(exists x (Parent x))

ranswer ’ (Parent x))

Who is a parent?
(ask ’(exists x (Parent x))) = (Parent Betty)

Page 336

query with :answer and

snark-user(10): (query "Who is a parent?"
>(exists x (Parent x)) :answer ’(Parent x) :printProof t)
Who is a parent?
(Refutation
(Row 3
(or (Parent 7x) (not (Person 7y)) (not (childOf 7y 7x)))
assertion)
(Row 4
(Person Tom)
assertion)
(Row 6
(childOf Tom Betty)
assertion)
(Row 19
(not (Parent 7x))
negated_conjecture
Answer (Parent 7x))
(Row 20
(or (not (Person ?x)) (not (childOf ?7x 7y)))
(resolve 19 3)
Answer (Parent 7y))
(Row 21
false
(rewrite (resolve 20 6) 4)
Answer (Parent Betty))

(ask ’(exists x (Parent x))) = (Parent Betty)

Page 337

:printProot

Disjunctive Answers

(prove ’((0n a b)(On b c)

o O b W N -

(Red a) (Green c)
(or (Red b) (Green b)))
>(exists (x y)
(and (Red x) (Green y) (On x y))))

((On a b)) Assumption
((On b c)) Assumption
((Red a)) Assumption
((Green c)) Assumption
((Red b) (Green b)) Assumption

((not (Red 728)) (not (Green 730))
(not (On 728 730))
(Answer (and (Red 728) (Green 730) (On 728 730)))) From Query

Page 338

10

11

13

Resolution Steps
((Answer (and (Red a) (Green 7107) (On a ?7107)))
(not (On a 7107)) (not (Green ?7107)))

((Answer (and (Red 7112) (Green c) (On 7112 c)))
(not (On 7112 c)) (not (Red 7112)))

((Answer (and (Red b) (Green ?7117) (On b 7117)))
(not (On b ?117)) (not (Green ?7117)) (Green b))

((not (Red b))
(Answer (and (Red b) (Green c) (On b c))))

Page 339

R,6,3,{a/728}

R,6,4,{c/730}

R,6,5,{b/728}

R,10,2,{b/7112}

Resolution Finished

16 ((Answer (and (Red b)
(Green b))

20 ((not (On a b))
(Answer (and (Red a)
(Answer (and (Red b)

22 ((Answer (and (Red b)
(Answer (and (Red a)
QED

(Green

(Green

(Green

(Green

(Green

Page 340

c)

b)
c)

c)
b)

(On

(On
(On

(On
(On

b c)))
R,13,5,{}

a b)))

b c)))) R,9,16,{b/7107}

b c)))
a b)))) R,20,1,{}

Multiple Clauses From Query

(prove ’((0n a b)(On b c)
(Red a) (Green c)
(or (Red b) (Green b)))
>(exists x (or (Red x) (Green x))))

1 ((On a b)) Assumption
2 ((On b c)) Assumption
3 ((Red a)) Assumption
4 ((Green c)) Assumption
5 ((Red b) (Green b)) Assumption
6 ((not (Red 725))

(Answer (or (Red 725) (Green 725)))) From Query
7 ((not (Green 727))

(Answer (or (Red 727) (Green 727)))) From Query
8 ((Answer (or (Red a) (Green a)))) R,6,3,{a/725}
QED

Page 341

Resolution Produces Only 1 Answer

snark-user (20): (initialize)
; Running SNARK from ...

nil

snark-user(21): (assert ’ (Man Socrates))

nil

snark-user (22): (assert ’(Man Turing))

nil

snark-user(23): (ask ’(Man 7x) :answer ’(0One man is 7x))

(One man is Turing)

Page 342

Generic and Hypothetical Answers

Every clause that descends from a query clause (that contains an

Answer predicate) is an answer of some sort.*

Page 343

@Debra T. Burhans and Stuart C. Shapiro, Defining Answer Classes Using
Resolution Refutation, Journal of Applied Logic 5, 1 (March 2007), 70-91 .
http://www.cse.buffalo.edu/~shapiro/Papers/bursha05.pdf

