Knowledge Representation and Reasoning
 Logics for Artificial Intelligence

Stuart C. Shapiro
Department of Computer Science and Engineering and Center for Cognitive Science University at Buffalo, The State University of New York Buffalo, NY 14260-2000 shapiro@cse.buffalo.edu copyright © $1995,2004-2010$ by Stuart C. Shapiro

Contents Part I

1. Introduction 4
2. Propositional Logic 19
3. Predicate Logic Over Finite Models 173
4. Full First-Order Predicate Logic 224
5. Summary of Part I 362
Part II
6. Prolog 375
7. A Potpourri of Subdomains 411
8. SNePS 428
9. Belief Revision/Truth Maintenance 515
10. The Situation Calculus 569
11. Summary 588

Part III

12. Production Systems 601
13. Description Logic 610
14. Abduction 627

1 Introduction

1. Knowledge Representation 5
2. Logic 16

Page 4

1.1 Knowledge Representation

Artificial Intelligence (AI)

A field of computer science and engineering concerned with the computational understanding of what is commonly called intelligent behavior, and with the creation of artifacts that exhibit such behavior.

Knowledge Representation

A subarea of Artificial Intelligence concerned with understanding, designing, and implementing ways of representing information in computers so that programs (agents) can use this information

- to derive information that is implied by it,
- to converse with people in natural languages,
- to decide what to do next
- to plan future activities,
- to solve problems in areas that normally require human expertise.

Page 6

Reasoning

Deriving information that is implied by the information already present is a form of reasoning.

Knowledge representation schemes are useless without the ability to reason with them.

So, Knowledge Representation and Reasoning (KRR)

Page 7

Manifesto of KRR

a program has common sense if it automatically deduces for itself a sufficiently wide class of immediate consequences of anything it is told and what it already knows... In order for a program to be capable of learning something it must first be capable of being told it. John McCarthy, "Programs with Common Sense", 1959.

Page 8

Knowledge vs. Belief

Knowledge: justified true belief.
John believes that the world is flat: Not true.
Sally believes that the first player in chess can always win,
Betty believes that the second player can always win, and Mary believes that, with optimal play on both sides, chess will always end in a tie.
One of them is correct,
but none are justified.
So Belief Representation \& Reasoning: more accurate But we'll continue to say KRR.

In Class Exercise

"An Approach to Serenity"

Page 10

Easy NL Inferences

Every student studies hard.
Therefore every smart student studies.
Tuesday evening, Jack either went to the movies, played bridge, or studied.
Tuesday evening, Jack played bridge.
Therefore, Jack neither went to the movies nor studied Tuesday evening.

Page 11

Background Knowledge: Some Sentences and How We Understand Them.

John likes ice cream.
John likes to eat ice cream.
Mary likes Asimov.
Mary likes to read books written by Isaac Asimov.

Page 12

Background Knowledge:

Some Sentences and

 How We Understand Them.Bill flicked the switch.
The room was flooded with light.
Bill moved the switch to the "on" position, which caused a light to come on, which lit up the room Bill was in.

Betty opened the blinds.
The courtyard was flooded with light.
Betty adjusted the blinds so that she could see through the window they were in front of, after which she could see that the courtyard on the other side of the window was bright.

Memory Integration in Humans

After seeing these sentences (among others),
The sweet jelly was on the kitchen table.
The ants in the kitchen ate the jelly.
The ants ate the sweet jelly that was on the table.
The sweet jelly was on the table.
The jelly was on the table.
The ants ate the jelly.
subjects, with high confidence reported that they had seen the sentence,
The ants ate the sweet jelly that was on the kitchen table.
[Bransford and Franks (1971). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331-350, as reported on http://www.rpi.edu/~verwyc/cognotes5.htm.]

Page 14

Requirements for a Knowledge-Based Agent

1. "what it already knows" [McCarthy '59]

A knowledge base of beliefs.
2. "it must first be capable of being told" [McCarthy '59]

A way to put new beliefs into the knowledge base.
3. "automatically deduces for itself a sufficiently wide class of immediate consequences" [McCarthy '59]
A reasoning mechanism to derive new beliefs from ones already in the knowledge base.

1.2 Logic

- Logic is the study of correct reasoning.
- It is not a particular KRR language.
- There are many systems of logic (logics).
- AI KRR research can be seen as a hunt for the "right" logic.

Page 16

Commonalities among Logics

- System for reasoning.
- Prevent reasoning from "truths" to "falsities".
(But can reason from truths and falsities to truths and falsities.)
- Language for expressing reasoning steps.

Parts of the Study/Specification of a Logic

Syntax: The atomic symbols of the logical language, and the rules for constructing well-formed, nonatomic expressions (symbol structures) of the logic.

Semantics: The meanings of the atomic symbols of the logic, and the rules for determining the meanings of nonatomic expressions of the logic.

Proof Theory: The rules for determining a subset of logical expressions, called theorems of the logic.

2 Propositional Logic

Logics that do not analyze information below the level of the proposition.
2.1 What is a Proposition? 20
2.2 CarPool World: A Motivational "Micro-World" 23
2.3 The "Standard" Propositional Logic 24
2.4 Important Properties of Logical Systems 133
2.5 Clause Form Propositional Logic 136

2.1 What is a Proposition?

An expression in some language

- that is true or false
- whose negation makes sense
- that can be believed or not
- whose negation can be believed or not
- that can be put in the frame
"I believe that it is not the case that \qquad ."

Examples

Of propositions

- Betty is the driver of the car.
- Barack Obama is sitting down or standing up.
- If Opus is a penguin, then Opus doesn't fly.

Of non-propositions

- Barack Obama
- how to ride a bicycle
- If the fire alarm rings, leave the building.

Page 21

Sentences vs. Propositions

A sentence is an expression of a (written) language that begins with a capital letter and ends with a period, question mark, or exclamation point.

Some sentences do not contain a proposition:
"Hi!", "Why?", "Pass the salt!"
Some sentences do not express a proposition, but contain one:
"Is Betty driving the car?"
Some sentences contain more than one proposition:
If Opus is a penguin, then Opus doesn't fly.

2.2 CarPool World: A Motivational "Micro-World"

- Tom and Betty carpool to work.
- On any day, either Tom drives Betty or Betty drives Tom.
- In the former case, Tom is the driver and Betty is the passenger.
- In the latter case, Betty is the driver and Tom is the passenger.
Betty drives Tom. Tom drives Betty.

Propositions: Betty is the driver. Tom is the driver.
Betty is the passenger. Tom is the passenger.

2.3 The "Standard" Propositional Logic

1. Syntax 25
2. Semantics 39
3. Proof Theory 98

2.3.1 Syntax of the "Standard" Propositional Logic

Atomic Propositions

- Any letter of the alphabet, e.g.: P
- Any letter of the alphabet with a numerical subscript, e.g.: Q_{3}
- Any alphanumeric string, e.g.: Tom is the driver
is an atomic proposition.

Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wfp.
2. If P is a wfp, then so is $(\neg P)$.
3. If P and Q are wfps, then so are
(a) $(P \wedge Q)$
(b) $\quad(P \vee Q)$
(c) $\quad(P \Rightarrow Q)$
(d) $\quad(P \Leftrightarrow Q)$
4. Nothing else is a wfp.

Parentheses may be omitted. Precedence: $\neg ; \wedge, \vee ; \Rightarrow ; \Leftrightarrow$. Will allow $\left(P_{1} \wedge \cdots \wedge P_{n}\right)$ and $\left(P_{1} \vee \cdots \vee P_{n}\right)$.
Square brackets may be used instead of parentheses.
Page 26

Examples of WFPs

$$
\neg(A \wedge B) \Leftrightarrow(\neg A \vee \neg B)
$$
Tom is the driver \Rightarrow Betty is the passenger
Betty drives Tom $\Leftrightarrow \neg$ Tom is the driver

Page 27

Alternative Symbols

$$
\begin{aligned}
& \neg: \sim \quad! \\
& \wedge: \& \cdot \\
& \vee: \mid \\
& \Rightarrow: \rightarrow>-> \\
& \Leftrightarrow: \leftrightarrow \equiv<->
\end{aligned}
$$

A Computer-Readable Syntax for Wfps

Based on CLIF, the Common Logic Interchange Format ${ }^{\text {a }}$
Atomic Propositions: Use one of:
Embedded underscores: Betty_drives_Tom
Embedded hyphens: Betty-drives-Tom
CamelCase: BettyDrivesTom
sulkingCamelCase: bettyDrivesTom
Escape brackets: |Betty drives Tom|
Quotation marks: "Betty drives Tom"

Page 29

[^0]
CLIF for Non-Atomic Wfps

Print Form	CLIF Form
$\neg P$	(not P)
$P \wedge Q$	(and P Q)
$P \vee Q$	(or P Q)
$P \Rightarrow Q$	(if P Q)
$P \Leftrightarrow Q$	(iff P Q)
$\left(P_{1} \wedge \cdots \wedge P_{n}\right)$	(and P1 ...Pn)
$\left(P_{1} \vee \cdots \vee P_{n}\right)$	(or P1 \ldots Pn)

Page 30

Semantics of Atomic Propositions 1 Intensional Semantics

- Dependent on a Domain.
- Independent of any specific interpretation/model/possible world/situation.
- Statement in a previously understood language (e.g. English) that allows truth value to be determined in any specific situation.
- Often omitted, but shouldn't be.

Intensional CarPool World Semantics

[Betty drives Tom] $=$ Betty drives Tom to work.
[Tom drives Betty] = Tom drives Betty to work.
$[$ Betty is the driver $]=$ Betty is the driver of the car.
[Tom is the driver] $=$ Tom is the driver of the car.
[Betty is the passenger] $=$ Betty is the passenger in the car.
[Tom is the passenger $]=$ Tom is the passenger in the car.

Alternative Intensional CarPool World Semantics

$[$ Betty drives Tom $]=$ Tom drives Betty to work.
[Tom drives Betty] $=$ Betty drives Tom to work.
[Betty is the driver $]=$ Tom is the passenger in the car.
$[$ Tom is the driver $]=$ Betty is the passenger in the car.
[Betty is the passenger] $=$ Tom is the driver of the car.
[Tom is the passenger $]=$ Betty is the driver of the car.

Alternative CarPool World Syntax/Intensional Semantics

$[A]=$ Betty drives Tom to work.
$[B]=$ Tom drives Betty to work.
$[C]=$ Betty is the driver of the car.
$[D]=$ Tom is the driver of the car.
$[E]=$ Betty is the passenger in the car.
$[F]=$ Tom is the passenger in the car.

Intensional Semantics Moral

- Don't omit.
- Don't presume.
- No "pretend it's English semantics".

Page 35

Intensional Semantics of WFPs

$$
\begin{aligned}
& {[\neg P]=\text { It is not the case that }[P] .} \\
& {[P \wedge Q]=[P] \text { and }[Q] .} \\
& {[P \vee Q]=\text { Either }[P] \text { or }[Q] \text { or both. }} \\
& {[P \Rightarrow Q]=\text { If }[P] \text { then }[Q] .} \\
& {[P \Leftrightarrow Q]=[P] \text { if and only if }[Q] .}
\end{aligned}
$$

Example CarPool World Intensional WFP Semantics

[Betty drives Tom $\Leftrightarrow \neg$ Tom is the driver]
= Betty drives Tom to work
if and only if Tom is not the driver of the car.

Page 37

Terminology

- $\neg P$ is called the negation of P.
- $P \wedge Q$ is called the conjunction of P and Q. P and Q are referred to as conjuncts.
- $P \vee Q$ is called the disjunction of P and Q. P and Q are referred to as disjuncts.
- $P \Rightarrow Q$ is called a conditional or implication.
P is referred to as the antecedent;
Q as the consequent.
- $P \Leftrightarrow Q$ is called a biconditional or equivalence.

2.3.2 Semantics of Atomic Propositions 2

Extensional Semantics

- Relative to an interpretation/model/possible world/situation.
- Either True or False.

Extensional CarPool World Semantics

| | Denotation in Situation | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Proposition | 1 | 2 | 3 | 4 | 5 |
| Betty drives Tom | True | True | True | False | False |
| Tom drives Betty | True | True | False | True | False |
| Betty is the driver | True | True | True | False | False |
| Tom is the driver | True | False | False | True | False |
| Betty is the passenger | True | False | False | True | False |
| Tom is the passenger | True | False | True | False | False |

Note: n propositions $\Rightarrow 2^{n}$ possible situations.
6 propositions in CarPool World
$\Rightarrow 2^{6}=64$ different situations.
Page 40

Extensional Semantics of WFPs

$\llbracket \neg P \rrbracket$ is True if $\llbracket P \rrbracket$ is False. Otherwise, it is False.
$\llbracket P \wedge Q \rrbracket$ is True if $\llbracket P \rrbracket$ is True and $\llbracket Q \rrbracket$ is True. Otherwise, it is False.
$\llbracket P \vee Q \rrbracket$ is False if $\llbracket P \rrbracket$ is False and $\llbracket Q \rrbracket$ is False. Otherwise, it is True.
$\llbracket P \Rightarrow Q \rrbracket$ is False if $\llbracket P \rrbracket$ is True and $\llbracket Q \rrbracket$ is False. Otherwise, it is True.
$\llbracket P \Leftrightarrow Q \rrbracket$ is True if $\llbracket P \rrbracket$ and $\llbracket Q \rrbracket$ are both True, or both False. Otherwise, it is False.

Note that this is the outline of a recursive function that evaluates a wfp, given the truth values of its atomic propositions.

Page 41

Extensional Semantics Truth Tables

| | P | True | False | |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | | | |
| P | False | True | | |
| P | True | True | False | False |
| P | False | True | False | |
| $P \wedge Q$ | True | False | False | False |
| $P \vee Q$ | True | True | True | False |
| $P \Rightarrow Q$ | True | False | True | True |
| $P \Leftrightarrow Q$ | True | False | False | True |

Notice that each column of these tables represents a different situation.

Page 42

Material Implication

$$
P \Rightarrow Q \text { is True when } P \text { is False. }
$$

So,
If the world is flat, then the moon is made of green cheese is considered True if if . . .then is interpreted as material implication.

$$
(P \Rightarrow Q) \Leftrightarrow(\neg P \vee Q)
$$

P	True	True	False	False
Q	True	False	True	False
$\neg P$	False	False	True	True
$P \Rightarrow Q$	True	False	True	True
$\neg P \vee Q$	True	False	True	True

$(P \Rightarrow Q)$ is sometimes taken as a abbreviation of $(\neg P \vee Q)$
Note: "Uninterpreted Language", Formal Logic, applicable to every logic in the class.

Page 44

Example CarPool World Truth Table

Betty drives Tom	True	True	False	False
Tom is the driver	True	False	True	False
\neg Tom is the driver	False	True	False	True
Betty drives Tom $\Leftrightarrow \neg$ Tom is the driver	False	True	True	False

Page 45

Computing Denotations

Use the procedure sketched on page 41.
Use Spreadsheet:
See http://www.cse.buffalo.edu/~shapiro/Courses/CSE563/ truthTable.xls/

Use Boole program from Barwise \& Etchemendy package

Computing the Denotation of a Wfp in a Model

Construct a truth table containing all atomic wfps and the wfp whose denotation is to be computed, and restrict the truth table to the desired model.
E.g., play with http:
//www. cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.xls/
Use the program /projects/shapiro/CSE563/denotation

Example Runs of denotation Program

```
cl-user(1): (denotation '(if p (if q p))
    '((p . True) (q . False)))
True
cl-user(2): (denotation
    '(if BettyDrivesTom
        (not TomIsThePassenger))
    '((BettyDrivesTom . True)
    (TomIsThePassenger . True)))
```

False

Model Finding

A model satisfies a wfp if the wfp is True in that model.
If a wfp P is False in a model, \mathcal{M}, then \mathcal{M} satisfies $\neg P$.
A model satisfies a set of wfps if they are all True in the model.
A model, \mathcal{M}, satisfies the wfps P_{1}, \ldots, P_{n} if and only if \mathcal{M}, satisfies $P_{1} \wedge \ldots \wedge P_{n}$.

Task: Given a set of wfps, A, find satisfying models.
I.e., models that assign all wfps in A the value True.

Model Finding with a Spreadsheet

Play with http:
//www. cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.xls/

An Informal Model Finding Algorithm (Exponential)

- Given: Wfps labeled True, False, or unlabeled.
- If any wfp is labeled both True and False, terminate with failure.
- If all atomic wfps are labeled, return labeling as a model.
- If $\neg P$ is
- labeled True, try labeling P False.
- labeled False, try labeling P True.
- If $P \wedge Q$ is
- labeled True, try labeling P and Q True.
- labeled False, try labeling P False, and try labeling Q False.

Page 51

Model Finding Algorithm, cont'd

- If $P \vee Q$ is
- labeled False, try labeling P and Q False.
- labeled True, try labeling P True, and try labeling Q True.
- If $P \Rightarrow Q$ is
- labeled False, try labeling P True and Q False.
- labeled True, try labeling P False, and try labeling Q True.
- If $P \Leftrightarrow Q$ is
- labeled True, try labeling P and Q both True, and try labeling P and Q both False.
- labeled False, try labeling P True and Q False, and try labeling P False and Q True.

