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6.1 Horn Clauses

A Horn Clause is a clause with at most one positive literal.

Either {¬Q1(x), . . . ,¬Qn(x)} (negative Horn clause)

or {C(x)} (fact or positive or definite Horn clause)

or {¬A1(x), . . . ,¬An(x), C(x)} (positive or definite Horn clause)

which is the same as

A1(x) ∧ · · · ∧ An(x) ⇒ C(x)

where Ai(x), C(x), and Q(x) are atoms.

Page 380



SLD Resolution

Selected literals, Linear pattern, over Definite clauses

SLD derivation of clause c from set of clauses S is

c1, . . . , cn = c

s.t. c1 ∈ S

and ci+1 is resolvent of ci and a clause in S. [B&L, p. 87]

If S is a set of Horn clauses,

then there is a resolution derivation of {} from S

iff there is an SLD derivation of {} from S.
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SLDSolve

procedure SLDSolve(KB,query) returns true or false {

/* KB = {rule1 , . . . , rulen}

* rulei = {hi ,¬bi1 , . . . ,¬biki
}

* query = {¬q1, . . . ,¬qm} */

if (m = 0) return true;

for i := 1 to n {

if((µ := Unify(q1, hi)) 6= FAIL

and SLDSolve(KB, {¬bi1µ, . . . ,¬biki
µ,¬q2µ, . . . ,¬qmµ})) {

return true;

}

}

return false;

}

Where hi, bij, and qi are atomic formulae.

See B&L, p. 92
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6.2 Prolog

Example Prolog Interaction

<timberlake:~/.xemacs:1:35> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- consult(user).

% consulting user...

| driver(X) :- drives(X,_).

| passenger(Y) :- drives(_,Y).

| drives(betty,tom).

|

% consulted user in module user, 0 msec 1200 bytes

yes

| ?- driver(X), passenger(Y).

X = betty,

Y = tom ?

yes

| ?- halt.
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Prolog Program with Two Answers

% From Rich & Knight, 2nd Edition (1991) p. 192.

likesToEat(X,Y) :- cat(X), fish(Y).

cat(X) :- calico(X).

fish(X) :- tuna(X).

tuna(charlie).

tuna(herb).

calico(puss).
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Listing the Fish Program
| ?- listing.

calico(puss).

cat(A) :-

calico(A).

fish(A) :-

tuna(A).

likesToEat(A, B) :-

cat(A),

fish(B).

tuna(charlie).

tuna(herb).

yes

Note: consult(File) loads the File in interpreted mode, whereas [File] loads the

File in compiled mode. listing is only possible in interpreted mode.
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Running the Fish Program

<timberlake:CSE563:1:39> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- [’fish.prolog’].

% compiling /projects/shapiro/CSE563/fish.prolog...

% compiled /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1808 bytes

yes

| ?- likesToEat(puss,X).

X = charlie ? ;

X = herb ? ;

no

| ?- halt.

<timberlake:CSE563:1:40>
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Tracing the Fish Program

| ?- [’fish.prolog’].

% consulting /projects/shapiro/CSE563/fish.prolog...

% consulted /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1352 bytes

yes

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace
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Tracing First Answer

| ?- likesToEat(puss,X).

1 1 Call: likesToEat(puss,_442) ?

2 2 Call: cat(puss) ?

3 3 Call: calico(puss) ?

3 3 Exit: calico(puss) ?

2 2 Exit: cat(puss) ?

4 2 Call: fish(_442) ?

5 3 Call: tuna(_442) ?

? 5 3 Exit: tuna(charlie) ?

? 4 2 Exit: fish(charlie) ?

? 1 1 Exit: likesToEat(puss,charlie) ?

X = charlie ? ;
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Tracing the Second Answer

X = charlie ? ;

1 1 Redo: likesToEat(puss,charlie) ?

4 2 Redo: fish(charlie) ?

5 3 Redo: tuna(charlie) ?

5 3 Exit: tuna(herb) ?

4 2 Exit: fish(herb) ?

1 1 Exit: likesToEat(puss,herb) ?

X = herb ? ;

no

% trace

| ?- notrace.

% The debugger is switched off

yes
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Backtracking Example
Program:

bird(tweety).

bird(oscar).

bird(X) :- feathered(X).

feathered(maggie).

large(oscar).

ostrich(X) :- bird(X), large(X).

Run (No backtracking needed):

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes

Page 390



Backtracking Used

| ?- ostrich(X).

1 1 Call: ostrich(_368) ?

2 2 Call: bird(_368) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

? 2 2 Exit: bird(oscar) ?

4 2 Call: large(oscar) ?

4 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

X = oscar ?

yes
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Backtracking: Effect of Query
/projects/shapiro/CSE563/Examples/Prolog/backtrack.prolog:

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

Backtracking not needed:

| ?- supervisorOf(smith,X).

1 1 Call: supervisorOf(smith,_380) ?

2 2 Call: managerOf(smith,_772) ?

2 2 Exit: managerOf(smith,itDepartment) ?

3 2 Call: departmentOf(_380,itDepartment) ?

3 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = brown ?

yes
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Backtracking Example, part 2

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

| ?- supervisorOf(X,brown).

1 1 Call: supervisorOf(_368,brown) ?

2 2 Call: managerOf(_368,_772) ?

? 2 2 Exit: managerOf(jones,accountingDepartment) ?

3 2 Call: departmentOf(brown,accountingDepartment) ?

3 2 Fail: departmentOf(brown,accountingDepartment) ?

2 2 Redo: managerOf(jones,accountingDepartment) ?

2 2 Exit: managerOf(smith,itDepartment) ?