Example of
Generic and Hypothetical Answers

Question

(prove ’((forall (x y z) (if (and (Member x FBS) (Sport y)
(Athlete z) (PlaysWell z y))
(ProvidesScholarshipFor x z)))
(forall x (if (Sport x) (Activity x)))
(forall x (if (Activity x) (or (Sport x) (Game x))))
(forall x (if (or (Member x MAC) (Member x Bigl0) (Member Pacl10 x))
(Member x FBS)))

(Member Buffalo MAC) (Member KentSt MAC)
(Member Wisconsin Bigl0O) (Member Indiana BiglO)
(Member Stanford Pacl10) (Member Berkeley Pac10)
(Activity Frisbee))

>(exists x (ProvidesScholarshipFor Buffalo x)))

Page 344

O© 00 N O O b W N -

e
w N -, O

(IR
D

Initial Clauses

((Member Buffalo MAC))
((Member KentSt MAC))
((Member Wisconsin Bigl0))
((Member Indiana Bigl0))
((Member Stanford Pac10))
((Member Berkeley Pac10))
((Activity Frisbee))

((not
((not
((not
((not
((not
((not

(not
((not

(Answer (ProvidesScholarshipFor Buffalo 715)))

(Sport ?77)) (Activity 77))

(Member 711 MAC)) (Member 711 FBS))
(Member 712 Bigl0)) (Member 712 FBS))
(Member Pacl10 713)) (Member 713 FBS))
(Activity 79)) (Sport 79) (Game 79))

(Member 73 FBS)) (not (Sport 74)) (not (Athlete 75))
(PlaysWell 7?5 74)) (ProvidesScholarshipFor 73 75))

(ProvidesScholarshipFor Buffalo 715))

Page 345

Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption

Assumption

Assumption

From Query

15

16

17

18

19

20

21

22

23

24

25

26

nil

Resolvents

((Answer (ProvidesScholarshipFor Buffalo 716)) (not (Member Buffalo FBS)) (not (Sport 717))

(not (Athlete 716)) (not (PlaysWell 716 717))) R,14,13,{7?5/715, Buffalo/?73}

((not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo 718)) (not (Sport 719))

(not (Athlete ?718)) (nmot (PlaysWell 718 719))) R,15,9,{Buffalo/?11}

((not (Member Buffalo Bigl0)) (Answer (ProvidesScholarshipFor Buffalo 720)) (not (Sport 721))

(not (Athlete 720)) (not (PlaysWell 720 721))) R,15,10,{Buffalo/712}

((not (Member Pacl10 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo 722)) (not (Sport 723))

(not (Athlete ?722)) (not (PlaysWell 722 723))) R,15,11,{Buffalo/?713}

((Game 724) (not (Activity 724)) (Answer (ProvidesScholarshipFor Buffalo ?725))

(not (Member Buffalo FBS)) (not (Athlete 725)) (not (PlaysWell 725 724))) R,15,12,{?9/717}

((Game 726) (not (Activity 726)) (not (Member Pacl0 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo 727))
(not (Athlete 727)) (not (PlaysWell 727 726))) R,18,12,{79/723}

((Game 728) (not (Activity 728)) (not (Member Buffalo Bigl0)) (Answer (ProvidesScholarshipFor Buffalo 729))
(not (Athlete ?729)) (not (PlaysWell 729 728))) R,17,12,{?79/721}

((Answer (ProvidesScholarshipFor Buffalo 730)) (not (Sport 731)) (not (Athlete ?730))

(not (PlaysWell 730 731))) R,16,1,{}

((Game 732) (not (Activity 732)) (not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo 733))
(not (Athlete 733)) (not (PlaysWell 733 732))) R,16,12,{79/719}

((Game 734) (not (Activity 734)) (Answer (ProvidesScholarshipFor Buffalo 735)) (not (Athlete 735))