Tableau Procedure for Model Findinga

$$
\begin{gathered}
T: B P \Rightarrow \neg B D \\
T: T D \Rightarrow B P \\
F: \neg B D
\end{gathered}
$$

Page 53

[^1]
Tableau Procedure Example: Step 1

$$
\begin{gathered}
T: B P \Rightarrow \neg B D \\
T: T D \Rightarrow B P \\
F: \neg B D \leftarrow \\
\mid \\
T: B D
\end{gathered}
$$

Page 54

Tableau Procedure Example: Step 2

Page 55

Tableau Procedure Example: Step 3

Lisp Program for Tableau Procedure

```
Function: (models trueWfps &optional falseWfps trueAtoms falseAtoms)
<timberlake:~}:1:62> mlisp
cl-user(1): :ld /projects/shapiro/CSE563/modelfinder
; Loading /projects/shapiro/CSE563/modelfinder.cl
cl-user(2): (models '( (if BP (not BD)) (if TD BP)) '((not BD)))
(((BD . True) (BP . False) (TD . False)))
cl-user(3): (models '( BDT (if BDT (and BD TP)) (not (or TP BD))))
nil
cl-user(4): (models '( (if BDT (and BD TP)) (if TDB (and TD BP))))
(((TD . True) (BP . True) (BD . True) (TP . True))
    ((BD . True) (TP . True) (TDB . False))
    ((TD . True) (BP . True) (BDT . False))
    ((BDT . False) (TDB . False)))

\section*{Decreasoner, an Efficient Model Finder}

On nickelback.cse.buffalo.edu or timberlake.cse.buffalo.edu, do
cd /projects/shapiro/CSE563/decreasoner and try
python ubdecreasonerP.py examples/ShapiroCSE563/cpwProp.e and
python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropFindModels.e
\[
\text { Page } 58
\]

\footnotetext{
\({ }^{\text {a }}\) Decreasoner is by Erik T. Mueller, and uses relsat, by Roberto J. Bayardo Jr. and Robert C. Schrag, and walksat, by Bart Selman and Henry Kautz.
}

\section*{Decreasoner Example Input File}
```

/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/
cpwPropFindModels.e:
;;; Example of Finding Models for Some Wfp
;;; In a SubDomain of Propositional Car Pool World
;;; Stuart C. Shapiro
;;; January 23, 2009
proposition BettyIsDriver ; Betty is the driver of the car.
proposition TomIsDriver ; Tom is the driver of the car.
proposition BettyIsPassenger ; Betty is the passenger in the car.
;;; A set of well-formed propositions to find models of within CPW
(BettyIsPassenger -> !BettyIsDriver).
(TomIsDriver -> BettyIsPassenger).
!!BettyIsDriver.

```

Page 59

\section*{Decreasoner Example Run}
<timberlake:decreasoner:1:60> python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropFindModels.e
model 1:

BettyIsDriver.
!BettyIsPassenger.
!TomIsDriver.

\section*{Semantic Properties of WFPs}
- A wfp is satisfiable if it is True in at least one situation.
- A wfp is contingent if it is True in at least one situation and False in at least one situation.
- A wfp is valid \((\models P)\) if it is True in every situation. A valid wfp is also called a tautology.
- A wfp is unsatisfiable or contradictory if it is False in every situation.

\section*{Examples}
\begin{tabular}{|c|c|c|c|c|}
\hline \(P\)
\(Q\) & \begin{tabular}{l}
True \\
True
\end{tabular} & \begin{tabular}{l}
True \\
False
\end{tabular} & \begin{tabular}{l}
False \\
True
\end{tabular} & \begin{tabular}{l}
False \\
False
\end{tabular} \\
\hline \(\neg P\) & Fals & False & True & True \\
\hline \(Q \Rightarrow P\) & True & True & False & True \\
\hline \(P \Rightarrow(Q \Rightarrow P)\) & True & True & True & True \\
\hline \(P \wedge \neg P\) & False & False & False & False \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{\(\neg P, Q \Rightarrow P\), and \(P \Rightarrow(Q \Rightarrow P)\) are satisfiable, \(\neg P\) and \(Q \Rightarrow P\) are contingent, \(P \Rightarrow(Q \Rightarrow P)\) is valid, \(P \wedge \neg P\) is contradictory.}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Page 62

\section*{Logical Entailment}
\(\left\{A_{1}, \ldots, A_{n}\right\}\) logically entails \(B\) in logic \(\mathcal{L}\)
\[
A_{1}, \ldots, A_{n} \models_{\mathcal{L}} B
\]
if \(B\) is True in every situation in which every \(A_{i}\) is True.
\[
\begin{gathered}
\text { If } \mathcal{L} \text { is assumed, } \\
A_{1}, \ldots, A_{n} \models B \\
\text { If } n=0, \text { we have validity } \\
\models B, \\
\text { i.e., } B \text { is True in every situation. }
\end{gathered}
\]

Page 63

\section*{Examples}
\begin{tabular}{|l|cccc|}
\hline\(P\) & True & True & False & False \\
\(Q\) & True & False & True & False \\
\hline\(\neg P\) & False & False & True & True \\
\(Q \Rightarrow P\) & True & True & False & True \\
\(P \Rightarrow(Q \Rightarrow P)\) & True & True & True & True \\
\(P \wedge \neg P\) & False & False & False & False \\
\hline
\end{tabular}
\[
\begin{gathered}
\models P \Rightarrow(Q \Rightarrow P) \\
P \models Q \Rightarrow P \\
Q, Q \Rightarrow P \models P
\end{gathered}
\]

Page 64

\title{
A Metatheorem
}
\[
\begin{gathered}
A_{1}, \ldots, A_{n} \models B \\
\text { iff } \\
A_{1} \wedge \cdots \wedge A_{n} \models B
\end{gathered}
\]

Page 65

\section*{Semantic Deduction Theorem (Metatheorem)}
\[
A_{1}, \ldots, A_{n} \models P \text { if and only if } \models A_{1} \wedge \cdots \wedge A_{n} \Rightarrow P .
\]

So deciding validity and logical entailment are equivalent.

\section*{Domain Knowledge (Rules)}

Used to reduce the set of situations to those that "make sense".

Page 67

\section*{Domain Rules for CarPool World}

Betty is the driver \(\Leftrightarrow \neg\) Betty is the passenger
Tom is the driver \(\Leftrightarrow \neg\) Tom is the passenger
Betty drives Tom \(\Rightarrow\) Betty is the driver \(\wedge\) Tom is the passenger Tom drives Betty \(\Rightarrow\) Tom is the driver \(\wedge\) Betty is the passenger Tom drives Betty \(\vee\) Betty drives Tom

\section*{Sensible CarPool World Situations}

The only 2 of the 64 in which all domain rules are True:
\begin{tabular}{|l|ll|}
\hline & \multicolumn{2}{|c|}{ Denotation in Situation } \\
Proposition & 3 & 4 \\
\hline Betty drives Tom & True & False \\
Tom drives Betty & False & True \\
Betty is the driver & True & False \\
Tom is the driver & False & True \\
Betty is the passenger & False & True \\
Tom is the passenger & True & False \\
\hline Betty drives Tom \(\Leftrightarrow \neg\) Tom is the driver & True & True \\
\hline
\end{tabular}

Page 69

\section*{General Effect of Domain Rules}

The number of models that satisfy a set of wfps is reduced (or stays the same) as the size of the set increases.

For a set of wfps, \(\Gamma\), and a wfp \(P\), if the number of models that satisfy \(\Gamma \cup\{P\}\) is strictly less than the number of models that satisfy \(\Gamma\), then \(P\) is independent of \(\Gamma\).

\section*{Computer Tests of CPW Domain Rules}

Spreadsheet: http:
//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpwRules.xls
Decreasoner (on nickelback or timberlake):
cd /projects/shapiro/CSE563/decreasoner
python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e

Page 71

\section*{CarPool World Domain Rules in} Decreasoner
```

proposition BettyDrivesTom ; Betty drives Tom to work.
proposition TomDrivesBetty ; Tom drives Betty to work.
proposition BettyIsDriver ; Betty is the driver of the car.
proposition TomIsDriver ; Tom is the driver of the car.
proposition BettyIsPassenger ; Betty is the passenger in the car.
proposition TomIsPassenger ; Tom is the passenger in the car.
;;; CPW Domain Rules
BettyIsDriver <-> !BettyIsPassenger.
TomIsDriver <-> !TomIsPassenger.
BettyDrivesTom -> BettyIsDriver \& TomIsPassenger.
TomDrivesBetty -> TomIsDriver \& BettyIsPassenger.
TomDrivesBetty | BettyDrivesTom.

```

\section*{Decreasoner on CPW with Domain Rules}
```

python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e
model 1:
BettyDrivesTom.
BettyIsDriver.
TomIsPassenger.
!BettyIsPassenger.
!TomDrivesBetty.
!TomIsDriver.
model 2:
BettyIsPassenger.
TomDrivesBetty.
TomIsDriver.
!BettyDrivesTom.
!BettyIsDriver.
!TomIsPassenger.

```

Page 73

\section*{The KRR Enterprise (Propositional Logic Version)}

Given a domain you are interested in reasoning about:
1. List the set of propositions (expressed in English) that captures the basic information of interest in the domain.
2. Formalize the domain by creating one atomic wfp for each proposition listed in step (1). List the atomic wfps, and, for each, show the English proposition as its intensional semantics.

\section*{The KRR Enterprise, Part 2}
3. Using the atomic wfps, determine a set of domain rules so that all, but only, the situations of the domain that make sense satisfy them. Strive for a set of domain rules that is small and independent.
4. Optionally, formulate an additional set of situation-specific wfps that further restrict the domain to the set of situations you are interested in. We will call this restricted domain the "subdomain".
5. Letting \(\Gamma\) be the set of domain rules plus situation-specific wfps, and \(A\) be any proposition you are interested in, \(A\) is True in the subdomain if \(\Gamma \models A\), is false in the subdomain if \(\Gamma \models \neg A\), and otherwise is True in some more specific situations of the subdomain, and False in others.

\section*{Computational Methods for Determining Entailment and Validity Version 1}
(defun entails (KB Q)
"Returns \(t\) if the knowledge base \(K B\) entails the query \(Q\); else returns nil."
(loop for model in (models KB)
unless (denotation \(Q\) model)
do (return-from entails nil))
t)

Two problems:
1. models does not really return all the satisfying models;
2. entails does extra work.

Page 76

\section*{Tableau Methods Model-Finding Refutation}

To Show \(A_{1}, \ldots, A_{n} \models P\) :
- Try to find a model that satisfies \(A_{1}, \ldots, A_{n}\) but falsifies \(P\).
- If you succeed, \(A_{1}, \ldots, A_{n} \notin P\).
- If you fail, \(A_{1}, \ldots, A_{n} \models P\).

All refutation model-finding methods are commonly called "tableau methods".

Semantic Tableaux and Wang's Algorithm are two tableau methods that are decision procedures for logical entailment in Propositional Logic.

\section*{Semantic Tableaux \({ }^{\text {a }}\) \\ A Model-Finding Refutation Procedure}

The semantic tableau refutation procedure is the same as the tableau model-finding procedure we saw earlier, except it uses model finding refutation to show \(A_{1}, \ldots, A_{n} \models P\).

The goal is that all branches be closed.
\[
\text { Page } 78
\]

\footnotetext{
\({ }^{\text {a }}\) Evert W. Beth, The Foundations of Mathematics, (Amsterdam: North Holland), 1959.
}

\title{
A Semantic Tableau to Prove \(T D, T D \Rightarrow B P, B P \Rightarrow \neg B D \models \neg B D\)
}
\[
\begin{gathered}
T: T D \\
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \\
F: \neg B D
\end{gathered}
\]

Page 79

\title{
A Semantic Tableau to Prove \(T D, T D \Rightarrow B P, B P \Rightarrow \neg B D \models \neg B D\)
}
\[
\begin{gathered}
T: T D \\
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \\
F: \neg B D \leftarrow \\
\mid \\
T: B D
\end{gathered}
\]

Page 80

\section*{A Semantic Tableau to Prove \(T D, T D \Rightarrow B P, B P \Rightarrow \neg B D \models \neg B D\)}


Page 81
A Semantic Tableau To Prove \(T D, T D \Rightarrow B P, B P \Rightarrow \neg B D \models \neg B D\)
\[
\begin{gathered}
T: T D \\
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \leftarrow \\
F: \neg B D \\
\mid
\end{gathered}
\]


Page 82

\title{
A Semantic Tableau to Prove \(T D \Rightarrow B P, B P \Rightarrow \neg B D \not \vDash \neg B D\)
}
\[
\begin{gathered}
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \\
F: \neg B D
\end{gathered}
\]

Page 83

\title{
A Semantic Tableau to Prove \(T D \Rightarrow B P, B P \Rightarrow \neg B D \not \vDash \neg B D\)
}
\[
\begin{gathered}
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \\
F: \neg B D \leftarrow \\
\mid \\
T: B D
\end{gathered}
\]

Page 84

\title{
A Semantic Tableau to Prove \(T D \Rightarrow B P, B P \Rightarrow \neg B D \not \vDash \neg B D\)
}


Page 85

\section*{A Semantic Tableau to Prove \(T D \Rightarrow B P, B P \Rightarrow \neg B D \not \vDash \neg B D\)}
\[
\begin{gathered}
T: T D \Rightarrow B P \\
T: B P \Rightarrow \neg B D \leftarrow \\
F: \neg B D \\
\mid
\end{gathered}
\]



Can stop as soon as one satisfying model has been found.
Page 86

\section*{Wang's Algorithm \({ }^{\text {a }}\) \\ A Model-Finding Refutation Procedure}
wang(Twfps, Fwfps) \{
/*
* Twfps and Fwfps are sets of wfps.
* Returns True if there is no model
* that satisfies Twfps and falsifies Fwfps;
* Otherwise, returns False.
*/
Note: is a version of models, but returns the opposite value.
Page 87

\footnotetext{
\({ }^{\text {a }}\) Hao Wang, Toward Mechanical Mathematics. IBM Journal of Research and Development 4, (1960), 2-22. Reprinted in K. M. Sayre and F. J. Crosson (Eds.) The Modeling of Mind: Computers and Intelligence. Simon and Schuster, New York, 1963.
}

\section*{Wang Algorithm}
```

if Twfps and Fwfps intersect, return True;
if every $A \in$ Twfps \cup Fwfps is atomic, return False;
if $(P=(\operatorname{not} A)) \in T w f p s$,
return wang $(T w f p s \backslash\{P\}$, Fwfps $\cup\{A\})$;
if $(P=(\operatorname{not} A)) \in F w f p s$,
return wang $(T w f p s \cup\{A\}$, Fwfps $\backslash\{P\})$;

```

\section*{Wang Algorithm}
```

if $(P=($ and $A B)) \in T w f p s$,
return wang $((T w f p s \backslash\{P\}) \cup\{A, B\}$, Fwfps);
if $(P=($ and $A B)) \in$ Fwfps,
return wang (Twfps, (Fwfps $\backslash\{P\}) \cup\{A\})$
and wang (Twfps, $(F w f p s \backslash\{P\}) \cup\{B\})$;
if $(P=($ or $A B)) \in T w f p s$,
return wang $((T w f p s \backslash\{P\}) \cup\{A\}$, Fwfps $)$;
and wang $((T w f p s \backslash\{P\}) \cup\{B\}$, Fwfps $)$;
if $(P=($ or $A B)) \in$ Fwfps,
return wang (Twfps, (Fwfps $\backslash\{P\}) \cup\{A, B\})$

```

\section*{Wang Algorithm}
```

if $(P=($ if $A B)) \in$ Twfps,
return wang $($ Twfps $\backslash\{P\}$, Fwfps $\cup\{A\})$
and wang $(($ Twfps $\backslash\{P\}) \cup\{B\}$, Fwfps $)$;
if $(P=($ if $A B)) \in$ Fwfps,
return wang $($ Twfps $\cup\{A\},($ Fwfps $\backslash\{P\}) \cup\{B\})$;
if $(P=(i f f \quad A B)) \in$ Twfps,
return wang $((T w f p s \backslash\{P\}) \cup\{A, B\}$, Fwfps $)$
and wang (Twfps $\backslash\{P\}$, Fwfps $\cup\{A, B\}$);
if $(P=(i f f A B)) \in$ Fwfps,
return wang $($ Twfps $\cup\{A\},($ Fwfps $\backslash\{P\}) \cup\{B\})$
and wang $($ Twfps $\cup\{B\},(F w f p s \backslash\{P\}) \cup\{A\})$;

```

\section*{Implemented Wang Function}
```

(wang '(}\mp@subsup{A}{1}{},···,\mp@subsup{A}{n}{\prime})\quad'(P)
Returns t if }\mp@subsup{A}{1}{},···,\mp@subsup{A}{n}{}\modelsP\mathrm{ ;
nil otherwise.

```

\section*{Alternative View of Wang Function}
(wang \(K B\) (Query))
Returns t if the Query follows from the \(K B\) nil otherwise.

Front end:
(entails KB Query)
Returns t if the Query follows from the \(K B\) nil otherwise.

Page 92

\section*{Using Wang's Algorithm on a Tautology}
```

(entails '() '(if A (if B A)))
O[2]: (wang nil ((if A (if B A))))
1[2]: (wang (A) ((if B A)))
2[2]: (wang (B A) (A))
2[2]: returned t
1[2]: returned t
0[2]: returned t
t

```

Page 93

\section*{Using Wang's Algorithm on a Non-Tautology}
```

(entails '() '(if A (and A B)))
0[2]: (wang nil ((if A (and A B))))
1[2]: (wang
(A) ((and A B)))
2[2]: (wang
2[2]: returned t
2[2]: (wang
(A) (B))
2[2]: returned nil
1[2]: returned nil
O[2]: returned nil
nil

```

Page 94

\section*{Using Wang's Algorithm} to see if
```