4 2 Call: departmentOf(brown,itDepartment) ?

4 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = smith ?

yes
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Negation by Failure

& The Closed World Assumption

| ?- [user].

% consulting user...

| manager(jones, itSection).

| manager(smith, accountingSection).

|

% consulted user in module user, 0 msec 416 bytes

yes

| ?- manager(smith, itSection).

no

| ?- manager(kelly, accountingSection).

no

Negation by failure: “no” means didn’t succeed.

CWA: If it’s not in the KB, it’s not true.
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Cut: Preventing Backtracking

KB Without Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), large(X).

|

% consulted user in module user, 0 msec 1120 bytes

yes
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No Backtracking Needed

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes

% trace
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Unwanted Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

4 3 Call: feathered(tweety) ?

4 3 Fail: feathered(tweety) ?

2 2 Fail: bird(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

No need to try to solve bird(tweety) another way.
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KB With Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), !, large(X).

|

% consulted user in module user, 0 msec -40 bytes

yes

% trace
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No Extra Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

% trace
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fail: Forcing Failure
If something is a canary, it is not a penguin.

| ?- consult(user).

% consulting user...

| penguin(X) :- canary(X), !, fail.

| canary(tweety).

|

% consulted user in module user, 0 msec 416 bytes

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

% trace
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Cut Fails the Head Instance: Program

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

canary(tweety).

bird(willy).

swims(willy).
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Cut Fails the Head Instance: Run
| ?- penguin(willy).

1 1 Call: penguin(willy) ?

2 2 Call: canary(willy) ?

2 2 Fail: canary(willy) ?

3 2 Call: bird(willy) ?

3 2 Exit: bird(willy) ?

4 2 Call: swims(willy) ?

4 2 Exit: swims(willy) ?

1 1 Exit: penguin(willy) ?

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no
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Cut Fails Head Alternatives

| ?- penguin(X).

1 1 Call: penguin(_368) ?

2 2 Call: canary(_368) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(_368) ?

no

Moral:

Use cut when seeing if a ground atom is satisfied (T/F question),

but not when generating satisfying instances (wh questions).
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Bad Rule Order

penguin(X) :- bird(X), swims(X).

penguin(X) :- canary(X), !, fail.

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: bird(tweety) ?

3 3 Call: canary(tweety) ?

3 3 Exit: canary(tweety) ?

2 2 Exit: bird(tweety) ?

4 2 Call: swims(tweety) ?

4 2 Fail: swims(tweety) ?

5 2 Call: canary(tweety) ?

5 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no
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Good Rule Order

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no
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SICSTUS Allows “or” In Body.

bird(willy).

swims(willy).

canary(tweety).

penguin(X) :-

canary(X), !, fail;

bird(X), swims(X).

bird(X) :- canary(X).

| ?- [’twoRuleCutOr.prolog’].

% compiling /projects/shapiro/CSE563/twoRuleCutOr.prolog...

* clauses for user:bird/1 are not together

* Approximate lines: 8-10, file: ’/projects/shapiro/CSE563/twoRuleCutOr.prolog’

% compiled /projects/shapiro/CSE563/twoRuleCutOr.prolog in module user, 0 msec 928 bytes

yes

| ?- penguin(willy).

yes

| ?- penguin(tweety).

no
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not: “Negated” Antecedents
A bird that is not a canary is a penguin.

| penguin(X) :- bird(X), !, \+canary(X).

| bird(opus).

| canary(tweety).

% compiled user in module user, 0 msec 512 bytes

| ?- penguin(opus).

1 1 Call: penguin(opus) ?

2 2 Call: bird(opus) ?

2 2 Exit: bird(opus) ?

3 2 Call: canary(opus) ?

3 2 Fail: canary(opus) ?

1 1 Exit: penguin(opus) ?

yes

\+ is SICStus Prolog’s version of not.

It is negation by failure, not logical negation.
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Can Use Functions

driver(X) :- drives(X,_).

drives(mother(X),X) :- schoolchild(X).

schoolchild(betty).

schoolchild(tom).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

no
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Infinitely Growing Terms

driver(X) :- drives(X,_).

drives(mother(X),X) :- commuter(X).

commuter(betty).

commuter(tom).

commuter(mother(X)) :- commuter(X).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

X = mother(mother(betty)) ? ;

X = mother(mother(tom)) ? ;

X = mother(mother(mother(betty))) ? ;

X = mother(mother(mother(tom))) ?

yes
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Prolog Does Not Do the Occurs Check

<pollux:CSE563:2:31> sicstus

...

| ?- [user].

% consulting user...

| mother(motherOf(X), X).

|

% consulted user in module user, 0 msec 248 bytes

yes

| ?- mother(Y, Y).

Y = motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(

motherOf(motherOf(motherOf(motherOf(...)))))))))) ?

yes

| ?-
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“=” and “is”

| ?- p(X, b, f(c,Y)) = p(a, U, f(V,U)).

U = b,

V = c,

X = a,

Y = b ?

yes

| ?- X is 2*(3+6).

X = 18 ?

yes

| ?- X = 2*(3+6).

X = 2*(3+6) ?

yes

| ?- X is 2*(3+6), Y is X/3.

X = 18,

Y = 6.0 ?

yes

| ?- Y is X/3, X is 2*(3+6).

! Instantiation error in argument 2 of is/2

! goal: _76 is _73/3
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Avoid Left Recursive Rules

To define ancestor as the transitive closure of parent.

The base case: ancestor(X,Y) :- parent(X,Y).

Three possible recursive cases:

1. ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

2. ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

3. ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

Versions (2) and (3) will cause infinite loops.
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