
Knowledge Representation and

Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering

and Center for Cognitive Science

University at Buffalo, The State University of New York

Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

copyright c©1995, 2004–2009 by Stuart C. Shapiro

Page 1

Contents

Part I

1. Introduction . 4

2. Propositional Logic . 19

3. Predicate Logic Over Finite Models . 172

4. Full First-Order Predicate Logic . 223

5. Summary of Part I .366

Part II

6. Prolog . 379

7. A Potpourri of Subdomains . 413

8. SNePS. .430

9. Belief Revision/Truth Maintenance . 512

10. The Situation Calculus . 564

11. Summary . 583

Part III

12. Production Systems. .596

13. Description Logic . 605

14. Abduction . 622

Page 3

6 Prolog

6.1 Horn Clauses. .380

6.2 Prolog . 383

Page 379

6.1 Horn Clauses

A Horn Clause is a clause with at most one positive literal.

Either {¬Q1(x), . . . ,¬Qn(x)} (negative Horn clause)

or {C(x)} (fact or positive or definite Horn clause)

or {¬A1(x), . . . ,¬An(x), C(x)} (positive or definite Horn clause)

which is the same as

A1(x) ∧ · · · ∧ An(x) ⇒ C(x)

where Ai(x), C(x), and Q(x) are atoms.

Page 380

SLD Resolution

Selected literals, Linear pattern, over Definite clauses

SLD derivation of clause c from set of clauses S is

c1, . . . , cn = c

s.t. c1 ∈ S

and ci+1 is resolvent of ci and a clause in S. [B&L, p. 87]

If S is a set of Horn clauses,

then there is a resolution derivation of {} from S

iff there is an SLD derivation of {} from S.

Page 381

SLDSolve

procedure SLDSolve(KB,query) returns true or false {

/* KB = {rule1 , . . . , rulen}

* rulei = {hi ,¬bi1 , . . . ,¬biki
}

* query = {¬q1, . . . ,¬qm} */

if (m = 0) return true;

for i := 1 to n {

if((µ := Unify(q1, hi)) 6= FAIL

and SLDSolve(KB, {¬bi1µ, . . . ,¬biki
µ,¬q2µ, . . . ,¬qmµ})) {

return true;

}

}

return false;

}

Where hi, bij, and qi are atomic formulae.

See B&L, p. 92

Page 382

6.2 Prolog

Example Prolog Interaction

<timberlake:~/.xemacs:1:35> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- consult(user).

% consulting user...

| driver(X) :- drives(X,_).

| passenger(Y) :- drives(_,Y).

| drives(betty,tom).

|

% consulted user in module user, 0 msec 1200 bytes

yes

| ?- driver(X), passenger(Y).

X = betty,

Y = tom ?

yes

| ?- halt.

Page 383

Prolog Program with Two Answers

% From Rich & Knight, 2nd Edition (1991) p. 192.

likesToEat(X,Y) :- cat(X), fish(Y).

cat(X) :- calico(X).

fish(X) :- tuna(X).

tuna(charlie).

tuna(herb).

calico(puss).

Page 384

Listing the Fish Program
| ?- listing.

calico(puss).

cat(A) :-

calico(A).

fish(A) :-

tuna(A).

likesToEat(A, B) :-

cat(A),

fish(B).

tuna(charlie).

tuna(herb).

yes

Note: consult(File) loads the File in interpreted mode, whereas [File] loads the

File in compiled mode. listing is only possible in interpreted mode.

Page 385

Running the Fish Program

<timberlake:CSE563:1:39> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- [’fish.prolog’].

% compiling /projects/shapiro/CSE563/fish.prolog...

% compiled /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1808 bytes

yes

| ?- likesToEat(puss,X).

X = charlie ? ;

X = herb ? ;

no

| ?- halt.

<timberlake:CSE563:1:40>

Page 386

Tracing the Fish Program

| ?- [’fish.prolog’].

% consulting /projects/shapiro/CSE563/fish.prolog...

% consulted /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1352 bytes

yes

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace

Page 387

Tracing First Answer

| ?- likesToEat(puss,X).

1 1 Call: likesToEat(puss,_442) ?