 TD,TD = BP,BP=>\negBD\models\negBD
 (entails '(TD (if TD BP) (if BP (not BD))) '(not BD))
0[2]: (wang (TD (if TD BP) (if BP (not BD))) ((not BD)))
1[2]: (wang (TD (if BP (not BD))) (TD (not BD)))
1[2]: returned t
1[2]: (wang (BP TD (if BP (not BD))) ((not BD)))
2[2]: (wang (BP TD) (BP (not BD)))
2[2]: returned t
2[2]: (wang ((not BD) BP TD) ((not BD)))
2[2]: returned t
1[2]: returned t
0[2]: returned t
t

```

Page 95

\section*{Properties of Wang's Algorithm}
1. Wang's Algorithm is sound:

If (wang \(\mathrm{A}{ }^{\prime}(\mathrm{B})\) ) \(=\mathrm{t}\) then \(A \models B\)
2. Wang's Algorithm is complete:

If \(A \models B\) then (wang \(\mathrm{A}^{\prime}(\mathrm{B})\) ) \(=\mathrm{t}\)
3. Wang's Algorithm is a decision procedure:

For any valid inputs A, B,
(wang A ' (B)) terminates
and returns t iff \(A \models B\)

Page 96

\section*{Example: Tom's Evening Domain \({ }^{\text {a }}\)}

If there is a good movie on TV and Tom doesn't have an early appointment the next morning, then he stays home and watches a late movie. If Tom needs to work and doesn't have an early appointment the next morning, then he works late. If Tom works and needs his reference materials, then he works at his office. If Tom works late at his office, then he returns to his office. If Tom watches a late movie or works late, then he stays up late.

Assume: Tom needs to work, doesn't have an early appointment, and needs his reference materials.

Prove: Tom returns to his office and stays up late.
Page 97

\footnotetext{
\({ }^{\text {a Based on }}\) an example in Stuart C. Shapiro, Processing, Bottom-up and Topdown, in Stuart C. Shapiro, Ed. Encyclopedia of Artificial Intelligence, John Wiley \& Sons, Inc., New York, 1987, 779-785.
}

\subsection*{2.3.3 Proof Theory of the Standard Propositional Logic}
- Specifies when a given wfp can be derived correctly from a set of (other) wfps.
\[
A_{1}, \ldots, A_{n} \vdash P
\]
- Determines what wfps are theorems of the logic.
\[
\vdash P
\]
- Depends on the notion of proof.

Page 98

\section*{Hilbert-Style Syntactic Inference}
- Set of Axioms.
- Small set of Rules of Inference.

Page 99

\section*{Hilbert-Style Proof}
- A proof of a theorem \(P\) is
- An ordered list of wfps ending with \(P\)
- Each wfp on the list is
* Either an axiom
* or follows from previous wfps in the list by one of the rules of inference.

Page 100

\section*{Hilbert-Style Derivation}
- A derivation of \(P\) from \(A_{1}, \ldots, A_{n}\) is
- A list of wfps ending with \(P\)
- Each wfp on the list is
* Either an axiom
* or some \(A_{i}\)
* or follows from previous wfps in the list by one of the rules of inference.

Page 101

\section*{Example Hilbert-Style Axioms \({ }^{\text {a }}\)}

All instances of:
(A1). \((\mathcal{A} \Rightarrow(\mathcal{B} \Rightarrow \mathcal{A}))\)
(A2). \(((\mathcal{A} \Rightarrow(\mathcal{B} \Rightarrow \mathcal{C})) \Rightarrow((\mathcal{A} \Rightarrow \mathcal{B}) \Rightarrow(\mathcal{A} \Rightarrow \mathcal{C})))\)
(A3). \(((\neg \mathcal{B} \Rightarrow \neg \mathcal{A}) \Rightarrow((\neg \mathcal{B} \Rightarrow \mathcal{A}) \Rightarrow \mathcal{B}))\)

Page 102

\footnotetext{
\({ }^{\text {a From Elliott Mendelson, Introduction to Mathematical Logic, (Princeton: D. }}\) Van Nostrand) 1964, pp. 31-32.
}

\section*{Hilbert-Style Rule of Inference}

Modus Ponens
\[
\frac{\mathcal{A}, \mathcal{A} \Rightarrow \mathcal{B}}{\mathcal{B}}
\]

Page 103

\title{
Example Hilbert-Style Proof that \(\vdash A \Rightarrow A\)
}
\[
\begin{aligned}
& \text { (1) }(A \Rightarrow((A \Rightarrow A) \Rightarrow A)) \\
& \Rightarrow((A \Rightarrow(A \Rightarrow A)) \Rightarrow(A \Rightarrow A)) \text { Instance of } \mathrm{A} 2 \\
& \text { (2) } A \Rightarrow((A \Rightarrow A) \Rightarrow A) \quad \text { Instance of A1 } \\
& \text { (3) }(A \Rightarrow(A \Rightarrow A)) \Rightarrow(A \Rightarrow A) \quad \text { From } 1,2 \text { by MP } \\
& \text { (4) } A \Rightarrow(A \Rightarrow A) \quad \text { Instance of A1 } \\
& \text { (5) } A \Rightarrow A \quad \text { From } 3,4 \text { by MP }
\end{aligned}
\]

\section*{Example Hilbert-Style Derivation}
that
Tom is the driver
Tom is the driver \(\Rightarrow\) Betty is the passenger,
Betty is the passenger \(\Rightarrow \neg\) Betty is the driver,
\(\vdash \quad \neg\) Betty is the driver
(1) Tom is the driver
(2) Tom is the driver \(\Rightarrow\) Betty is the passenger
(3) Betty is the passenger
(4) Betty is the passenger \(\Rightarrow \neg\) Betty is the driver
(5) \(\neg\) Betty is the driver

Assumption
Assumption
From 1, 2 by MP
Assumption
From 3,4 by MP
Page 105

\section*{Some AI Connections}
\begin{tabular}{l|l} 
AI & Logic \\
\hline \hline \begin{tabular}{l} 
domain knowledge \\
or domain rules
\end{tabular} & \begin{tabular}{l} 
assumptions \\
or non-logical axioms
\end{tabular} \\
\hline inference engine procedures & rules of inference \\
\hline knowledge base & proof
\end{tabular}

Page 106

\section*{Natural Deduction (Style of Syntactic Inference)}
- No Axioms.
- Large set of Rules of Inference.
- A few structural rules of inference.
- An introduction rule and an elimination rule for each connective.
- A method of subproofs. \({ }^{\text {a }}\)

Page 107

\footnotetext{
\({ }^{\text {a }}\) Francis Jeffry Pelletier, A History of Natural Deduction and Elementary Logic Textbooks, in J. Woods, B. Brown (eds) Logical Consequence: Rival Approaches, Vol. 1. (Oxford: Hermes Science Pubs) 2000, pp. 105-138.
}

\section*{Fitch-Style Proof \({ }^{\text {a }}\)}
- A proof of a theorem \(P\) is
- An ordered list of wfps and subproofs ending with \(P\)
- Each wfp or subproof on the list must be justified by a rule of inference.
- \(\vdash P\) is read " \(P\) is a theorem."

Page 108

\footnotetext{
\({ }^{\text {a Based on Frederic B. Fitch, Symbolic Logic: An Introduction, (New York: }}\) Ronald Press), 1952.
}

\section*{Fitch-Style Derivation}
- A derivation of a wfp \(P\) from an assumption \(A\) is a hypothetical subproof whose hypothesis is \(A\) and which contains
- An ordered list of wfps and inner subproofs ending with \(P\)
- Each wfp or inner subproof on the list must be justified by a rule of inference.
- \(A \vdash P\) is read " \(P\) can be derived from \(A\)."
- A Meta-theorem: \(A_{1} \wedge \ldots \wedge A_{n} \vdash P\) iff \(A_{1}, \ldots, A_{n} \vdash P\)

\section*{Format of Proof/Derivation}


Page 110

\section*{Structural Rules of Inference}


Page 111

\section*{Rules for \(\Rightarrow\)}


Page 112

\title{
Example Fitch-Style Proof that \(\vdash A \Rightarrow A\)
}
\begin{tabular}{l|cl} 
1. & \(A\) & \(H y p\) \\
\cline { 2 - 3 } 2. & \(A\) & \(R e p, 1\) \\
3. & \(A \Rightarrow A\) & \(\Rightarrow I, 1-2\)
\end{tabular}

Page 113

\section*{Fitch-Style Proof of Axiom A1}
\begin{tabular}{l|cl} 
1. & \(A\) & \(H y p\) \\
\cline { 2 - 3 } & 2. & Hyp \\
3. & \(B\) & Reit, 1 \\
4. & \(B \Rightarrow A\) & \(\Rightarrow I, 2-3\) \\
5. & \(A \Rightarrow(B \Rightarrow A)\) & \(\Rightarrow I, 1-4\)
\end{tabular}

Page 114

\section*{Example Fitch-Style Derivation}
that
Tom is the driver
Tom is the driver \(\Rightarrow\) Betty is the passenger,
Betty is the passenger \(\Rightarrow \neg\) Betty is the driver,
\(\vdash \quad \neg\) Betty is the driver
1. Tom is the driver
2. Tom is the driver \(\Rightarrow\) Betty is the passenger
3. Betty is the passenger \(\Rightarrow \neg\) Betty is the driver Hyp
4. Betty is the passenger \(\quad \Rightarrow E, 1,2\)
5. \(\neg\) Betty is the driver \(\quad \Rightarrow E, 4,3\)

Page 115

\section*{Rules for \(\neg\)}


Page 116

\section*{Fitch-Style Proof of Axiom A3}


Page 117

\section*{Rules for \(\wedge\)}
\[
\begin{array}{r|l}
i_{1} \cdot & A_{1} \\
i_{n} \cdot & A_{n} \\
j . & A_{1} \wedge \cdots \wedge A_{n} \wedge I, i_{1}, \ldots, i_{n} \\
i . & A_{1} \wedge \cdots \wedge A_{n} \\
& \begin{array}{ll} 
\\
j . & A_{k}
\end{array}
\end{array}
\]

Page 118

\section*{Proof that}
\(\vdash(A \wedge B \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C))\)


Page 119

\section*{Proof that}
\(\vdash(A \Rightarrow(B \Rightarrow C)) \Rightarrow(A \wedge B \Rightarrow C)\)
\begin{tabular}{|c|c|c|}
\hline 1. & \(A \Rightarrow(B \Rightarrow C)\) & Hyp \\
\hline 2. & \(A \wedge B\) & Hyp \\
\hline 3. & A & \(\wedge E, 2\) \\
\hline 4. & \(B\) & \(\wedge E, 2\) \\
\hline 5. & \(A \Rightarrow(B \Rightarrow C)\) & Reit, 1 \\
\hline 6. & \(B \Rightarrow C\) & \(\Rightarrow E, 3,5\) \\
\hline 7. & C & \(\Rightarrow E, 4,6\) \\
\hline 8. & \(A \wedge B \Rightarrow C\) & \(\Rightarrow I, 2-7\) \\
\hline 9. & \((A \Rightarrow(B \Rightarrow C)) \Rightarrow(A \wedge B \Rightarrow C)\) & \(\Rightarrow I, 1-8\) \\
\hline
\end{tabular}

Page 120

\section*{Rules for \(\vee\)}
\[
\begin{aligned}
& \begin{array}{l|l}
\text { i. } & A_{i} \\
j . & A_{1} \vee \cdots \vee A_{i} \vee \cdots \vee A_{n} \quad \vee I, i
\end{array}
\end{aligned}
\]

Page 121

\section*{Proof that}


Page 122


Page 123

\section*{Rules for \(\Leftrightarrow\)}
\begin{tabular}{l|ll} 
i. & \(A \Rightarrow B\) \\
& \\
& \\
j. & \(B \Rightarrow A\) & \\
k. & \(A \Leftrightarrow B \quad \Leftrightarrow I, i, j\)
\end{tabular}
\begin{tabular}{l|ll|ll}
\(i\). & \(A\) & \(i\). & \(B\) & \\
& & & \(\vdots\) \\
\(j\). & \(A \Leftrightarrow B\) & & \\
\(k\). & \(B\). & \(A \Leftrightarrow B\) & \\
\(k\) & \(\Leftrightarrow E, i, j\) & \(k\). & \(A\)
\end{tabular}

Page 124

\section*{Proof that}
\[
\vdash(A \Rightarrow(B \Rightarrow C)) \Leftrightarrow(A \wedge B \Rightarrow C)
\]
\[
\begin{array}{lll} 
& \text { Proof from p. } 120 \\
\text { 9. } & (A \Rightarrow(B \Rightarrow C)) \Rightarrow(A \wedge B \Rightarrow C) & \Rightarrow I \\
& \text { Proof from p. } 119 \\
\text { 18. } & (A \wedge B \Rightarrow C) \Rightarrow(A \Rightarrow(B \Rightarrow C)) & \Rightarrow I \\
\text { 19. } & (A \Rightarrow(B \Rightarrow C)) \Leftrightarrow(A \wedge B \Rightarrow C) & \Leftrightarrow I, 9,18
\end{array}
\]

Page 125

\section*{CarPool World Derivation}


Page 126

\section*{Implementing Natural Deduction}

Heuristics:
If trying to prove/derive a non-atomic wfp, try the introduction rule for the major connective.

If trying to prove/derive a wfp, and that wfp is a component of a wfp, try the relevant elimination rule.

\section*{Using SNePS 3}
```

cl-user(2): :ld /projects/snwiz/Sneps3/sneps3
"Change package to snuser."
cl-user(3): :pa snuser
snuser(4): (showproofs)
nil
snuser(5): (askif '(if A A))
Let me assume that A
Since A can be derived after assuming A
I infer wft1!: (if A A) by Implication Introduction.
wft1!: (if A A)

```

Page 128

\section*{Derivation by SNePS 3}
```

snuser(12): (clearkb)
nil
snuser(13): (assert 'TomIsTheDriver)
TomIsTheDriver!
snuser(14): (assert '(if TomIsTheDriver BettyIsThePassenger))
wft1!: (if TomIsTheDriver! BettyIsThePassenger)
snuser(15): (assert '(if BettyIsThePassenger (not BettyIsTheDriver)))
wft3!: (if BettyIsThePassenger (not BettyIsTheDriver))
snuser(16): (askif '(not BettyIsTheDriver))
Since wft1!: (if TomIsTheDriver! BettyIsThePassenger)
and TomIsTheDriver!
I infer BettyIsThePassenger! by Implication Elimination.
Since wft3!: (if BettyIsThePassenger! (not BettyIsTheDriver))
and BettyIsThePassenger!
I infer wft2!: (not BettyIsTheDriver) by Implication Elimination.
wft2!: (not BettyIsTheDriver)
snuser(17): (askif 'BettyIsThePassenger) ; Lemma
BettyIsThePassenger!

```

Page 129

\section*{SNePS 3 Proves Axiom A1}
```

snuser(9): (clearkb)
nil
snuser(10): (askif '(if A (if B A)))
Let me assume that A
Let me assume that B
Since A can be derived after assuming B
I infer wft1?: (if B A) by Implication Introduction.
Since wft1?: (if B A) can be derived after assuming A
I infer wft2!: (if A (if B A)) by Implication Introduction.
wft2!: (if A (if B A))

```

Page 130

\section*{Another Derivation by SNePS 3}
```

snuser(24): (clearkb)
nil
snuser(25): (assert '(iff TomIsTheDriver (not TomIsThePassenger)))
wft2!: (iff TomIsTheDriver (not TomIsThePassenger))
snuser(26): (assert '(iff TomIsThePassenger BettyIsTheDriver))
wft3!: (iff TomIsThePassenger BettyIsTheDriver)
snuser(27): (assert '(iff BettyIsTheDriver (not BettyIsThePassenger)))
wft5!: (iff (not BettyIsThePassenger) BettyIsTheDriver)
snuser(28): (assert 'TomIsTheDriver)
TomIsTheDriver!
snuser(29): (askif 'BettyIsThePassenger)
Since wft2!: (iff TomIsTheDriver! (not TomIsThePassenger))
and TomIsTheDriver!
I infer wft1!: (not TomIsThePassenger) by Equivalence Elimination.
Since wft3!: (iff TomIsThePassenger BettyIsTheDriver)
and wft1!: (not TomIsThePassenger)
I infer wft7!: (not BettyIsTheDriver) by Equivalence Elimination.
Since wft5!: (iff (not BettyIsThePassenger) BettyIsTheDriver)
and wft7!: (not BettyIsTheDriver)
I infer BettyIsThePassenger! by Equivalence Elimination.
BettyIsThePassenger!

```

Page 131

\section*{More Connections}
- Deduction Theorem: \(A \vdash P\) if and only if \(\vdash A \Rightarrow P\).
- So proving theorems and deriving conclusions from assumptions are equivalent.
- But no atomic proposition is a theorem.
- So theorem proving makes more use of Introduction Rules than most AI reasoning systems.

Page 132

\subsection*{2.4 Important Properties of Logical Systems}

Soundness: \(\vdash P\) implies \(\models P\)
Consistency: not both \(\vdash P\) and \(\vdash \neg P\)
Completeness: \(\models P\) implies \(\vdash P\)

\section*{More Connections}
- If at most 1 of \(\models P\) and \(\models \neg P\) then soundness implies consistency.
- Soundness is the essence of "correct reasoning."
- Completeness less important for running systems since a proof may take too long to wait for.
- The Propositional Logics we have been looking at are complete.
- Gödel's Incompleteness Theorem: A logic strong enough to formalize arithmetic is either inconsistent or incomplete.

\section*{More Connections}
\[
A_{1}, \ldots, A_{n} \vdash P \quad \Leftrightarrow \quad \vdash A_{1} \wedge \ldots \wedge A_{n} \Rightarrow P
\]
soundness \(\Downarrow \uparrow\) completeness soundness \(\Downarrow \uparrow\) completeness
\[
A_{1}, \ldots, A_{n} \models P \quad \Leftrightarrow \quad \models A_{1} \wedge \ldots \wedge A_{n} \Rightarrow P
\]

Page 135

\subsection*{2.5 Clause Form Propositional Logic}
2.5.1 Syntax ..... 137
2.5.2 Semantics ..... 139
2.5.3 Proof Theory: Resolution ..... 143
2.5.4 Resolution Refutation ..... 147
2.5.5 Translating Standard Wfps into Clause Form ..... 159

\subsection*{2.5.1 Clause Form Syntax}

\section*{Syntax of Atoms and Literals}

\section*{Atomic Propositions:}
- Any letter of the alphabet
- Any letter with a numerical subscript
- Any alphanumeric string.

Literals:
If \(P\) is an atomic proposition, \(P\) and \(\neg P\) are literals.
\(P\) is called a positive literal
\(\neg P\) is called a negative literal.

Page 137

\section*{Clause Form Syntax Syntax of Clauses and Sets of Clauses}

Clauses: If \(L_{1}, \ldots, L_{n}\) are literals then the set \(\left\{L_{1}, \ldots, L_{n}\right\}\) is a clause.

Sets of Clauses: If \(C_{1}, \ldots, C_{n}\) are clauses
then the set \(\left\{C_{1}, \ldots, C_{n}\right\}\) is a set of clauses.

Page 138

\subsection*{2.5.2 Clause Form Semantics}

\section*{Atomic Propositions}

Intensional: \([P]\) is some proposition in the domain.
Extensional: \(\llbracket P \rrbracket\) is either True or False.

Page 139

\section*{Clause Form Semantics: Literals}

Positive Literals: The meaning of \(P\) as a literal is the same as it is as an atomic proposition.

Negative Literals:
Intensional:
\([\neg P]\) means that it is not the case that \([P]\).
Extensional: \(\llbracket \neg P \rrbracket\) is True if \(\llbracket P \rrbracket\) is False;
Otherwise, it is False.

Page 140

\section*{Clause Form Semantics: Clauses}

Intensional:
\(\left[\left\{L_{1}, \ldots, L_{n}\right\}\right]=\left[L_{1}\right]\) and/or \(\ldots\) and/or \(\left[L_{n}\right]\).
Extensional:
\(\llbracket\left\{L_{1}, \ldots, L_{n}\right\} \rrbracket\) is True
if at least one of \(\llbracket L_{1} \rrbracket, \ldots, \llbracket L_{n} \rrbracket\) is True;
Otherwise, it is False.

Page 141

\section*{Clause Form Semantics: Sets of Clauses}

Intensional:
\[
\left[\left\{C_{1}, \ldots, C_{n}\right\}\right]=\left[C_{1}\right] \text { and } \ldots \text { and }\left[C_{n}\right] .
\]

Extensional:
\(\llbracket\left\{C_{1}, \ldots, C_{n}\right\} \rrbracket\) is True if \(\llbracket C_{1} \rrbracket\) and \(\ldots\) and \(\llbracket C_{n} \rrbracket\) are all True; Otherwise, it is False.

\subsection*{2.5.3 Clause Form Proof Theory: Resolution}

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.
Assumptions: The derivation is initialized with a set of assumption clauses \(A_{1}, \ldots, A_{n}\).

Rule of Inference: A clause may be added to a set of clauses if justified by resolution.

Derived Clause: If clause \(Q\) has been added to a set of clauses initialized with the set of assumption clauses \(A_{1}, \ldots, A_{n}\) by one or more applications of resolution, then \(A_{1}, \ldots, A_{n} \vdash Q\).

\section*{Resolution}
\[
\frac{\left\{P, L_{1}, \ldots, L_{n}\right\},\left\{\neg P, L_{n+1}, \ldots, L_{m}\right\}}{\left\{L_{1}, \ldots, L_{n}, L_{n+1}, \ldots, L_{m}\right\}}
\]

Resolution is sound, but not complete!

Page 144

\section*{Example Derivation}
1. \(\{\neg\) TomIsTheDriver, \(\neg\) TomIsThePassenger \(\} \quad\) Assumption
2. \(\{\) TomIsThePassenger, BettyIsThePassenger \(\}\) Assumption
3. \{TomIsTheDriver\} Assumption
4. \(\{\neg\) TomIsThePassenger \(\}\)

\[
R, 1,3
\]
\[
\text { 5. }\{\text { BettyIsThePassenger }\} \quad R, 2,4
\]

Page 145

\section*{Example of Incompleteness}
\(\{P\} \models\{P, Q\}\)
but
\(\{P\} \nvdash\{P, Q\}\)
because resolution does not apply to \(\{\{P\}\}\).

Page 146

\subsection*{2.5.4 Resolution Refutation}
- Notice that \(\{\{P\},\{\neg P\}\}\) is contradictory.
- Notice that resolution applies to \(\{P\}\) and \(\{\neg P\}\) producing \(\}\), the empty clause.
- If a set of clauses is contradictory, repeated application of resolution is guaranteed to produce \(\}\).

\section*{Implications}
- Set of clauses \(\left\{A_{1}, \ldots, A_{n}, Q\right\}\) is contradictory
- means \(\left(A_{1} \wedge \ldots \wedge A_{n} \wedge Q\right)\) is False in all models
- means whenever \(\left(A_{1} \wedge \ldots \wedge A_{n}\right)\) is True, \(Q\) is False
- means whenever \(\left(A_{1} \wedge \ldots \wedge A_{n}\right)\) is True \(\neg Q\) is True
- means \(A_{1}, \ldots, A_{n} \models \neg Q\).

Page 148

\section*{Negation and Clauses}
- \(\neg\left\{L_{1}, \ldots, L_{n}\right\}=\left\{\left\{\neg L_{1}\right\}, \ldots,\left\{\neg L_{n}\right\}\right\}\).
- \(\neg L= \begin{cases}\neg A & \text { if } L=A \\ A & \text { if } L=\neg A\end{cases}\)

Page 149

\section*{Resolution Refutation}

To decide if \(A_{1}, \ldots, A_{n} \models Q\) :
1. Let \(S=\left\{A_{1}, \ldots, A_{n}\right\} \cup \neg Q \quad\) (Note: \(\neg Q\) is a set of clauses.)
2. Repeatedly apply resolution to clauses in \(S\).
(Determine if \(\left\{A_{1}, \ldots, A_{n}\right\} \cup \neg Q \vdash\}\) )
3. If generate \(\left\}, A_{1}, \ldots, A_{n} \models Q\right.\).
(If \(\left\{A_{1}, \ldots, A_{n}\right\} \cup \neg Q \vdash\left\}\right.\) then \(A_{1}, \ldots, A_{n} \models Q\) )
4. If reach point where no new clause can be generated, but \(\left\}\right.\) has not appeared, \(A_{1}, \ldots, A_{n} \notin Q\). (If \(\left\{A_{1}, \ldots, A_{n}\right\} \cup \neg Q \nvdash\left\}\right.\) then \(A_{1}, \ldots, A_{n} \not \vDash Q\) )

Page 150

\section*{Example 1}

To decide if \(\{P\} \models\{P, Q\}\)
\(S=\{\{P\},\{\neg P\},\{\neg Q\}\}\)
1. \(\{P\}\) Assumption
2. \(\{\neg P\}\) From query clause
3. \(\} \quad R, 1,2\)

Page 151

\section*{Example 2}

To decide if
\(\{\neg\) TomIsTheDriver,\(\neg\) TomIsThePassenger \(\}\),
\{ TomIsThePassenger, BettyIsThePassenger \},
\(\{\) TomIsTheDriver \(\} \quad \models\{\) BettyIsThePassenger \(\}\)
1. \(\{\neg\) TomIsTheDriver, \(\neg\) TomIsThePassenger \(\}\) Assumption
2. \{TomIsThePassenger, BettyIsThePassenger\} Assumption
3. \{TomIsTheDriver\}

Assumption
4. \(\{\neg\) BettyIsThePassenger \(\}\)

From query clause
5. \{TomIsThePassenger \(\}\)

R, 2, 4
6. \(\{\neg\) TomIsTheDriver \(\}\)

R, 1, 5
7. \{\}

R, 3, 6
Page 152

\section*{Resolution Efficiency Rules}

Tautology Elimination: If clause \(C\) contains literals \(L\) and \(\neg L\), delete \(C\) from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause \(C\) contains a literal \(A(\neg A)\) and no clause contains a literal \(\neg A(A)\), delete \(C\) from the set of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses \(C_{1}\) and \(C_{2}\) such that \(C_{1} \subseteq C_{2}\), delete \(C_{2}\) from the set of clauses. (Check throughout.)

These rules delete unhelpful clauses.

\section*{Resolution Strategies}

Unit Preference: Resolve shorter clauses before longer clauses.
Set of Support: One clause in each pair being resolved must descend from the query.

Many others
These are heuristics for finding \(\}\) faster.

Page 154

\section*{Example 1 Using prover}
cl-user(2): :ld /projects/shapiro/AIclass/prover
; Fast loading /projects/shapiro/AIclass/prover.fasl
cl-user(3): :pa prover
prover (4): (prove '(P) '(or P Q))
1 (P) Assumption
2 ((not P)) From Query
3 ((not Q)) From Query
Deleting 3 ( (not Q))
because Q is not used positively in any clause.
4 nil
\(R, 2,1,\{ \}\)
QED

Page 155

\section*{Example 2 Using prover}
```