(not (PlaysWell 735 734))) R,22,12,{79/731}

((Game Frisbee) (Answer (ProvidesScholarshipFor Buffalo 736)) (not (Athlete 736))

(not (PlaysWell 7?36 Frisbee))) R,24,7,{Frisbee/?734}

((not (Sport 737)) (Game 737) (Answer (ProvidesScholarshipFor Buffalo 738)) (not (Athlete 738))

(not (PlaysWell 738 ?737))) R,24,8,{77/734}

Page 346

Non-Subsumed Resolvents

22 ((Answer (ProvidesScholarshipFor Buffalo 730))
(not (Sport 731)) (not (Athlete 730))
(not (PlaysWell 730 731)))

24 ((Game 734) (not (Activity 734))
(Answer (ProvidesScholarshipFor Buffalo 735))
(not (Athlete 735)) (not (PlaysWell 735 ?34)))

25 ((Game Frisbee)

(Answer (ProvidesScholarshipFor Buffalo 736))
(not (Athlete 736)) (not (PlaysWell 736 Frisbee)))

Page 347

Interpretation of Clauses
As Generic Answers

22 ((Answer (ProvidesScholarshipFor Buffalo 730))
(not (Sport 731)) (not (Athlete 730))
(not (PlaysWell 730 731)))

Vay|Athlete(x) A Sport(y) A PlaysWell(x, y)
= ProvidesScholarshipFor(Buffalo, x)]

24 ((Game 734) (not (Activity 734))
(Answer (ProvidesScholarshipFor Buffalo 735))
(not (Athlete ?35)) (not (PlaysWell 735 734)))

Vay|Athlete(x) A Activity(y) A = Game(y) A PlaysWell(z, y)
= ProvidesScholarshipFor(Buffalo, x)]

Page 348

Interpretation of Clause

As Hypothetical Answer

25 ((Game Frisbee)
(Answer (ProvidesScholarshipFor Buffalo 736))
(not (Athlete 736)) (not (PlaysWell 736 Frisbee)))

—~Game(Frisbee) = Vxy|Athlete(z) N\ PlaysWell(x, Frisbee)
= ProvidesScholarshipFor(Buffalo, x)]

Page 349

Rule-Based Systems

Every FOL KB

can be expressed as a set of rules of the form
VZ(C1(Z) V-V Cp(T))

or

VZ(A1 ()N - NAL(T) = CL(T) V-V O (7))
or

VZ(A1(Z) N - NAL(T) = C(T))

where A;(7) and C;(x) are literals.

Page 350

Wh Questions in Rule-Based Systems

Given rule VZ(A(T) = C(T))
Ask C(y)?
Backchain to subgoal A(T)u, where i is an mgu of C(T)) and C (7))

Moral: Unification is generally needed in backward chaining

systems.

Unification is correct pattern matching when both structures have

variables.

Page 351

Forward Chaining & Unification

Forward chaining generally matches a ground fact with rule

antecedents.

Forward chaining does not generally require unification.

Page 352

Common Formalizing Difficulties

Every raven is black: Vax(Raven(x) = Black(x))
Some raven is black: Jz(Raven(x) A Black(x))

Note the satisfying models of the incorrect
dz(Raven(z) = Black(x))

Page 353

Another Formalizing Difficulty

Note where a Skolem function appears in

Vz(Parent(z) < JychildOf (y, x))

< Vz((Parent(z) = JychildOf (y,))
A((JychildOf (y, x)) = Parent(x)))

& Va((—Parent(x) V JychildOf (y, x))
A(=(JychildOf (y, x)) V Parent(z)))

& Vz((=Parent(x) V JychildOf (y, x))
AVy(—=childOf (y,x)) V Parent(x)))

& Vx(Parent(x) = childOf (f(z), x))
AVaVy(childOf (y, x) = Parent(x))

Page 354

What’s “First-Order” About FOL?

In a first-order logic:

Predicate and function symbols cannot be arguments of predicates

or functions;
Variables cannot be in predicate or function position.