2 2 Call: cat(puss) ?

3 3 Call: calico(puss) ?

3 3 Exit: calico(puss) ?

2 2 Exit: cat(puss) ?

4 2 Call: fish(_442) ?

5 3 Call: tuna(_442) ?

? 5 3 Exit: tuna(charlie) ?

? 4 2 Exit: fish(charlie) ?

? 1 1 Exit: likesToEat(puss,charlie) ?

X = charlie ? ;

Page 388

Tracing the Second Answer

X = charlie ? ;

1 1 Redo: likesToEat(puss,charlie) ?

4 2 Redo: fish(charlie) ?

5 3 Redo: tuna(charlie) ?

5 3 Exit: tuna(herb) ?

4 2 Exit: fish(herb) ?

1 1 Exit: likesToEat(puss,herb) ?

X = herb ? ;

no

% trace

| ?- notrace.

% The debugger is switched off

yes

Page 389

Backtracking Example
Program:

bird(tweety).

bird(oscar).

bird(X) :- feathered(X).

feathered(maggie).

large(oscar).

ostrich(X) :- bird(X), large(X).

Run (No backtracking needed):

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes

Page 390

Backtracking Used

| ?- ostrich(X).

1 1 Call: ostrich(_368) ?

2 2 Call: bird(_368) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

? 2 2 Exit: bird(oscar) ?

4 2 Call: large(oscar) ?

4 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

X = oscar ?

yes

Page 391

Backtracking: Effect of Query
/projects/shapiro/CSE563/Examples/Prolog/backtrack.prolog:

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

Backtracking not needed:

| ?- supervisorOf(smith,X).

1 1 Call: supervisorOf(smith,_380) ?

2 2 Call: managerOf(smith,_772) ?

2 2 Exit: managerOf(smith,itDepartment) ?

3 2 Call: departmentOf(_380,itDepartment) ?

3 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = brown ?

yes

Page 392

Backtracking Example, part 2

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

| ?- supervisorOf(X,brown).

1 1 Call: supervisorOf(_368,brown) ?

2 2 Call: managerOf(_368,_772) ?

? 2 2 Exit: managerOf(jones,accountingDepartment) ?

3 2 Call: departmentOf(brown,accountingDepartment) ?

3 2 Fail: departmentOf(brown,accountingDepartment) ?

2 2 Redo: managerOf(jones,accountingDepartment) ?

2 2 Exit: managerOf(smith,itDepartment) ?

4 2 Call: departmentOf(brown,itDepartment) ?

4 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = smith ?

yes

Page 393

Negation by Failure

& The Closed World Assumption

| ?- [user].

% consulting user...

| manager(jones, itSection).

| manager(smith, accountingSection).

|

% consulted user in module user, 0 msec 416 bytes

yes

| ?- manager(smith, itSection).

no

| ?- manager(kelly, accountingSection).

no

Negation by failure: “no” means didn’t succeed.

CWA: If it’s not in the KB, it’s not true.

Page 394

Cut: Preventing Backtracking

KB Without Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), large(X).

|

% consulted user in module user, 0 msec 1120 bytes

yes

Page 395

No Backtracking Needed

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes

% trace

Page 396

Unwanted Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

4 3 Call: feathered(tweety) ?

4 3 Fail: feathered(tweety) ?

2 2 Fail: bird(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

No need to try to solve bird(tweety) another way.

Page 397

KB With Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), !, large(X).

|

% consulted user in module user, 0 msec -40 bytes

yes

% trace

Page 398

No Extra Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

% trace

Page 399

fail: Forcing Failure
If something is a canary, it is not a penguin.

| ?- consult(user).

% consulting user...

| penguin(X) :- canary(X), !, fail.

| canary(tweety).

|

% consulted user in module user, 0 msec 416 bytes

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

% trace

Page 400

Cut Fails the Head Instance: Program

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

canary(tweety).

bird(willy).

swims(willy).

Page 401

Cut Fails the Head Instance: Run
| ?- penguin(willy).

1 1 Call: penguin(willy) ?

2 2 Call: canary(willy) ?

2 2 Fail: canary(willy) ?

3 2 Call: bird(willy) ?