prover(19): (prove '((or (not TomIsTheDriver) (not TomIsThePassenger)
(or TomIsThePassenger BettyIsThePassenger)
TomIsTheDriver)
'BettyIsThePassenger)
1 (TomIsTheDriver) Assumption
2 ((not TomIsTheDriver) (not TomIsThePassenger)) Assumption
3 (TomIsThePassenger BettyIsThePassenger) Assumption
4 ((not BettyIsThePassenger)) From Query
5 (TomIsThePassenger) R,4,3,{}
Deleting 3 (TomIsThePassenger BettyIsThePassenger)
because it's subsumed by 5 (TomIsThePassenger)
6 ((not TomIsTheDriver)) R,5,2,{}
Deleting 2 ((not TomIsTheDriver) (not TomIsThePassenger))
because it's subsumed by 6 ((not TomIsTheDriver))
7 nil R,6,1,{}
QED
Page 156

```

\section*{Example 1 Using SNARK}
```

cl-user(5): :ld /projects/shapiro/CSE563/snark
; Loading /projects/shapiro/CSE563/snark.cl
..
cl-user(6): :pa snark-user
snark-user(7): (initialize)
snark-user(8): (assert 'P)
nil
snark-user(9): (prove '(or P Q))
(Refutation
(Row 1
P
assertion)
(Row 2
false
(rewrite ~conclusion 1))
)
:proof-found

```

Page 157

\section*{Properties of Resolution Refutation}

Resolution Refutation is sound, complete, and a decision procedure for Clause Form Propositional Logic.

It remains so when Tautology Elimination, Pure-Literal Elimination, Subsumption Elimination and the Unit-Preference Strategy are included.

It remains so when Set of Support is used as long as the assumptions are not contradictory.

\subsection*{2.5.5 Equivalence of Standard Propositional Logic and Clause FormLogic}

Every set of clauses,
\[
\left\{\left\{L_{1,1}, \ldots, L_{1, n_{1}}\right\}, \ldots,\left\{L_{m, 1}, \ldots, L_{m, n_{m}}\right\}\right\}
\]
has the same semantics as the standard wfp
\[
\left(\left(L_{1,1} \vee \cdots \vee L_{1, n_{1}}\right) \wedge \cdots \wedge\left(L_{m, 1} \vee \cdots \vee L_{m, n_{m}}\right)\right)
\]

That is, there is a translation from any set of clauses into a well-formed proposition of standard propositional logic.

Question: Is there a translation from any well-formed proposition of standard propositional logic into a set of clauses?

Answer: Yes!

\section*{Translating Standard Wfps into Clause Form Conjunctive Normal Form (CNF)}

A standard wfp is in CNF if it is a conjunction of disjunctions of literals.
\[
\left(\left(L_{1,1} \vee \cdots \vee L_{1, n_{1}}\right) \wedge \cdots \wedge\left(L_{m, 1} \vee \cdots \vee L_{m, n_{m}}\right)\right)
\]

Translation technique:
1. Turn any arbitrary wfp into CNF.
2. Translate the CNF wfp into a set of clauses.

Page 160

\title{
Translating Standard Wfps into Clause Form Useful Meta-Theorem: The Subformula Property
}

If \(A\) is (an occurrence of) a subformula of \(B\),
\[
\begin{gathered}
\text { and } \models A \Leftrightarrow C, \\
\text { then } \models B \Leftrightarrow B\{C / A\}
\end{gathered}
\]

Page 161

\title{
Translating Standard Wfps into Clause Form Step 1
}

Eliminate occurrences of \(\Leftrightarrow\) using
\[
\models(A \Leftrightarrow B) \Leftrightarrow((A \Rightarrow B) \wedge(B \Rightarrow A))
\]

From: (LivingThing \(\Leftrightarrow(\) Animal \(\vee\) Vegetable \())\)
To:
\(((\) LivingThing \(\Rightarrow(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\) Animal \(\vee\) Vegetable \() \Rightarrow\) LivingThing \())\)

Page 162

\section*{Translation Step 2}

Eliminate occurrences of \(\Rightarrow\) using
\[
\models(A \Rightarrow B) \Leftrightarrow(\neg A \vee B)
\]

From:
\(((\) LivingThing \(\Rightarrow(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\) Animal \(\vee\) Vegetable \() \Rightarrow\) LivingThing \())\)
To:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge(\neg(\) Animal \(\vee\) Vegetable \() \vee\) LivingThing \())\)

Page 163

\section*{Translation Step 3}

Translate to miniscope form using
\[
\begin{aligned}
& \models \neg(A \wedge B) \Leftrightarrow(\neg A \vee \neg B) \\
& \models \neg(A \vee B) \Leftrightarrow(\neg A \wedge \neg B) \\
& \models \neg(\neg A) \Leftrightarrow A
\end{aligned}
\]

From:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge(\neg(\) Animal \(\vee\) Vegetable \() \vee\) LivingThing \())\)
To:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\neg\) Animal \(\wedge \neg\) Vegetable \() \vee\) LivingThing \())\)

Page 164

\section*{Translation Step 4}

CNF: Translate into Conjunctive Normal Form, using
\(\vDash(A \vee(B \wedge C)) \Leftrightarrow((A \vee B) \wedge(A \vee C))\)
\(\vDash((B \wedge C) \vee A) \Leftrightarrow((B \vee A) \wedge(C \vee A))\)
From:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\neg\) Animal \(\wedge \neg\) Vegetable \() \vee\) LivingThing \())\)
To:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\neg\) Animal \(\vee\) LivingThing \() \wedge(\neg\) Vegetable \(\vee\) LivingThing \()))\)

Page 165

\section*{Translation Step 5}

Discard extra parentheses using the associativity of \(\wedge\) and \(\vee\).
From:
\(((\neg\) LivingThing \(\vee(\) Animal \(\vee\) Vegetable \())\)
\(\wedge((\neg\) Animal \(\vee\) LivingThing \() \wedge(\neg\) Vegetable \(\vee\) LivingThing \()))\)
To:
\(((\neg\) LivingThing \(\vee\) Animal \(\vee\) Vegetable)
\(\wedge(\neg\) Animal \(\vee\) LivingThing \()\)
\(\wedge(\neg\) Vegetable \(\vee\) LivingThing \())\)

Page 166

\section*{Translation Step 6}

Turn each disjunction into a clause, and the conjunction into a set of clauses.

From:
\(((\neg\) LivingThing \(\vee\) Animal \(\vee\) Vegetable \()\)
\(\wedge(\neg\) Animal \(\vee\) LivingThing \()\)
\(\wedge(\neg\) Vegetable \(\vee\) LivingThing \())\)
To:
\(\{\{\neg\) LivingThing, Animal, Vegetable \(\}\),
\(\{\neg\) Animal, LivingThing \(\}\),
\(\{\neg\) Vegetable, LivingThing \(\}\}\)

Page 167

\section*{Use of Translation}
\[
A_{1}, \ldots, A_{n} \models_{\text {Standard }} Q
\]
iff
The translation of \(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg Q\) into a set of clauses
\[
\vdash\}
\]

Page 168

\section*{prover Example}
```

To prove
(LivingThing \LeftrightarrowAnimal \vee Vegetable),(LivingThing }\wedge\neg\mathrm{ Animal) }\vDash\mathrm{ Vegetable
prover(20): (prove '((iff LivingThing (or Animal Vegetable))
(and LivingThing (not Animal)))
'Vegetable)
1 (LivingThing) Assumption
2 ((not Animal)) Assumption
3 ((not Animal) LivingThing) Assumption
4 ((not Vegetable) LivingThing) Assumption
5 ((not LivingThing) Animal Vegetable) Assumption
6 ((not Vegetable)) From Query
Deleting 3 ((not Animal) LivingThing)
because it's subsumed by 1 (LivingThing)
Deleting 4 ((not Vegetable) LivingThing)
because it's subsumed by 1 (LivingThing)

```

Page 169

\section*{prover Example, continued}
```