E.G. Vr| Transitive(r) < Vayz|r(z,y) AN r(y,z) = r(z, 2)]]

is not a first-order sentence.

“The adjective ’first-order’ is used to distinguish the languages we shall
study here from those in which there are predicates having other
predicates or functions as arguments or in which predicate quantifiers or
function quantifiers are permitted, or both.” [Elliott Mendelson,
Introduction to Mathematical Logic, Fifth Edition, CRC Press, Boca
Raton, FL, 2010, p. 48.]

Page 355

Russell’s Theory of Types

Designed to solve paradox: dsVc[s(c) < —c(c)]
has instance S(5) < —=S(9)

Page 356

N*-.Order Logic

Assign type 0 to individuals and to terms denoting individuals.

Assign type ¢ + 1 to any set and to any function or predicate
symbol that denotes a set, possibly of tuples, such that the

maximum type of any of its elements is 1.
Also assign type ¢ + 1 to any variable that range over type ¢ objects.
Note that the type of a functional term is the type of its range—the

nt" element of the n-tuples of the set which the function denotes.

Syntactically, if the maximum type of the arguments of a ground
atomic wif is ¢, then the type of the predicate is ¢ + 1.
No predicate of type ¢« may take a ground argument of type ¢ or

higher.

Page 357

First-Order Logic Defined

First-order logic has a language that obeys Russell’s Theory of
Types, and whose highest type symbol is of type 1.

nt"-order logic has a language that obeys Russell’s Theory of
Types, and whose highest type symbol is of type n.

(2-ordered logic has no limit, but must still follow the rules.

E.g., Vr|Transitive(r) < Voyz|r(z,y) A r(y, z) = r(z, 2)]]

is a formula of Second-Order Logic:

Type 0 objects: individuals in the domain

Type 1 symbols: z,y, z because they range over type 0 objects
Type 1 objects: binary relations over type 0 objects

Type 2 symbols: r because it ranges over type 1 objects,
Transitive because it denotes a set of type 1 objects

Page 358

Nested Beliefs

Can a proposition be an argument of a proposition?

Consider:

Vp(Believes(Solomon,p) = p)

Believes(Solomon, Round(FEarth)) = Round(FEarth)
Believes(Solomon, Round(Earth))

= Round(Farth)

If Round(Farth) is an atomic wff, it’s not a term, and only terms
may be arguments of functions and predicates.

Even if it could:
[Round(Earth)] = True if [Farth] € [Round], else False.

So [Believes(Solomon, Round(Earth))] = True
iff ([Solomon], True-or-Fulse) € [Believes]

Page 359

Reifying Propositions
and the Holds Predicate

So how can we represent in FOL

“FEverything that Solomon believes is true”?

e Reify (some) propositions.
Make them objects in the domain.

Represent them using individual constants or functional terms.

e Use Holds(P) to mean

“P holds (is true) in the given situation”.

e Fixamples:

Vp(Believes(Solomon,p) = Holds(p))
Believes(Solomon, Round(Farth)) = Holds(Round(FEarth))

Page 360

Semantics of the Holds Predicate

Vp(Believes(Solomon, p) = Holds(p)) N\ Believes(Solomon, Round(FEarth))
= Holds(Round(FEarth))

Type 0 individuals and terms:

[Solomon] = [Solomon] = A person named Solomon

[Earth] = [Earth] = The planet Earth

[Round(FEarth)] = [Round(FEarth)] = The proposition that the Earth is round

Type 1 objects and symbols:

p: A variable ranging over type 0 propositions

[Round] = A function from type 0 physical objects to type O propositions.
[Holds] = A set of type 0 propositions.

[Believes] = A set of pairs, type 0 People X type 0 propositions

Type 1 atomic formulas:

[Holds(xz)] = The type 1 proposition that [z] is True.

[Holds(z)] = True if [z] € [Holds]; False otherwise

[Believes(z, y)] = The type 1 proposition that [x] believes [y]
[Believes(x,y)] = True if { [z], [y]) € [Believes]; False otherwise

Page 361