3 2 Exit: bird(willy) ?

4 2 Call: swims(willy) ?

4 2 Exit: swims(willy) ?

1 1 Exit: penguin(willy) ?

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

Page 402

Cut Fails Head Alternatives

| ?- penguin(X).

1 1 Call: penguin(_368) ?

2 2 Call: canary(_368) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(_368) ?

no

Moral:

Use cut when seeing if a ground atom is satisfied (T/F question),

but not when generating satisfying instances (wh questions).

Page 403

Bad Rule Order

penguin(X) :- bird(X), swims(X).

penguin(X) :- canary(X), !, fail.

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: bird(tweety) ?

3 3 Call: canary(tweety) ?

3 3 Exit: canary(tweety) ?

2 2 Exit: bird(tweety) ?

4 2 Call: swims(tweety) ?

4 2 Fail: swims(tweety) ?

5 2 Call: canary(tweety) ?

5 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

Page 404

Good Rule Order

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

Page 405

SICSTUS Allows “or” In Body.

bird(willy).

swims(willy).

canary(tweety).

penguin(X) :-

canary(X), !, fail;

bird(X), swims(X).

bird(X) :- canary(X).

| ?- [’twoRuleCutOr.prolog’].

% compiling /projects/shapiro/CSE563/twoRuleCutOr.prolog...

* clauses for user:bird/1 are not together

* Approximate lines: 8-10, file: ’/projects/shapiro/CSE563/twoRuleCutOr.prolog’

% compiled /projects/shapiro/CSE563/twoRuleCutOr.prolog in module user, 0 msec 928 bytes

yes

| ?- penguin(willy).

yes

| ?- penguin(tweety).

no

Page 406

not: “Negated” Antecedents
A bird that is not a canary is a penguin.

| penguin(X) :- bird(X), !, \+canary(X).

| bird(opus).

| canary(tweety).

% compiled user in module user, 0 msec 512 bytes

| ?- penguin(opus).

1 1 Call: penguin(opus) ?

2 2 Call: bird(opus) ?

2 2 Exit: bird(opus) ?

3 2 Call: canary(opus) ?

3 2 Fail: canary(opus) ?

1 1 Exit: penguin(opus) ?

yes

\+ is SICStus Prolog’s version of not.

It is negation by failure, not logical negation.

Page 407

Can Use Functions

driver(X) :- drives(X,_).

drives(mother(X),X) :- schoolchild(X).

schoolchild(betty).

schoolchild(tom).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

no

Page 408

Infinitely Growing Terms

driver(X) :- drives(X,_).

drives(mother(X),X) :- commuter(X).

commuter(betty).

commuter(tom).

commuter(mother(X)) :- commuter(X).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

X = mother(mother(betty)) ? ;

X = mother(mother(tom)) ? ;

X = mother(mother(mother(betty))) ? ;

X = mother(mother(mother(tom))) ?

yes

Page 409

Prolog Does Not Do the Occurs Check

<pollux:CSE563:2:31> sicstus

...

| ?- [user].

% consulting user...

| mother(motherOf(X), X).

|

% consulted user in module user, 0 msec 248 bytes

yes

| ?- mother(Y, Y).

Y = motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(

motherOf(motherOf(motherOf(motherOf(...)))))))))) ?

yes

| ?-

Page 410

“=” and “is”

| ?- p(X, b, f(c,Y)) = p(a, U, f(V,U)).

U = b,

V = c,

X = a,

Y = b ?

yes

| ?- X is 2*(3+6).

X = 18 ?

yes

| ?- X = 2*(3+6).

X = 2*(3+6) ?

yes

| ?- X is 2*(3+6), Y is X/3.

X = 18,

Y = 6.0 ?

yes

| ?- Y is X/3, X is 2*(3+6).

! Instantiation error in argument 2 of is/2

! goal: _76 is _73/3

Page 411

Avoid Left Recursive Rules

To define ancestor as the transitive closure of parent.

The base case: ancestor(X,Y) :- parent(X,Y).

Three possible recursive cases:

1. ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

2. ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

3. ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

Versions (2) and (3) will cause infinite loops.

Page 412