 1 (LivingThing) Assumption
 2 ((not Animal)) Assumption
 5 ((not LivingThing) Animal Vegetable) Assumption
 6 ((not Vegetable)) From Query
 7 ((not LivingThing) Animal) R,6,5,{}
 Deleting 5 ((not LivingThing) Animal Vegetable)
because it's subsumed by 7 ((not LivingThing) Animal)
8 (Animal) R,7,1,{}
9 ((not LivingThing)) R,7,2,{}
nil R,9,1,{}
QED

```

\section*{Connections}


Modus Tollens


Chaining
\[
\frac{A \Rightarrow B, B \Rightarrow C}{A \Rightarrow C}
\]

Resolution
\[
\frac{\{A\},\{\neg A, B\}}{\{B\}}
\]

Resolution
\[
\frac{\{\neg A, B\},\{\neg B\}}{\{\neg A\}}
\]

Resolution
\(\frac{\{A, B\},\{\neg A\}}{\{B\}}\)

Resolution
\[
\frac{\{\neg A, B\},\{\neg B, C\}}{\{\neg A, C\}}
\]

Page 171

\section*{More Connections}
\[
\begin{array}{ll}
\text { Clause } & \text { Rule } \\
\left\{\neg A_{1}, \ldots, \neg A_{n}, C\right\} & \left(A_{1} \wedge \cdots \wedge A_{n}\right) \Rightarrow C \\
\text { Set of Support } & \text { Back-chaining }
\end{array}
\]

\section*{3 Predicate Logic Over Finite Models}
3.1 CarPool World ..... 174
3.2 The "Standard" Finite-Model Predicate Logic ..... 175
3.3 Clause Form Finite-Model Predicate Logic ..... 211

\subsection*{3.1 CarPool World}

Propositional Logic
\begin{tabular}{ll} 
Tom drives Betty & Betty drives Tom \\
Tom is the driver & Betty is the driver \\
Tom is the passenger & Betty is the passenger
\end{tabular} related only by the domain rules.

Predicate Logic
\begin{tabular}{ll} 
Drives \((\) Tom, Betty \()\) & Drives (Betty, Tom) \\
\(\operatorname{Driver~}(\) Tom \()\) & Driver (Betty \()\) \\
Passenger (Tom) & Passenger (Betty)
\end{tabular}
shows two properties, one relation, and two individuals.
Page 174

\subsection*{3.2 The "Standard" Finite-Model Predicate Logic}
1. Syntax ..... 176
2. Substitutions ..... 187
3. Semantics ..... 190
4. Model Checking in Finite-Model Predicate Logic ..... 202

\subsection*{3.2.1 Syntax of the "Standard" Finite-Model Predicate Logic Atomic Symbols}

\section*{Individual Constants:}
- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript,
- any character string not containing blanks nor other punctuation marks.

For example: \(a, B_{12}\), Tom, Tom's_mother-in-law.

\section*{Atomic Symbols, Part 2}

\section*{Variables:}
- Any letter of the alphabet (preferably late),
- any (such) letter with a numeric subscript.

For example: \(u, v_{6}\).

\section*{Atomic Symbols, Part 3}

\section*{Predicate Symbols:}
- Any letter of the alphabet (preferably late middle),
- any (such) letter with a numeric subscript,
- any character string not containing blanks.

For example: \(P, Q_{4}\), Drives .
Each Predicate Symbol must have a particular arity.
Use superscript for explicit arity.
For example: \(P^{1}\), Drives \(^{2}, Q_{2}^{3}\)

\section*{Atomic Symbols, Part 4}

In any specific predicate logic language
Individual Constants,
Variables,
Predicate Symbols
must be disjoint.

Set of individual constants and of predicate symbols must be finite.

Page 179

\section*{Terms}
- Every individual constant and variable is a term.
- Nothing else is a term.

Page 180

\section*{Atomic Formulas}

If \(P^{n}\) is a predicate symbol of arity \(n\), and \(t_{1}, \ldots, t_{n}\) are terms, then \(P^{n}\left(t_{1}, \ldots, t_{n}\right)\) is an atomic formula.
E.g.: Passenger \({ }^{1}\) (Tom), Drives \({ }^{2}\left(\right.\) Betty \(\left.^{2} y\right)\)
(The superscript may be omitted if no confusion results.)

Page 181

\section*{Well-Formed Formulas (wffs):}

Every atomic formula is a wff.
If \(P\) is a wff, then so is \((\neg P)\).
If \(P\) and \(Q\) are wffs, then so are
\[
\begin{array}{ll}
(P \wedge Q) & (P \vee Q) \\
(P \Rightarrow Q) & (P \Leftrightarrow Q)
\end{array}
\]

If \(P\) is a wff and \(x\) is a variable, then \(\forall x(P)\) and \(\exists x(P)\) are wffs.

Parentheses may be omitted or replaced by square brackets if no confusion results.

We will allow \(\left(P_{1} \wedge \cdots \wedge P_{n}\right)\) and \(\left(P_{1} \vee \cdots \vee P_{n}\right)\).
\(\forall x(\forall y(P))\) may be abbreviated as \(\forall x, y(P)\).
\(\exists x(\exists y(P))\) may be abbreviated as \(\exists x, y(P)\).
Page 182

\section*{Quantifiers:}
\[
\text { In } \forall x P \text { and } \exists x P
\]
\(\forall\) called the universal quantifier.
\(\exists\) called the existential quantifier.
\(P\) is called the scope of quantification.

\section*{Free and Bound Variables}

Every occurrence of \(x\) in \(P\), not in the scope of some other occurrence of \(\forall x\) or \(\exists x\), is said to be free in \(P\) and bound in \(\forall x P\) and \(\exists x P\).

Every occurrence of every variable other than \(x\) that is free in \(P\) is also free in \(\forall x P\) and \(\exists x P\).
\[
\forall x[P(x, y) \Leftrightarrow[(\exists x \exists z Q(x, y, z)) \Rightarrow R(x, y)]]
\]

Page 184

\section*{Open, Closed, and Ground}

A wff with a free variable is called open.
A wff with no free variables is called closed,
An expression with no variables is called ground.

Page 185

\section*{CarPool World Domain Rules}

\section*{PropositionalLogic}

Betty is the driver \(\Leftrightarrow \neg\) Betty is the passenger
Tom is the driver \(\Leftrightarrow \neg\) Tom is the passenger
Betty drives Tom \(\Rightarrow\) Betty is the driver \(\wedge\) Tom is the passenger
Tom drives Betty \(\Rightarrow\) Tom is the driver \(\wedge\) Betty is the passenger
Tom drives Betty \(\vee\) Betty drives Tom

\section*{PredicateLogic}
\(\forall x(\operatorname{Driver}(x) \Leftrightarrow \neg \operatorname{Passenger}(x))\)
\(\forall x, y(\operatorname{Drives}(x, y) \Rightarrow(\operatorname{Driver}(x) \wedge \operatorname{Passenger}(y)))\)
Drives (Tom, Betty) \(\vee\) Drives(Betty, Tom)

Page 186

\title{
3.2.2 Substitutions Syntax
}

Pairs: \(t / v\) (Read: "t for v")
- \(t\) is any term
- \(v\) is any variable

Substitutions: \(\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\}\)
- \(i \neq j \Rightarrow v_{i} \neq v_{j}\)

\section*{Terminology}
\(\sigma=\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\}\)
\(t_{i}\) is a term in \(\sigma\)
\(v_{i}\) is a variable of \(\sigma\)
Say \(t_{i} / v_{i} \in \sigma\) and \(v_{i} \in \sigma\),
but not \(t_{i} \in \sigma\)
Note: \(x\) is not a variable of \(\{x / y\}\),
i.e. \(x / y \in\{x / y\}, y \in\{x / y\}, x \notin\{x / y\}\)

Page 188

\section*{Substitution Application}

For expression \(\mathcal{A}\) and substitution \(\sigma=\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\}\)
\(\mathcal{A} \sigma\) : replace every free occurrence of each \(v_{i}\) in \(\mathcal{A}\) by \(t_{i}\)
E.g.:
\[
\begin{aligned}
& P(x, y)\{x / y, y / x\}=P(y, x) \\
& \forall x[P(x, y) \Leftrightarrow[(\exists x \exists z Q(x, y, z)) \Rightarrow R(x, y, z)]]\{a / x, b / y, c / z\} \\
& =\forall x[P(x, b) \Leftrightarrow[(\exists x \exists z Q(x, b, z)) \Rightarrow R(x, b, c)]]
\end{aligned}
\]

\subsection*{3.2.3 Semantics of Finite-Model Predicate Logic}

Assumes a Finite Domain, \(\mathcal{D}\), of
- individuals,
- sets of individuals,
- relations over individuals

Let \(\mathcal{I}\) be the set of all individuals in \(\mathcal{D}\).

\section*{Semantics of Individual Constants}
\([a]=\llbracket a \rrbracket=\) some particular individual in \(\mathcal{I}\).
There is no anonymous individual.
I.e. for every individual, \(i\) in \(\mathcal{I}\), there is an individual constant \(c\) such that \([c]=\llbracket c \rrbracket=\mathrm{i}\).

\section*{Semantics of Predicate Symbols}

\section*{Predicate Symbols:}
- \(\left[P^{1}\right]\) is some category/property of individuals of \(\mathcal{I}\).
- \(\left[P^{n}\right]\) is some n-ary relation over \(\mathcal{I}\).
- \(\llbracket P^{1} \rrbracket\) is some particular subset of \(\mathcal{I}\).
- \(\llbracket P^{n} \rrbracket\) is some particular subset of the relation
\[
\underbrace{\mathcal{I} \times \cdots \times \mathcal{I}}_{n \text { times }} .
\]

Page 192

\section*{Intensional Semantics of Ground Atomic Formulas}
- If \(P^{1}\) is some unary predicate symbol, and \(t\) is some individual constant, then \(\left[P^{1}(t)\right]\) is the proposition that \([t]\) is an instance of the category \(\left[P^{1}\right]\) (or has the property \(\left[P^{1}\right]\) ).
- If \(P^{n}\) is some \(n\)-ary predicate symbol, and \(t_{1}, \ldots, t_{n}\) are individual constants, then \(\left[P^{n}\left(t_{1}, \ldots, t_{n}\right)\right]\) is the proposition that the relation \(\left[P^{n}\right]\) holds among individuals \(\left[t_{1}\right]\), and \(\ldots\), and \(\left[t_{n}\right]\).

\section*{Extensional Semantics of Ground Atomic Formulas}
- If \(P^{1}\) is some unary predicate symbol, and \(t\) is some individual constant, then \(\llbracket P^{1}(t) \rrbracket\) is True if \(\llbracket t \rrbracket \in \llbracket P^{1} \rrbracket\), and False otherwise.
- If \(P^{n}\) is some \(n\)-ary predicate symbol, and \(t_{1}, \ldots, t_{n}\) are individual constants, then \(\llbracket P^{n}\left(t_{1}, \ldots, t_{n}\right) \rrbracket\) is True if \(\left\langle\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right\rangle \in \llbracket P^{n} \rrbracket\), and False otherwise.

\section*{Semantics of WFFs, Part 1}
\[
\begin{aligned}
& {[\neg P],[P \wedge Q],[P \vee Q],[P \Rightarrow Q],[P \Leftrightarrow Q]} \\
& \llbracket \neg P \rrbracket, \llbracket P \wedge Q \rrbracket, \llbracket P \vee Q \rrbracket, \llbracket P \Rightarrow Q \rrbracket \text {, and } \llbracket P \Leftrightarrow Q \rrbracket \\
& \text { are as they are in Propositional Logic. }
\end{aligned}
\]

Page 195

\section*{Semantics of WFFs, Part 2}
- \([\forall x P]\) is the proposition that every individual \(i\) in \(\mathcal{I}\), with "name" \(t_{i}\), satisfies \(\left[P\left\{t_{i} / x\right\}\right]\).
- \([\exists x P]\) is the proposition that some individual \(i\) in \(\mathcal{I}\), with "name" \(t_{i}\), satisfies \(\left[P\left\{t_{i} / x\right\}\right]\).
- \(\llbracket \forall x P \rrbracket\) is True if \(\llbracket P\{t / x\} \rrbracket\) is True for every individual constant, \(t\). Otherwise, it is False.
- \(\llbracket \exists x P \rrbracket\) is True if there is some individual constant, \(t\) such that \(\llbracket P\{t / x\} \rrbracket\) is True. Otherwise, it is False.

\title{
Intensional Semantics of Individual Constants In CarPool World
}

\author{
\([\) Tom \(]=\) Someone named Tom. \\ \([\) Betty \(]=\) Someone named Betty.
}

\title{
Intensional Semantics of Individual Constants \\ In 4-Person CarPool World (Call it 4pCarPool World)
}

\author{
\([\) Tom \(]=\) Someone named Tom. \\ \([\) Betty \(]=\) Someone named Betty. \\ \([\) John \(]=\) Someone named John. \\ \([\) Mary \(]=\) Someone named Mary.
}

Page 198

\title{
Intensional Semantics of Ground Atomic Wffs \\ In Both CarPool Worlds
}

Predicate Symbols:
\(\left[\right.\) Driver \(\left.^{1}(x)\right]=[x]\) is the driver of the/a car.
\(\left[\right.\) Passenger \(\left.^{1}(x)\right]=[x]\) is the passenger of the/a car.
\(\left[\right.\) Drives \(\left.^{2}(x, y)\right]=[x]\) drives \([y]\) to work.

Page 199

\title{
Extensional Semantics of One CarPool World Situation
}

\author{
\(\llbracket T o m \rrbracket=\) Tom. \\ \(\llbracket B e t t y \rrbracket=\) Betty. \\ \(\llbracket\) Driver \(\rrbracket=\{\) Betty \(\}\). \\ \(\llbracket\) Passenger \(\rrbracket=\{\) Tom \(\}\). \\ \(\llbracket\) Drives \(\rrbracket=\{\langle\) Betty, Tom \(\rangle\}\).
}

\section*{Extensional Semantics of One 4 pCarPool World Situation}
\(\llbracket T o m \rrbracket=\) Tom.
\(\llbracket B e t t y \rrbracket=\) Betty.
\(\llbracket J o h n \rrbracket=\) John.
\(\llbracket\) Mary \(\rrbracket=\) Mary.
\(\llbracket\) Driver \(\rrbracket=\{\) Betty, John \(\}\).
\(\llbracket\) Passenger \(\rrbracket=\{\) Mary, Tom \(\}\).
\(\llbracket\) Drives \(\rrbracket=\{\langle\) Betty, Tom \(\rangle,\langle\) John, Mary \(\rangle\}\).

Page 201

\subsection*{3.2.4 Model Checking in Finite-Model Predicate Logic}
- \(n\) Individual Constants.
- Predicate \(P^{j}\) yields \(n^{j}\) ground atomic propositions.
- \(k_{j}\) predicates of arity \(j\) yields \(\sum_{j}\left(k_{j} \times n^{j}\right)\) ground atomic propositions.
- So \(2^{\sum_{j}\left(k_{j} \times n^{j}\right)}\) situations (columns of truth table).
- CarPool World has \(2^{\left(2 \times 2^{1}+1 \times 2^{2}\right)}=2^{8}=256\) situations.
- 4 pCarPool World has \(2^{\left(2 \times 4^{1}+1 \times 4^{2}\right)}=2^{24}=16,777,216\) situations.

\section*{Some CarPool World Situations}
\begin{tabular}{|c|c|c|c|}
\hline Driver (Tom) & \(T\) & \(T\) & \(F\) \\
\hline Driver(Betty) & \(T\) & F & T \\
\hline Passenger (Tom) & \(T\) & \(F\) & T \\
\hline Passenger(Betty) & \(T\) & \(T\) & \(F\) \\
\hline Drives(Tom, Tom) & \(T\) & \(F\) & \(F\) \\
\hline Drives(Tom, Betty) & \(T\) & \(T\) & \(F\) \\
\hline Drives(Betty, Tom) & \(T\) & \(F\) & \(T\) \\
\hline Drives(Betty, Betty) & \(T\) & \(F\) & \(F\) \\
\hline \(\forall x(\operatorname{Driver}(x) \Leftrightarrow \neg \operatorname{Passenger}(x))\) & \(F\) & \(T\) & \(T\) \\
\hline \(\forall x \forall y(\operatorname{Drives}(x, y) \Rightarrow(\operatorname{Driver}(x) \Leftrightarrow \operatorname{Passenger}(y)))\) & \(T\) & \(T\) & \(T\) \\
\hline
\end{tabular}

Page 203

\section*{Turning}

\section*{Predicate Logic Over Finite Domains Into Ground Predicate Logic}

If \(c_{1}, \ldots, c_{n}\) are the individual constants,
- Turn \(\forall x P(x)\) into \(P\left(c_{1}\right) \wedge \cdots \wedge P\left(c_{n}\right)\)
- and \(\exists x P(x)\) into \(P\left(c_{1}\right) \vee \cdots \vee P\left(c_{n}\right)\)
- E.g.:
```

$\forall x \exists y(\operatorname{Drives}(x, y))$
$\Leftrightarrow \exists y \operatorname{Drives}($ Tom,$y) \wedge \exists y D \operatorname{rives}($ Betty,$y)$
$\Leftrightarrow(\operatorname{Drives}($ Tom, Tom $) \vee \operatorname{Drives}($ Tom, Betty $))$
$\wedge($ Drives $($ Betty, Tom $) \vee$ Drives (Betty, Betty $))$

```

Page 204

\section*{Sorted Logic: A Digression}

Introduce a hierarchy of sorts, \(s_{1}, \ldots, s_{n}\).
(A sort in logic is similar to a data type in programming.)
Assign each individual constant a sort.
Assign each variable a sort.
Declare the sort of each argument position of each predicate symbol.
An atomic formula, \(P^{n}\left(t_{1}, \ldots, t_{n}\right)\) is only syntactically valid if the sort of \(t_{i}\), for each \(i\), is the sort, or a subsort of the sort, declared for the \(i^{t h}\) argument position of \(P^{n}\).

Page 205

\section*{Predicate 2-Car CarPool World in Decreasoner}
```

sort commuter
commuter Tom, Betty
sort car
car TomsCar, BettysCar
;;; [DrivesIn(x,y,c)] = [x] drives [y] to work in car [c].
predicate DrivesIn(commuter,commuter,car)
;;; [DriverOf(x,c)] = [x] is the driver of car [c].
predicate DriverOf(commuter,car)
;;; [PassengerIn(x,c)] = [x] is a passenger in car [c].
predicate PassengerIn(commuter,car)

```

Page 206

\section*{Number of Ground Atomic Propositions Unsorted vs. Sorted}
\begin{tabular}{lrr} 
Atomic Proposition & Unsorted & Sorted \\
\hline DrivesIn (commuter, commuter, car) & \(4^{3}=64\) & \(2^{3}=8\) \\
DriverOf (commuter, car) & \(4^{2}=16\) & \(2^{2}=4\) \\
PassengerIn(commuter, car) & \(4^{2}=16\) & \(2^{2}=4\) \\
\hline Total & 96 & 16
\end{tabular}

Page 207

\section*{Domain Rules of 2-Car CarPool World}
/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/4cCPWPRedRules.e
;; ; If someone's a driver of one car, they're not a passenger in any car.
;;; (And if someone's a passenger in one car, they're not driver of any car.) [commuter][car1][car2] (DriverOf(commuter, car1) -> !PassengerIn(commuter,car2)).
;;; If A drives B in car C, then A is the driver of and B is a passenger in C. [commuter1] [commuter2] [car] (DrivesIn(commuter1, commuter2, car)
-> DriverOf (commuter1,car)
\& PassengerIn(commuter2,car)).
;;; Either Tom drives Betty in Tom's car or Betty drives Tom in Betty's car. DrivesIn(Tom,Betty,TomsCar) | DrivesIn(Betty,Tom,BettysCar).
;;; Tom doesn't drive Betty's car, and Betty doesn't drive Tom's car.
!DriverOf(Tom,BettysCar) \& !DriverOf(Betty,TomsCar).
;; \(;\) Neither Tom nor Betty is a passenger in their own car.
!PassengerIn(Tom,TomsCar) \& !PassengerIn(Betty,BettysCar).
Page 208

\section*{Decreasoner Produces Two Models}

The True propositions:
```

model 1:
DriverOf(Betty, BettysCar). DriverOf(Tom, TomsCar).
DrivesIn(Betty, Tom, BettysCar). DrivesIn(Tom, Betty, TomsCar)
PassengerIn(Tom, BettysCar). PassengerIn(Betty, TomsCar).

```

\section*{Use of Predicate-Wang}
```

cl-user(12): (wang:predicate-entails
'((forall (x y)
(if (Drives x y)
(and (Driver x) (Passenger y))))
(Drives Betty Tom))
'(and (Driver Betty) (Passenger Tom))
'(Betty Tom))
t

```

Page 210

\subsection*{3.3 Clause Form Finite-Model Predicate Logic}
1. Syntax ..... 212
2. Semantics ..... 213
3. Model Finding ..... 215

\subsection*{3.3.1 Syntax of Clause Form Finite-Model Predicate Logic}

Individual constants, predicate symbols, terms, and ground atomic formulas as in standard finite-model predicate logic. (Variables are not needed.)

Literals, clauses and sets of clauses as in propositional clause form logic.

\subsection*{3.3.2 Semantics of Clause Form Finite-Model Predicate Logic}
- Individual constants, predicate symbols, terms, and ground atomic formulas as in standard finite-model predicate logic.
- Ground literals, ground clauses, and sets of ground clauses as in propositional clause form logic.

Page 213

\section*{Translation of Standard Form to Clause Form Finite-Model Predicate Calculus}
1. Eliminate quantifiers as when using model checking.
2. Translate into clause form as for propositional logic.

\subsection*{3.3.3 Model Finding: GSAT}
procedure GSAT( \(C\), tries, flips)
input: a set of clauses \(C\), and positive integers tries and flips
output: a model satisfying \(C\), or failure
for \(i:=1\) to tries do
\(\mathcal{M}:=\) a randomly generated truth assignment
for \(j:=1\) to flips do
if \(\mathcal{M} \models C\) then return \(\mathcal{M}\)
\(p:=\) an atom such that a change in its truth assignment gives the largest increase in the total number of clauses in \(C\) that are satisfied by \(\mathcal{M}\)
\(\mathcal{M}:=\mathcal{M}\) with the truth assignment of \(p\) reversed
end for end for
return "no satisfying interpretation found"
[Brachman \& Levesque, p. 82-83, based on Bart Selman, Hector J. Levesque and David Mitchell, A New Method for Solving Hard Satisfiability Problems, AAAI-92.]

Page 215

\section*{A Pedagogical Implementation of GSAT}
/projects/shapiro/CSE563/gsat.cl
Uses wang: expand to eliminate quantifiers, and prover: clauseForm to translate to clause form.

Page 216

\section*{Example GSAT Run}
```

cl-user(1): :ld /projects/shapiro/CSE563/gsat
...
cl-user(2): :pa gsat
gsat(3): (gsat '((forall x (iff (Driver x) (not (Passenger x))))
(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))
(or (Drives Tom Betty) (Drives Betty Tom))
(Driver Betty))
30 6)
A satisfying model (found on try 17) is
(((Driver Tom) nil) ((Passenger Tom) t)
((Drives Betty Betty) nil) ((Drives Tom Tom) nil)
((Drives Betty Tom) t) ((Drives Tom Betty) nil)
((Driver Betty) t) ((Passenger Betty) nil))
\#<equal hash-table with 8 entries @ \#x4a64dca>

```

Page 217

\section*{Using GSAT to Find The Value of a Wff in a KB}
```

gsat(19): (ask '(and (Drives Betty Tom) (Passenger Tom))
'((forall x (iff (Driver x) (not (Passenger x))))
(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y)
(or (Drives Tom Betty) (Drives Betty Tom))
(Driver Betty))
30 6)

```
```

 A satisfying model (found on try 19) is
 (((Drives Tom Tom) nil) ((Drives Betty Tom) t)
((Driver Betty) t) ((Passenger Tom) t)
((Drives Tom Betty) nil) ((Driver Tom) nil)
((Drives Betty Betty) nil) ((Passenger Betty) nil))

```
(and (Drives Betty Tom) (Passenger Tom)) is True in a model of the KB.
nil

Page 218

\section*{Model Finding: Walksat \\ A More Efficient Version of GSAT}

DIMACS FORMAT:
Code each atomic formula as a positive integer:
c 1 Drives(Tom, Betty) Tom drives Betty to work.
c 2 Drives (Betty, Tom) Betty drives Tom to work.
c 3 Driver (Tom) Tom is the driver of the car.
c 4 Driver (Betty) Betty is the driver of the car.
c 5 Passenger(Tom) Tom is the passenger of the car.
c 6 Passenger (Betty) Betty is the passenger of the car.

Page 219

\section*{DIMACS cont'd}

Code each clause as a set \(\pm\) integers, terminated by 0 :
```

c ((~ (Driver Tom)) (~ (Passenger Tom)))
-3 -5 0
c ((~ (Driver Betty)) (~ (Passenger Betty)))
-4 -6 0
c ((Passenger Tom) (Driver Tom))
5 0
c ((Passenger Betty) (Driver Betty))
6 0
c ((~ (Drives Tom Betty)) (Driver Tom))
-1 30
c ((~ (Drives Betty Tom)) (Driver Betty))
-240
c ((~ (Drives Tom Betty)) (Passenger Betty))
-160
c ((~ (Drives Betty Tom)) (Passenger Tom))
-2 50
c ((Drives Tom Betty) (Drives Betty Tom))
120
c ((Driver Betty))
40

```

Page 220

\section*{Running Walksat}
```

% /projects/shapiro/CSE563/WalkSAT/Walksat_v46/walksat -solcnf
< /projects/shapiro/CSE563/WalkSAT/cpw.cnf
ASSIGNMENT FOUND
v -1
v 2
v -3
v 4
v 5
v -6

```

\section*{Model Finding: Decreasoner}

Decreasoner translates sorted finite-model predicate logic wffs into DIMACS clause form.

Decreasoner gives set of clauses to Relsat.
Relsat systematically searches all models. It either:
reports that there are no satisfying models;
returns up to MAXMODELS (currently 100) satisfying models; or gives up.

If Relsat gives up, Decreasoner gives set of clauses to Walksat. It either:
returns some satisfying models;
or returns some "near misses";
or gives up.
Page 222

\section*{Decreasoner, Walksat, and "Near Misses"}
"Let's say that an "N-near miss model of a SAT problem" is a truth assignment that satisfies all but N clauses of the problem. Walksat provides the command-line option:
-target \(\mathrm{N}=\) succeed if N or fewer clauses unsatisfied
If relsat produces no models, the Discrete Event Calculus Reasoner invokes walksat with -target 1. If this fails, it invokes walksat with -target 2. If this fails, it gives up. One or two unsatisfied clauses may be helpful for debugging. In my experience, three or more unsatisfied clauses are less useful.

If you get a near miss model, it's often useful to rerun the Discrete Event Calculus Reasoner. Because walksat is stochastic, you may get back a different near miss model, and that near miss model may be more informative than the previous one."
[Erik Mueller, email to scs, \(1 / 12 / 2007\) ]

Page 223

\section*{4 Full First-Order Predicate Logic (FOL)}
4.1 CarPool World ..... 225
4.2 The "Standard" First-Order Predicate Logic ..... 227
4.3 Clause-Form First-Order Predicate Logic ..... 260
4.4 Translating Standard Wffs into Clause Form ..... 306
4.5 Asking Wh Questions ..... 325

\subsection*{4.1 CarPool World}

We'll add Tom and Betty's mothers:
motherOf(Tom) and motherOf (Betty)

Page 225

\title{
CarPool World Domain Rules (Partial)
}
\[
\begin{aligned}
& \forall x(\operatorname{Driver}(x) \Rightarrow \neg \operatorname{Passenger}(x)) \\
& \forall x, y(\operatorname{Drives}(x, y) \Rightarrow(\operatorname{Driver}(x) \wedge \operatorname{Passenger}(y)))
\end{aligned}
\]

Page 226

\subsection*{4.2 The "Standard" First-Order Predicate Logic}
1. Syntax ..... 228
2. Semantics ..... 240
3. Model Checking ..... 252
4. Hilbert-Style Proof Theory ..... 253
5. Fitch-Style Proof Theory ..... 255

\subsection*{4.2.1 Syntax of the "Standard" First-Order Predicate Logic Atomic Symbols}

\section*{Individual Constants:}
- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript,
- any character string not containing blanks nor other punctuation marks.

For example: \(a, B_{12}\), Tom, Tom's_mother-in-law.

\section*{Atomic Symbols, Part 2}

\section*{Arbitrary Individuals:}
- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript.

Indefinite Individuals:
- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript.

\section*{Atomic Symbols, Part 3}

\section*{Variables:}
- Any letter of the alphabet (preferably late),
- any (such) letter with a numeric subscript.

For example: \(x, y_{6}\).

\section*{Atomic Symbols, Part 4}

\section*{Function Symbols:}
- Any letter of the alphabet (preferably early middle)
- any (such) letter with a numeric subscript
- any character string not containing blanks.

For example: \(f, g_{\mathcal{2}}\), motherOf, family \(O f\).

\section*{Atomic Symbols, Part 5}

\section*{Predicate Symbols:}
- Any letter of the alphabet (preferably late middle),
- any (such) letter with a numeric subscript,
- any character string not containing blanks.

For example: \(P, Q_{4}\), Passenger, Drives.

\section*{Atomic Symbols, Part 6}

Each Function Symbol and Predicate Symbol must have a particular arity.

Use superscript for explicit arity.
For example: mother \(O f^{1}\), Drives \(^{2}\), family \(O f^{2}, g_{2}^{3}\)

\section*{Atomic Symbols, Part 7}

In any specific predicate logic language
Individual Constants,
Arbitrary Individuals,
Indefinite Individuals,
Variables,
Function Symbols,
Predicate Symbols
must be disjoint.

\section*{Terms}
- Every individual constant, every arbitrary individual, every indefinite individual, and every variable is a term.
- If \(f^{n}\) is a function symbol of arity \(n\), and \(t_{1}, \ldots, t_{n}\) are terms, then \(f^{n}\left(t_{1}, \ldots, t_{n}\right)\) is a term.
(The superscript may be omitted if no confusion results.)
For example: family \(O f^{2}\left(\right.\) Tom, motherOf \({ }^{1}\) (Betty))
- Nothing else is a term.

\section*{Atomic Formulas}

If \(P^{n}\) is a predicate symbol of arity \(n\),
and \(t_{1}, \ldots, t_{n}\) are terms,
then \(P^{n}\left(t_{1}, \ldots, t_{n}\right)\) is an atomic formula.
E.g.: ChildIn \({ }^{2}\) (Betty, familyOf \({ }^{2}\left(\right.\) Tom, motherOf \({ }^{1}\) (Betty)))
(The superscript may be omitted if no confusion results.)

Page 236

\section*{Well-Formed Formulas (wffs):}
- Every atomic formula is a wff.
- If \(P\) is a wff, then so is \(\neg(P)\).
- If \(P\) and \(Q\) are wffs, then so are
\[
\begin{array}{ll}
(P \wedge Q) & (P \vee Q) \\
(P \Rightarrow Q) & (P \Leftrightarrow Q)
\end{array}
\]
- If \(P\) is a wff and \(x\) is a variable, then \(\forall x(P)\) and \(\exists x(P)\) are wffs. Parentheses may be omitted or replaced by square brackets if no confusion results.
We will allow \(\left(P_{1} \wedge \cdots \wedge P_{n}\right)\) and \(\left(P_{1} \vee \cdots \vee P_{n}\right)\).
\(\forall x(\forall y(P))\) may be abbreviated as \(\forall x, y(P)\).
\(\exists x(\exists y(P))\) may be abbreviated as \(\exists x, y(P)\).
Page 237

\section*{Open, Closed, Ground, and Free For}

A wff with a free variable is called open.
A wff with no free variables is called closed,
An expression with no variables is called ground.
Note: expressions now include functional terms.
A term \(t\) is free for a variable \(x\) in the wff \(A(x)\) if no free occurrence of \(x\) in \(A(x)\) is in the scope
of any quantifier \(\forall y\) or \(\exists y\) whose variable \(y\) is in \(t\).
E.g., \(f(a, y, b)\) is free for \(x\) in \(\forall u \exists v(A(x, u) \vee B(x, v))\)
but \(f(a, y, b)\) is not free for \(x\) in \(\forall u \exists y(A(x, u) \vee B(x, y))\).
Remedy: rename \(y\) in \(A(x)\). E.g., \(\forall u \exists v(A(x, u) \vee B(x, v))\)

Page 238

\section*{Substitutions with Functional Terms}

Notice, terms may now include functional terms.
E.g.:
\[
P(x, f(y), z)\{a / x, g(b) / y, f(a) / z\}=P(a, f(g(b)), f(a))
\]

Page 239

\title{
4.2.2 Semantics of the "Standard" First-Order Predicate Logic
}

Assumes a Domain, \(\mathcal{D}\), of
- individuals,
- functions on individuals,
- sets of individuals,
- relations on individuals

Let \(\mathcal{I}\) be set of all individuals in \(\mathcal{D}\).

\section*{Semantics of Constants}

\section*{Individual Constant:}
\([a]=\llbracket a \rrbracket=\) some particular individual in \(\mathcal{I}\).
Arbitrary Individual:
\([a]=\llbracket a \rrbracket=\) a representative of all individuals in \(\mathcal{I}\). Everything True about all of them, is True of it.

\section*{Indefinite Individual:}
\([s]=\llbracket s \rrbracket=\) a representative of some individual in \(\mathcal{I}\), but it's unspecified which one.

There is no anonymous individual.
I.e. for every individual, \(i\) in \(\mathcal{I}\), there is a ground term \(t\) such that \(\llbracket t \rrbracket=\) i. (But not necessarily an individual constant.)

\section*{Intensional Semantics of Functional Terms}

Function Symbols: \(\left[f^{n}\right]\) is some n-ary function in \(\mathcal{D}\),
Functional Terms:
If \(f^{n}\) is some function symbol and \(t_{1}, \ldots, t_{n}\) are ground terms, then \(\left[f^{n}\left(t_{1}, \ldots, t_{n}\right)\right]\) is a description of the individual in \(\mathcal{I}\) that is the value of \(\left[f^{n}\right]\) on \(\left[t_{1}\right]\), and \(\ldots\), and \(\left[t_{n}\right]\).

Page 242

\section*{Extensional Semantics of Functional Terms}

Function Symbols: \(\llbracket f^{n} \rrbracket\) is some function in \(\mathcal{D}\),
\[
\llbracket f^{n} \rrbracket: \underbrace{\mathcal{I} \times \cdots \times \mathcal{I}}_{n \text { times }} \rightarrow \mathcal{I}
\]

Functional Terms:
If \(f^{n}\) is some function symbol and \(t_{1}, \ldots, t_{n}\) are ground terms, then \(\llbracket f^{n}\left(t_{1}, \ldots, t_{n}\right) \rrbracket=\llbracket f^{n} \rrbracket\left(\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right)\).

\section*{Semantics of Predicate Symbols}

\section*{Predicate Symbols:}
- \(\left[P^{1}\right]\) is some category/property of individuals of \(\mathcal{I}\)
- \(\left[P^{n}\right]\) is some n-ary relation in \(\mathcal{D}\).
- \(\llbracket P^{1} \rrbracket\) is some particular subset of \(\mathcal{I}\).
- \(\llbracket P^{n} \rrbracket\) is some particular subset of the relation
\[
\underbrace{\mathcal{I} \times \cdots \times \mathcal{I}}_{n \text { times }} .
\]

Page 244

\section*{Intensional Semantics of Ground Atomic Formulas}
- If \(P^{1}\) is some unary predicate symbol, and \(t\) is some ground term, then \(\left[P^{1}(t)\right]\) is the proposition that \([t]\) is an instance of the category \(\left[P^{1}\right]\) (or has the property \(\left[P^{1}\right]\) ).
- If \(P^{n}\) is some \(n\)-ary predicate symbol, and \(t_{1}, \ldots, t_{n}\) are ground terms, then \(\left[P^{n}\left(t_{1}, \ldots, t_{n}\right)\right]\) is the proposition that the relation \(\left[P^{n}\right]\) holds among individuals \(\left[t_{1}\right]\), and \(\ldots\), and \(\left[t_{n}\right]\).

Page 245

\section*{Extensional Semantics of Ground Atomic Formulas}

Atomic Formulas:
- If \(P^{1}\) is some unary predicate symbol, and \(t\) is some ground term, then \(\llbracket P^{1}(t) \rrbracket\) is True if \(\llbracket t \rrbracket \in \llbracket P^{1} \rrbracket\), and False otherwise.
- If \(P^{n}\) is some \(n\)-ary predicate symbol, and \(t_{1}, \ldots, t_{n}\) are ground terms, then \(\llbracket P^{n}\left(t_{1}, \ldots, t_{n}\right) \rrbracket\) is True if \(\left\langle\llbracket t_{1} \rrbracket, \ldots, \llbracket t_{n} \rrbracket\right\rangle \in \llbracket P^{n} \rrbracket\), and False otherwise.

\section*{Semantics of WFFs, Part 1}
\[
\begin{aligned}
& {[\neg P],[P \wedge Q],[P \vee Q],[P \Rightarrow Q],[P \Leftrightarrow Q]} \\
& \llbracket \neg P \rrbracket, \llbracket P \wedge Q \rrbracket, \llbracket P \vee Q \rrbracket, \llbracket P \Rightarrow Q \rrbracket \text {, and } \llbracket P \Leftrightarrow Q \rrbracket \\
& \text { are as they are in Propositional Logic. }
\end{aligned}
\]

\section*{Semantics of WFFs, Part 2}
- \([\forall x P]\) is the proposition that every individual \(i\) in \(\mathcal{I}\), with name or description \(t_{i}\), satisfies \(\left[P\left\{t_{i} / x\right\}\right]\).
- \([\exists x P]\) is the proposition that some individual \(i\) in \(\mathcal{I}\), with name or description \(t_{i}\), satisfies \(\left[P\left\{t_{i} / x\right\}\right]\).
- \(\llbracket \forall x P \rrbracket\) is True if \(\llbracket P\{t / x\} \rrbracket\) is True for every ground term, \(t\). Otherwise, it is False.
- \(\llbracket \exists x P \rrbracket\) is True if there is some ground term, \(t\) such that \(\llbracket P\{t / x\} \rrbracket\) is True. Otherwise, it is False.

\title{
Intensional Semantics of a 2-Car CarPool World 1
}

Individual Constants:
\([T o m]=\) The individual named Tom.
\([\) Betty \(]=\) The individual named Betty.
Functions:
\([\operatorname{mother} O f(x)]=\) The mother of \([x]\).

\section*{Intensional Semantics of a 2-Car CarPool World 2}

\section*{Predicates:}
\(\left[\right.\) Driver \(\left.^{1}(x)\right]=[x]\) is the driver of a car.
\(\left[\right.\) Passenger \(\left.^{1}(x)\right]=[x]\) is the passenger in a car.
\(\left[\right.\) Drives \(\left.^{2}(x, y)\right]=[x]\) drives \([y]\) in a car.

\section*{Extensional Semantics of a 2-Car CarPool World Situation}
```

$\llbracket T o m \rrbracket=$ the individual named Tom.
$\llbracket B e t t y \rrbracket=$ the individual named Betty.
$\llbracket m o t h e r O f \rrbracket=\{\langle\llbracket$ Betty \rrbracket, \llbracket mother $O f($ Betty $) \rrbracket\rangle$,
$\langle\llbracket$ Tom』, \llbracket mother $O f($ Tom $) \rrbracket\rangle\}$.
\llbracket Driver $\rrbracket=\{\llbracket$ motherOf $($ Betty $) \rrbracket, \llbracket$ motherOf $($ Tom $) \rrbracket\}$.
\llbracket Passenger $\rrbracket=\{\llbracket$ Betty \rrbracket, \llbracket Tom $\rrbracket\}$.
\llbracket Drives $\rrbracket=\{\langle\llbracket$ motherOf $($ Betty $) \rrbracket, \llbracket$ Betty $\rrbracket\rangle$,
$\langle\llbracket m o t h e r O f($ Tom $) \rrbracket, \llbracket T o m \rrbracket\rangle\}$.

```

\subsection*{4.2.3 Model Checking in Full FOL}
\(n\) Individual Constants.
At least one function yields \(\infty\) terms.*Decreasoner.
E.g., motherOf(Tom), motherOf(motherOf(Tom)), motherOf (motherOf (motherOf (Tom) )) ....

So \(\infty\) ground atomic propositions.
So \(\infty\) situations (columns of truth table).
So can't create entire truth table.
Can't do model checking
by expanding quantified expressions
into Boolean combination of ground wffs.
There still could be a finite domain if at least one individual in \(\mathcal{I}\) has an \(\infty\) number of terms describing it, but we'll assume not.

Page 252

\subsection*{4.2.4 Hilbert-Style Proof Theory for First-Order Predicate Logic}
(A1). \((\mathcal{A} \Rightarrow(\mathcal{B} \Rightarrow \mathcal{A}))\)
(A2). \(((\mathcal{A} \Rightarrow(\mathcal{B} \Rightarrow \mathcal{C})) \Rightarrow((\mathcal{A} \Rightarrow \mathcal{B}) \Rightarrow(\mathcal{A} \Rightarrow \mathcal{C})))\)
(A3). \(((\neg \mathcal{B} \Rightarrow \neg \mathcal{A}) \Rightarrow((\neg \mathcal{B} \Rightarrow \mathcal{A}) \Rightarrow \mathcal{B}))\)
(A4). \(\forall x \mathcal{A} \Rightarrow \mathcal{A}\{t / x\}\)
where \(t\) is any term free for \(x\) in \(A(x)\).
(A5). \((\forall x(\mathcal{A} \Rightarrow \mathcal{B})) \Rightarrow(\mathcal{A} \Rightarrow \forall x \mathcal{B})\)
if \(\mathcal{A}\) is a wff containing no free occurrences of \(x\).

\title{
Hilbert-Style Rules of Inference for "Standard" First-Order Predicate Logic
}
\[
\begin{gathered}
\mathcal{A}, \mathcal{A} \Rightarrow \mathcal{B} \\
\mathcal{B} \\
\frac{\mathcal{A}}{\forall x \mathcal{A}}
\end{gathered}
\]

Note: \(\exists x \mathcal{A}\) is just an abbreviation of \(\neg \forall x \neg \mathcal{A}\).

Page 254

\subsection*{4.2.5 Fitch-Style Proof Theory for First-Order Predicate Logic Additional Rules of Inference for \(\forall\)}
\[
j+1 \quad \forall x P\{x / a\} \quad \forall I, i-j
\]

Where \(a\) is an arbitrary individual not otherwise used in the proof, and \(t\) is any term, whether or not used elsewhere in the proof, that is free for \(x\) in \(P(x)\).

\section*{Example of \(\forall\) Rules}


Page 256

\section*{Additional Rules of Inference for \(\exists\)}
\[
\begin{array}{r|l}
i & P(t) \\
i+1 & \exists x P(x) \quad \exists I, i
\end{array}
\]


Where \(P(x)\) is the result of replacing some or all occurrences of \(t\) in \(P(t)\) by \(x\), \(t\) is free for \(x\) in \(P(x)\);
\(a\) is an indefinite individual not otherwise used in the proof,
\(P(a / x)\) is the result of replacing all occurrences of \(x\) in \(P(x)\) by \(a\), and there is no occurrence of \(a\) in \(Q\). (Compare \(\exists E\) to \(\vee E\).)

Page 257

\section*{Example of \(\exists\) Rules}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{To prove \(\exists x(P(x) \wedge Q(x)) \Rightarrow(\exists x P(x) \wedge \exists x Q(x))\)} \\
\hline 1 & \(\exists x(P(x) \wedge Q(x))\) & Hyp \\
\hline 2 & \(P(a) \wedge Q(a)\) & Indef I, 1 \\
\hline 3 & \(P(a)\) & \(\wedge \mathrm{E}, 2\) \\
\hline 4 & \(\exists x P(x)\) & ヨI, 3 \\
\hline 5 & \(\exists x P(x)\) & \(\exists \mathrm{E}, 2-4\) \\
\hline 6 & \(P(b) \wedge Q(b)\) & Indef I, 1 \\
\hline 7 & \(Q(b)\) & \(\wedge \mathrm{E}, 5\) \\
\hline 8 & \(\exists x Q(x)\) & \(\exists \mathrm{I}, 6\) \\
\hline 9 & \(\exists x Q(x)\) & \(\exists \mathrm{E}, 5-7\) \\
\hline 10 & \(\exists x P(x) \wedge \exists x Q(x)\) & \(\wedge \mathrm{I}, 5,9\) \\
\hline 11 & \(\exists x(P(x) \wedge Q(x)) \Rightarrow(\exists x P(x) \wedge \exists x Q(x))\) & \(\Rightarrow \mathrm{I}, 1-10\) \\
\hline
\end{tabular}

Page 258

\section*{CarPool Situation Derivation}
```

 \(\forall x(\operatorname{Driver}(x) \Rightarrow \neg \operatorname{Passenger}(x))\)
 \(\forall x \forall y(\operatorname{Drives}(x, y) \Rightarrow(\operatorname{Driver}(x) \wedge \operatorname{Passenger}(y)))\)
 \(\forall x D\) rives \((\) mother \(O f(x), x)\)
 Нур
 Drives (motherOf (Tom), Tom)
 \(\forall E, 3\)
 \(\forall y(\) Drives (motherOf (Tom) \(), y)\)
 \(\Rightarrow(\operatorname{Driver}(\operatorname{motherOf}(\operatorname{Tom})) \wedge \operatorname{Passenger}(y))) \quad \forall E, 2\)
 Drives(motherOf(Tom), Tom)
 \(\Rightarrow(\operatorname{Driver}(\operatorname{motherOf}(\) Tom \()) \wedge \operatorname{Passenger}(\) Tom \()) \quad \forall E, 5\)
 \(\operatorname{Driver}(\) mother \(O f(\) Tom \()) \wedge\) Passenger \((\) Tom \() \quad \Rightarrow E, 4,6\)
 Driver (motherOf(Tom))
 \(\wedge E, 7\)
 \(\exists x \operatorname{Driver}(\) mother \(O f(x))\)
 \(\exists I, 8\)
    ```

Page 259

\subsection*{4.3 Clause-Form First-Order Predicate Logic}
1. Syntax ..... 261
2. Semantics ..... 268
3. Proof Theory ..... 270
4. Resolution Refutation ..... 291

\subsection*{4.3.1 Syntax of Clause-Form First-Order Predicate Logic Atomic Symbols}

Individual Constants:
- Any letter of the alphabet (preferably early),
- any (such) letter with a numeric subscript,
- any character string not containing blanks nor other punctuation marks.

For example: \(a, B_{12}\), Tom, Tom's_mother-in-law.
Skolem Constants: Look like individual constants.

\section*{Atomic Symbols, Part 2}

\section*{Variables:}
- Any letter of the alphabet (preferably late),
- any (such) letter with a numeric subscript.

For example: \(u, v_{6}\).

\section*{Atomic Symbols, Part 3}

\section*{Function Symbols:}
- Any letter of the alphabet (preferably early middle)
- any (such) letter with a numeric subscript
- any character string not containing blanks.

For example: \(f, g_{2}\).
Use superscript for explicit arity.
Skolem Function Symbols: Look like function symbols.

\section*{Atomic Symbols, Part 4}

\section*{Predicate Symbols:}
- Any letter of the alphabet (preferably late middle),
- any (such) letter with a numeric subscript,
- any character string not containing blanks.

For example: \(P, Q_{4}\), odd.
Use superscript for explicit arity.

\section*{Terms}
- Every individual constant, every Skolem constant, and every variable is a term.
- If \(f^{n}\) is a function symbol or Skolem function symbol of arity \(n\), and \(t_{1}, \ldots, t_{n}\) are terms, then \(f^{n}\left(t_{1}, \ldots, t_{n}\right)\) is a term.
(The superscript may be omitted if no confusion results.)
- Nothing else is a term.

Page 265

\section*{Atomic Formulas}

If \(P^{n}\) is a predicate symbol of arity \(n\),
and \(t_{1}, \ldots, t_{n}\) are terms,
then \(P^{n}\left(t_{1}, \ldots, t_{n}\right)\) is an atomic formula.
(The superscript may be omitted if no confusion results.)

Page 266

\section*{Literals and Clauses}

Literals: If \(P\) is an atomic formula, then \(P\) and \(\neg P\) are literals.

Clauses: If \(L_{1}, \ldots, L_{n}\) are literals, then the set \(\left\{L_{1}, \ldots, L_{n}\right\}\) is a clause.

Sets of Clauses: If \(C_{1}, \ldots, C_{n}\) are clauses, then the set \(\left\{C_{1}, \ldots, C_{n}\right\}\) is a set of clauses.

\subsection*{4.3.2 Semantics of Clause-Form First-Order Predicate Logic}
- Individual Constants, Function Symbols, Predicate Symbols, Ground Terms, and Ground Atomic Formulas as for Standard FOL.
- Skolem Constants are like indefinite individuals.
- Skolem Function Symbols are like indefinite function symbols.
- Ground Literals, Ground Clauses, and Sets of Clauses as for Clause-Form Propositional Logic.

\section*{Semantics of Open Clauses}

If clause \(C\) contains variables \(v_{1}, \ldots, v_{n}\), then \(C\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\}\) is a ground instance of \(C\) if it contains no more variables.

If \(C\) is an open clause, \(\llbracket C \rrbracket\) is True if every ground instance of \(C\) is True. Otherwise, it is False.

That is, variables take on universal interpretation, with scope being the clause.

Page 269

\subsection*{4.3.3 Proof Theory of Clause-Form FOL}

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.
Assumptions: The derivation is initialized with a set of assumption clauses \(A_{1}, \ldots, A_{n}\).

Rule of Inference: A clause may be added to a set of clauses if justified by a rule of inference.

Derived Clause: If clause \(Q\) has been added to a set of clauses initialized with the set of assumption clauses \(A_{1}, \ldots, A_{n}\) by one or more applications of resolution, then \(A_{1}, \ldots, A_{n} \vdash Q\).

Page 270

\title{
Clause-Form FOL Rules of Inference Version 1
}
\[
\begin{aligned}
& \text { Resolution: } \frac{\left\{P, L_{1}, \ldots, L_{n}\right\},\left\{\neg P, L_{n+1}, \ldots, L_{m}\right\}}{\left\{L_{1}, \ldots, L_{n}, L_{n+1}, \ldots, L_{m}\right\}} \\
& \text { Universal Instantion (temporary): } \frac{C}{C \sigma}
\end{aligned}
\]

\section*{Example Derivation}
1. \(\{\neg \operatorname{Drives}(x, y), \operatorname{Driver}(x)\} \quad\) Assumption
2. \(\{\neg \operatorname{Driver}(z), \neg \operatorname{Passenger}(z)\} \quad\) Assumption
3. \(\{\) Drives \((\) mother \(O f(\) Tom \()\), Tom \()\}\) Assumption
4. \(\{\neg\) Drives (motherOf(Tom), Tom),

Driver (motherOf(Tom)) \}
UI, \(1,\{\) motherOf (Tom) \(/ x\), Tom \(/ y\}\)
5. \(\{\operatorname{Driver}(\) motherOf(Tom \())\}\)

R, 3, 4
6. \(\{\neg \operatorname{Driver}(\) mother \(O f(\) Tom \())\),
\(\neg\) Passenger \((\) motherOf \((\) Tom \())\} \quad U I, ~ 2,\{\) motherOf \((\) Tom \() / z\}\)
7. \(\{\neg\) Passenger \((\) mother \(O f(\) Tom \())\} \quad R, 5,6\)

Page 272

\section*{Motivation for a Shortcut}
\[
\begin{array}{cc}
\left\{P(x), L_{1}(x), \ldots, L_{n}(x)\right\} & \left\{\neg P(y), L_{n+1}(y), \ldots, L_{m}(y)\right\} \\
\downarrow\{a / x, a / y\} & \downarrow\{a / x, a / y\} \\
\left\{P(a), L_{1}(a), \ldots, L_{n}(a)\right\} & \left\{\neg P(a), L_{n+1}(a), \ldots, L_{m}(a)\right\}
\end{array}
\]
\[
\left\{L_{1}(a), \ldots, L_{n}(a), L_{n+1}(a), \ldots, L_{m}(a)\right\}
\]

Page 273

\section*{Most General Unifier}

A most general unifier (mgu), of atomic formulas \(\mathcal{A}\) and \(\mathcal{B}\) is a substitution, \(\mu\),
such that \(\mathcal{A} \mu=\mathcal{B} \mu=\) a common instance of \(\mathcal{A}\) and \(\mathcal{B}\)
and such that every other common instance of \(\mathcal{A}\) and \(\mathcal{B}\) is an instance of \(i\) it.
I.e., \(\mathcal{A} \mu=\mathcal{B} \mu=\) a most general common instance of \(\mathcal{A}\) and \(\mathcal{B}\).

Example:
Unifier of \(P(a, x, y)\) and \(P(u, b, v)\) is \(\{a / u, b / x, c / y, c / v\}\) giving \(P(a, b, c)\)
But more general is \(\{a / u, b / x, y / v\}\) giving \(P(a, b, y)\)

\title{
Clause-Form FOL Rules of Inference Version 2
}
\[
\left\{A, L_{1}, \ldots, L_{n}\right\},\left\{\neg B, L_{n+1}, \ldots, L_{m}\right\}
\]

Resolution:
\[
\left\{L_{1} \mu, \ldots, L_{n} \mu, L_{n+1} \mu, \ldots, L_{m} \mu\right\}
\]
where \(\mu\) is an mgu of \(A\) and \(B\).
Assume two parent clauses have no variables in common.

Page 275

\section*{Example Derivation Revisited}
1. \(\{\neg \operatorname{Drives}(x, y)\), \(\operatorname{Driver}(x)\} \quad\) Assumption
2. \(\{\neg \operatorname{Driver}(z), \neg \operatorname{Passenger}(z)\} \quad\) Assumption
3. \(\{\) Drives (motherOf(Tom), Tom) \(\}\) Assumption
4. \(\{\operatorname{Driver}(\) motherOf(Tom \())\} \quad R, 1,3,\{\) motherOf(Tom \() / x\), Tom \(/ y\}\)
5. \(\{\neg\) Passenger \((\) motherOf \((\) Tom \())\} \quad R, 2,4,\{\) motherOf \((\) Tom \() / z\),

\section*{Unification}

To find the mgu of \(\mathcal{A}\) and \(\mathcal{B}\).
Some Examples:
\begin{tabular}{ll|ll}
\(\mathcal{A}\) & \(\mathcal{B}\) & mgu & mgci \\
\hline \hline\(P(a, b)\) & \(P(a, b)\) & \(\}\) & \(P(a, b)\) \\
\hline\(P(a)\) & \(P(b)\) & FAIL & \\
\hline\(P(a, x)\) & \(P(y, b)\) & \(\{a / y, b / x\}\) & \(P(a, b)\) \\
\hline\(P(a, x)\) & \(P(y, g(y))\) & \(\{a / y, g(a) / x\}\) & \(P(a, g(a))\) \\
\hline\(P(x, f(x))\) & \(P(y, y)\) & FAIL \(\quad\) (occurs check \()\) &
\end{tabular}

Page 277

\section*{Substitution Composition}
\[
\begin{aligned}
& P \sigma \tau=((P \sigma) \tau)=P(\sigma \circ \tau) \\
& \text { Let } \sigma=\left\{t_{1} / v_{1}, \ldots, t_{n} / v_{n}\right\} \\
& \sigma \circ \tau=\left\{t_{1} \tau / v_{1}, \ldots, t_{n} \tau / v_{n}\right\} \uplus \tau \\
& \sigma \uplus \tau=\sigma \cup\{t / v \mid(t / v \in \tau) \wedge v \notin \sigma\} \\
& \text { E.g.: }\{x / y, y / z\} \circ\{u / y, v / w\}=\{x / y, u / z, v / w\}
\end{aligned}
\]

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& (P \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} v) \\
& \mu=\{ \}
\end{aligned}
\]

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& (P \mathrm{x}(\mathrm{~g} \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} v) \\
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{fu}) \mathrm{v} \text { v) } \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\}
\end{aligned}
\]

Page 280

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& (P \mathrm{x}(\mathrm{~g} \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} v) \\
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{fu}) \mathrm{v} v) \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\} \\
& \ldots(\mathrm{g} \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{v})
\end{aligned}
\]

Page 281

Manual Unification Algorithm
\[
\begin{aligned}
& \text { ( } \mathrm{P} x(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\} \\
& \ldots(g \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{v} \mathrm{v}) \\
& \ldots(g(f u))(g(f a))) \quad \ldots \mathrm{v} \text { v) }
\end{aligned}
\]

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\} \\
& \ldots(\mathrm{g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{v} \mathrm{v} \\
& \ldots(\mathrm{~g}(\mathrm{f} u))(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{v} \mathrm{v}) \\
& \mu=\{(f u) / x\} \circ\{(g(f u)) / v\}=\{(f u) / x,(g(f u)) / v\}
\end{aligned}
\]

Manual Unification Algorithm
\[
\begin{aligned}
& \text { ( } \mathrm{P} x(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\} \\
& \ldots(g \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{V} \mathrm{v}) \\
& \ldots(\mathrm{g}(\mathrm{f} u))(\mathrm{g}(\mathrm{f} a))) \quad \ldots \mathrm{v} \mathrm{v}) \\
& \mu=\{(f u) / x\} \circ\{(g(f u)) / v\}=\{(f u) / x,(g(f u)) / v\} \\
& \ldots(\mathrm{g}(\mathrm{f} a)) \quad \ldots \mathrm{V})
\end{aligned}
\]

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& \text { ( } \mathrm{P} x(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} \mathrm{a}))) \quad(\mathrm{P}(\mathrm{f} u) \mathrm{v} \mathrm{v}) \\
& \mu=\{ \} \\
& \cdots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \cdots(\mathrm{f} u) \mathrm{v} v) \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\}
\end{aligned}
\]
\[
\begin{aligned}
& \cdots(g(f \quad u)) \quad(g(f a))) \quad . . V \text { v } \\
& \mu=\{(f u) / x\} \circ\{(g(f u)) / v\}=\{(f u) / x,(g(f u)) / v\} \\
& \cdots\left(\begin{array}{l}
(\mathrm{f}(\mathrm{a})) \\
\hline
\end{array}\right. \\
& \text {. . . v } \\
& \ldots(g(f a)) \quad \ldots(g(f u)))
\end{aligned}
\]

Page 285

\section*{Manual Unification Algorithm}
\[
\begin{aligned}
& \text { ( } \mathrm{P} x(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad(P(f \mathrm{u}) \mathrm{v} v) \\
& \mu=\{ \} \\
& \cdots \mathrm{x}(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a))) \quad \cdots(\mathrm{f} u) \mathrm{v} \text { v) } \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\}
\end{aligned}
\]
\[
\begin{aligned}
& \cdots(g(f u)) \quad(g(f a))) \quad v \quad v) \\
& \mu=\{(f u) / x\} \circ\{(g(f u)) / v\}=\{(f u) / x,(g(f u)) / v\}
\end{aligned}
\]

Page 286

Manual Unification Algorithm
\[
\begin{aligned}
& \text { ( } \mathrm{P} x(\mathrm{~g} x)(\mathrm{g}(\mathrm{f} a)) \text { ) ( } \mathrm{P}(\mathrm{f} u) \mathrm{v} v) \\
& \mu=\{ \} \\
& \ldots \mathrm{x}(\mathrm{~g} \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad \ldots(\mathrm{f} u) \mathrm{v} \text { v) } \\
& \mu=\{ \} \circ\{(\mathrm{f} u) / \mathrm{x}\}=\{(\mathrm{f} u) / \mathrm{x}\} \\
& \cdots(g \mathrm{x})(\mathrm{g}(\mathrm{f} a))) \quad \cdots \mathrm{V} \mathrm{v}) \\
& \ldots(g(f u))(g(f a))) \quad . . V \mathrm{v}) \\
& \mu=\{(f u) / x\} \circ\{(g(f u)) / v\}=\{(f u) / x,(g(f u)) / v\} \\
& \ldots(\mathrm{g}(\mathrm{f} a)) \quad \ldots \mathrm{V}) \\
& \ldots(g(f a)) \quad \ldots(g(f \quad u))) \\
& \ldots(\mathrm{a}))) \quad . . \mathrm{u})) \text { ) } \\
& \mu=\{(f u) / x,(g(f u)) / v\} \circ\{a / u\}=\left\{(f a) / x,\left(\begin{array}{l}
f(f a)) / v, a / u\}
\end{array}\right.\right.
\end{aligned}
\]

\section*{Unification Algorithm}
```

(defun unify (A B \&optional mu)
(cond ((eql mu 'FAIL) 'FAIL)
((eql A B) mu)
((variablep A) (unifyVar A B mu))
((variablep B) (unifyVar B A mu))
((or (atom A) (atom B)) 'FAIL)
((/= (length A) (length B)) 'FAIL)
(t (unify (rest A)
(rest B)
(unify (first A) (first B) mu)))))

```

Note: a more efficient version is implemented in prover.cl

Page 288

\section*{UnifyVar}
```

(defun unifyVar (var term subst)
(if (var-in-substp var subst)
(unify (term-of-var-in-subst var subst) term subst)
(let ((newterm (apply-sub subst term)))
(cond ((eql var newterm) subst)
((occursIn var newterm) 'FAIL)
(t (compose subst
(list (pair newterm var))))))))

```
    Page 289

\section*{Program Assertion}

If original \(\mathcal{A}\) and \(\mathcal{B}\) have no variables in common, then throughout the above program
no substitution will have one of its variables occurring in one of its terms.

Therefore, for any expression \(\mathcal{E}\) and any substitution \(\sigma\) formed in the above program, \(\mathcal{E} \sigma \sigma=\mathcal{E} \sigma\).

Page 290

\subsection*{4.3.4 Resolution Refutation Example}
```

To decide if
$\{\neg \operatorname{Drives}(x, y), \operatorname{Driver}(x)\},\{\neg \operatorname{Driver}(x), \neg \operatorname{Passenger}(x)\}$,
$\{$ Drives(motherOf(Tom), Betty) $\}$
$\vDash\{\neg$ Passenger $($ motherOf $($ Tom $))\}$
1. $\left\{\neg \operatorname{Drives}\left(x_{1}, y_{1}\right), \operatorname{Driver}\left(x_{1}\right)\right\} \quad$ Assumption
2. $\left\{\neg \operatorname{Driver}\left(x_{2}\right), \neg \operatorname{Passenger}\left(x_{2}\right)\right\} \quad$ Assumption
3. $\{$ Drives (motherOf(Tom), Betty)\} Assumption
5. $\{\operatorname{Passenger}($ mother $O f($ Tom $))\} \quad$ From query
6. $\{\neg \operatorname{Driver}($ mother $O f($ Tom $))\} \quad R, 2,5,\left\{\right.$ mother $O f($ Tom $\left.) / x_{2}\right\}$
7. $\left\{\neg\right.$ Drives $\left(\right.$ mother $O f($ Tom $\left.\left.), y_{7}\right)\right\} \quad R, 1,6,\left\{\right.$ mother $\left.O f(T o m) / x_{1}\right\}$
8. $\}$
$R, 3,7,\left\{\right.$ Betty $\left./ y_{7}\right\}$

```
Page 291

\section*{Example Using prover}
```

prover(21): (prove '((or (not (Drives ?x ?y)) (Driver ?x))
(or (not (Driver ?x)) (not (Passenger ?x)))
(Drives (motherOf Tom) Betty))
'(not (Passenger (motherOf Tom))))
1 ((Drives (motherOf Tom) Betty)) Assumption
2 ((not (Drives ?3 ?5)) (Driver ?3)) Assumption
3 ((not (Driver ?9)) (not (Passenger ?9))) Assumption
4 ((Passenger (motherOf Tom))) From Query
5 ((not (Driver (motherOf Tom)))) R,4,3,{(motherOf Tom)/?9}
6 ((not (Drives (motherOf Tom) ?86))) R,5,2,{(motherOf Tom)/?3}
7 nil R,6,1,{Betty/?86}
QED

```

Page 292

\section*{Example Using snark}
```

snark-user(84): (initialize)
snark-user(85): (assert '(or (not (Drives ?x ?y)) (Driver ?x)))
snark-user(86): (assert '(or (not (Driver ?x))
(not (Passenger ?x))))
snark-user(87): (assert '(Drives (motherOf Tom) Betty))
snark-user(88): (prove '(not (Passenger (motherOf Tom))))
(Refutation
(Row 1 (or (not (Drives ?x ?y)) (Driver ?x)) assertion)
(Row 2 (or (not (Driver ?x)) (not (Passenger ?x))) assertion)
(Row 3 (Drives (motherOf Tom) Betty) assertion)
(Row 4 (Passenger (motherOf Tom)) ~conclusion)
(Row 5 (not (Driver (motherOf Tom))) (resolve 2 4))
(Row 6 (not (Drives (motherOf Tom) ?x)) (resolve 5 1))
(Row }7\mathrm{ false (resolve 6 3))
)
:proof-found

```

Page 293

\title{
Resolution Refutation is Incomplete for FOL
}
\[
\begin{array}{ll}
\text { 1. } & \{P(u), P(v)\} \\
\text { 2. } & \{\neg P(x), \neg P(y)\} \\
\text { 3. } & \{P(w), \neg P(z)\} \quad R, 1,2,\{u / x, w / v, z / y\}
\end{array}
\]

\section*{Clause-Form FOL Rules of Inference Version 3 (Last)}

Resolution: \(\frac{\left\{A, L_{1}, \ldots, L_{n}\right\},\left\{\neg B, L_{n+1}, \ldots, L_{m}\right\}}{\left\{L_{1} \mu, \ldots, L_{n} \mu, L_{n+1} \mu, \ldots, L_{m} \mu\right\}}\)
where \(\mu\) is an mgu of \(A\) and \(B\).
Factoring: \(\frac{\left\{A, B, L_{1}, \ldots, L_{n}\right\}}{\left\{A \mu, L_{1} \mu, \ldots, L_{n} \mu\right\}}\)
where \(\mu\) is an mgu of \(A\) and \(B\).
(Note: Special case of UI.)

Page 295

\section*{Resolution Refutation with Factoring is Complete}

If \(A_{1}, \ldots, A_{n} \models Q\), then \(A_{1}, \ldots, A_{n}, \neg Q \vdash_{R+F}\{ \}\).
For example,
1. \(\{P(u), P(v)\}\)
2. \(\{\neg P(x), \neg P(y)\}\)
3. \(\{P(w)\}\)
\(F, 1,\{w / u, w / v\}\)
4. \(\{\neg P(z)\}\)
\(F, 2,\{z / x, z / y\}\)
5. \(\}\)
\(R, 3,4,\{w / z\}\)
However, resolution refutation with factoring is still not a decision procedure - it is a semi-decision procedure.

Page 296

\section*{Factoring (Condensing) by snark}
```

snark-user(30): (initialize)
; Running SNARK from ...
nil
snark-user(31): (assert '(or (P ?u) (P ?v)))
nil
snark-user(32): (prove '(and (P ?x) (P ?y)))
(Refutation
(Row 1
(or (P ?x) (P ?y))
assertion)
(Row 2
(P ?x)
(condense 1))
(Row 3
(or (not (P ?x)) (not (P ?y)))
negated_conjecture)
(Row 4
false
(rewrite 3 2))
)
:proof-found
SNARK has both factoring and condensing, which is factoring combined with immediate subsumption elimination when the factored clause subsumes the original clause. The clause '(or (p a ?x) (p ? y b)) gets factored, but not condensed. [Mark Stickel, personal communication, March, 2008]

```

Page 297

\section*{Efficiency Rules}

Tautology Elimination: If clause \(C\) contains literals \(L\) and \(\neg L\), delete \(C\) from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause \(C\) contains a literal \(A(\neg A)\) and no clause contains a literal \(\neg B(B)\) such that \(A\) and \(B\) are unifiable, delete \(C\) from the set of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses
\(C_{1}\) and \(C_{2}\) such that there is a substitution \(\sigma\) for which \(C_{1} \sigma \subseteq C_{2}\), delete \(C_{2}\) from the set of clauses. (Check throughout.)

These rules delete unhelpful clauses.
Subsumption may be required to cut infinite loops.
Page 298

\section*{Subsumption Cutting a Loop}
```

prover(22): (prove '((if (and (ancestor ?x ?y)
(ancestor ?y ?z))
(ancestor ?x ?z)))
,(ancestor ?x stu))
1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))
(ancestor ?0 ?2)) Assumption
2 ((not (ancestor ?3 stu))) From Query

```

\section*{Initial Resolution Steps}
```

1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))
(ancestor ?0 ?2)) Assumption
2 ((not (ancestor ?3 stu)))
From Query
3 ((not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))
R,2,1,{stu/?2, ?0/?3}
4 ((not (ancestor ?6 stu)) (not (ancestor ?7 ?8))
(not (ancestor ?8 ?6))) R,3,1,{?2/?5, ?0/?4}
5 ((not (ancestor ?9 ?10)) (not (ancestor ?10 ?11))
(not (ancestor ?11 stu)))
R,3,1,{stu/?2, ?0/?5}

```

\section*{Subsumption Cuts the Loop}
```

 1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))
 (ancestor ?0 ?2)) Assumption
 2 ((not (ancestor ?3 stu)))
 From Query
 3 (not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))
 R,2,1,{stu/?2, ?0/?3}
 4 ((not (ancestor stu stu))) F,3,{stu/?5, stu/?4}
 Deleting 4 ((not (ancestor stu stu)))
because it's subsumed by 2 ((not (ancestor ?3 stu)))
Deleting 3 ((not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))
because it's subsumed by 2 ((not (ancestor ?3 stu)))
nil

```

Page 301

\section*{Strategies}

Unit Preference: Resolve shorter clauses before longer clauses.
Least Symbol Count Version: Count symbols, not literals.
Set of Support: One clause in each pair being resolved must descend from the query.

Many others
These are heuristics for finding \(\}\) faster.

Page 302

\section*{Least Symbol Count Version of Unit Preference}

Instead of counting literals, count symbols
ignoring negation operator.
Equivalent to standard unit preference for Propositional Logic.

Page 303

\section*{Problem with}

\section*{Literal-Counting Unit Preference}
```

1(1/2) ((walkslikeduck daffy)) Assumption
2(1/2) ((talkslikeduck daffy)) Assumption
3(2/5) ((not (duck (motherof ?1))) (duck ?1)) Assumption
4(3/6) ((not (walkslikeduck ?3)) (not (talkslikeduck ?3)) (duck ?3)) Assumption
5(1/2) ((not (duck daffy))) From Query
6(1/3) ((not (duck (motherof daffy)))) R,5,3,{daffy/?1}
7(1/4) ((not (duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/?1}
8(1/5) ((not (duck
(motherof
(motherof
(motherof daffy)))))) R,7,3,{(motherof (motherof daffy))/?1}
9(1/6) ((not (duck
(motherof
(motherof
(motherof
(motherof
daffy))))))) R,8,3,{(motherof (motherof (motherof daffy)))/?1}

```

Page 304

\section*{Solution with}

\section*{Least Symbol Count Version}
```

1(1/2) ((walkslikeduck daffy)) Assumption
2(1/2) ((talkslikeduck daffy)) Assumption
3(2/5) ((not (duck (motherof ?5))) (duck ?5)) Assumption
4(3/6) ((not (walkslikeduck ?13)) (not (talkslikeduck ?13)) (duck ?13)) Assumption
5(1/2) ((not (duck daffy))) From Query
6(1/3) ((not (duck (motherof daffy)))) R,5,3,{daffy/?1}
7(1/4) ((not (duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/?1}
8(2/4) ((not (walkslikeduck daffy)) (not (talkslikeduck daffy))) R,5,4,{daffy/?3}
9(1/2) ((not (talkslikeduck daffy))) R,8,1,{}
10(0/0) nil R,9,2,{}
QED

```

Page 305

\subsection*{4.4 Translating Standard FOL Wffs into FOL Clause Form} Useful Meta-Theorems
- If \(A\) is (an occurrence of) a subformula of \(B\), and \(\models A \Leftrightarrow C\), then \(\models B \Leftrightarrow B\{C / A\}\)
- \(\forall x_{1}\left(\cdots \forall x_{n}\left(\cdots \exists y A\left(x_{1}, \ldots, x_{n}, y\right) \cdots\right) \cdots\right)\) is consistent if and only if \(\forall x_{1}\left(\cdots \forall x_{n}\left(\cdots A\left(x_{1}, \ldots, x_{n}, f^{n}\left(x_{1}, \ldots, x_{n}\right)\right) \cdots\right) \cdots\right)\) is consistent, where \(f^{n}\) is a new Skolem function.
Note: use a new Skolem constant instead of \(f^{0}()\).
Page 306

\section*{Translating Standard FOL Wffs into FOL Clause Form}

\section*{Step 1}

Eliminate occurrences of \(\Leftrightarrow\) using
\[
\vDash(A \Leftrightarrow B) \Leftrightarrow((A \Rightarrow B) \wedge(B \Rightarrow A))
\]

From:
\(\forall x[\operatorname{Parent}(x) \Leftrightarrow(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))]\)
To:
\(\forall x[(\operatorname{Parent}(x) \Rightarrow(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))))\)
\(\wedge((\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))) \Rightarrow \operatorname{Parent}(x))]\)

Page 307

\section*{Translation Step 2}

Eliminate occurrences of \(\Rightarrow\) using
\[
\models(A \Rightarrow B) \Leftrightarrow(\neg A \vee B)
\]

From:
\[
\begin{aligned}
& \forall x[(\operatorname{Parent}(x) \Rightarrow(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))) \\
& \quad \wedge((\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))) \Rightarrow \operatorname{Parent}(x))]
\end{aligned}
\]

To:
```

$\forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))))$
$\wedge(\neg(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))) \vee \operatorname{Parent}(x))]$

```

Page 308

\section*{Translation Step 3}

Translate to miniscope form using
\[
\begin{array}{ll}
\models \neg \neg A \Leftrightarrow A & \\
\models \neg(A \wedge B) \Leftrightarrow(\neg A \vee \neg B) & \models \neg(A \vee B) \Leftrightarrow(\neg A \wedge \neg B) \\
\models \neg \forall x A(x) \Leftrightarrow \exists x \neg A(x) & \models \neg \exists x A(x) \Leftrightarrow \forall x \neg A(x)
\end{array}
\]

From:
\[
\begin{aligned}
& \forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))) \\
& \quad \wedge(\neg(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

To:
\[
\begin{aligned}
& \forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childO}(y, x)))) \\
& \quad \wedge((\neg \operatorname{Person}(x) \vee \forall y(\neg \operatorname{Person}(y) \vee \neg \operatorname{childOf}(y, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

Page 309

\section*{Translation Step 4}

Rename apart: If any two quantifiers bind the same variable, rename all occurrences of one of them.

From:
\[
\begin{aligned}
& \forall x[(\neg \text { Parent }(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))) \\
& \quad \wedge((\neg \operatorname{Person}(x) \vee \forall y(\neg \operatorname{Person}(y) \vee \neg \operatorname{childOf(y,x)))\vee \operatorname {Parent}(x))]}
\end{aligned}
\]

To:
```

$\forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))))$
$\wedge((\neg \operatorname{Person}(x) \vee \forall z(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]$

```

Page 310

\section*{Optional Translation Step 4.5}

Translate into Prenex Normal Form using:
\[
\begin{array}{ll}
\models(A \wedge \forall x B(x)) \Leftrightarrow \forall x(A \wedge B(x)) & \models(A \wedge \exists x B(x)) \Leftrightarrow \exists x(A \wedge B(x)) \\
\models(A \vee \forall x B(x)) \Leftrightarrow \forall x(A \vee B(x)) & \models(A \vee \exists x B(x)) \Leftrightarrow \exists x(A \vee B(x))
\end{array}
\]
as long as \(x\) does not occur free in \(A\).
From:
\[
\begin{aligned}
& \forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childO} f(y, x)))) \\
& \quad \wedge((\neg \operatorname{Person}(x) \vee \forall z(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

To:
\[
\begin{aligned}
& \forall x \exists y \forall z[ (\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))) \\
&\wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

Page 311

\section*{Translation Step 5}

Skolemize
From:
```

$\forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))))$
$\wedge((\neg \operatorname{Person}(x) \vee \forall z(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]$

```
To:
\(\forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childOf}(f(x), x))))\)
    \(\wedge((\neg \operatorname{Person}(x) \vee \forall z(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]\)
or

From:
```

$\forall x \exists y \forall z[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x))))$
$\wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]$

```

To:
\(\forall x \forall z[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childOf}(f(x), x))))\)
\(\wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]\)

Page 312

\section*{Translation Step 6}

Discard all occurrences of " \(\forall x\) " for any variable \(x\).
From:
\[
\begin{aligned}
& \forall x[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childOf}(f(x), x)))) \\
& \quad \wedge((\neg \operatorname{Person}(x) \vee \forall z(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

Or from:
\[
\begin{aligned}
& \forall x \forall z[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childOf}(f(x), x)))) \\
&\wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

To:
\[
\begin{aligned}
& {[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childO} f(f(x), x))))} \\
& \wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childO}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

\section*{Translation Step 7}

CNF: Translate into Conjunctive Normal Form, using
\[
\begin{aligned}
& \models(A \vee(B \wedge C)) \Leftrightarrow((A \vee B) \wedge(A \vee C)) \\
& \models((B \wedge C) \vee A) \Leftrightarrow((B \vee A) \wedge(C \vee A))
\end{aligned}
\]

From:
\[
\begin{aligned}
& {[(\neg \operatorname{Parent}(x) \vee(\operatorname{Person}(x) \wedge(\operatorname{Person}(f(x)) \wedge \operatorname{childOf}(f(x), x))))} \\
& \wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childO}(z, x))) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

To:
```

$[((\neg \operatorname{Parent}(x) \vee \operatorname{Person}(x))$
$\wedge((\neg \operatorname{Parent}(x) \vee \operatorname{Person}(f(x)))$
$\wedge(\neg \operatorname{Parent}(x) \vee \operatorname{childOf}(f(x), x)))))$
$\wedge((\neg \operatorname{Person}(x) \vee(\neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x))) \vee \operatorname{Parent}(x))]$

```

Page 314

\section*{Translation Step 8}

Discard extra parentheses using the associativity of \(\wedge\) and \(\vee\).
From:
```

[((\negParent (x)\vee Person (x))
\wedge((\negParent (x)\vee Person (f(x)))
\wedge(\negParent (x)\vee childOf(f(x),x)))))
\wedge((\negPerson }(x)\vee(\neg\operatorname{Person}(z)\vee\neg\operatorname{childOf(z,x)))\vee Parent (x))]

```

To:
```

$[(\neg$ Parent $(x) \vee \operatorname{Person}(x))$
$\wedge(\neg$ Parent $(x) \vee \operatorname{Person}(f(x)))$
$\wedge(\neg \operatorname{Parent}(x) \vee \operatorname{childOf}(f(x), x))$
$\wedge(\neg \operatorname{Person}(x) \vee \neg \operatorname{Person}(z) \vee \neg \operatorname{childOf}(z, x) \vee \operatorname{Parent}(x))]$

```

Page 315

\section*{Translation Step 9}

Turn each disjunction into a clause, and the conjunction into a set of clauses.

From:
\[
\begin{aligned}
& {[(\neg \operatorname{Parent}(x) \vee \operatorname{Person}(x))} \\
& \wedge(\neg \operatorname{Parent}(x) \vee \operatorname{Person}(f(x))) \\
& \wedge(\neg \operatorname{Parent}(x) \vee \operatorname{childOf}(f(x), x)) \\
& \wedge(\neg \operatorname{Person}(x) \vee \neg \operatorname{Person}(z) \vee \neg \operatorname{childO} f(z, x) \vee \operatorname{Parent}(x))]
\end{aligned}
\]

To:
```

$\{\{\neg \operatorname{Parent}(x), \operatorname{Person}(x)\}$,
$\{\neg \operatorname{Parent}(x), \operatorname{Person}(f(x))\}$,
$\{\neg \operatorname{Parent}(x), \operatorname{childOf}(f(x), x)\}$,
$\{\neg \operatorname{Person}(x), \neg \operatorname{Person}(z), \neg \operatorname{childOf}(z, x), \operatorname{Parent}(x)\}\}$

```

Page 316

\section*{Translation Step 10}

Rename the clauses apart
so that no variable occurs in more than one clause.
From:
\[
\begin{aligned}
& \{\{\neg \operatorname{Parent}(x), \operatorname{Person}(x)\}, \\
& \{\neg \operatorname{Parent}(x), \operatorname{Person}(f(x))\}, \\
& \{\neg \operatorname{Parent}(x), \operatorname{childOf}(f(x), x)\} \\
& \{\neg \operatorname{Person}(x), \neg \operatorname{Person}(z), \neg \operatorname{childOf}(z, x), \operatorname{Parent}(x)\}\}
\end{aligned}
\]

To:
```

$\left\{\left\{\neg \operatorname{Parent}\left(x_{1}\right), \operatorname{Person}\left(x_{1}\right)\right\}\right.$,
$\left\{\neg \operatorname{Parent}\left(x_{2}\right), \operatorname{Person}\left(f\left(x_{2}\right)\right)\right\}$,
$\left\{\neg\right.$ Parent $\left(x_{3}\right)$, childO $\left.f\left(f\left(x_{3}\right), x_{3}\right)\right\}$,
$\left.\left\{\neg \operatorname{Person}\left(x_{4}\right), \neg \operatorname{Person}\left(z_{4}\right), \neg \operatorname{childOf}\left(z_{4}, x_{4}\right), \operatorname{Parent}\left(x_{4}\right)\right\}\right\}$

```

Page 317

\section*{Use of Translation}
\[
A_{1}, \ldots, A_{n} \models B
\]
iff
The translation of \(A_{1} \wedge \cdots \wedge A_{n} \wedge \neg B\) into a set of clauses is contradictory.

Page 318

\section*{Example with ubprover}
```

(prove
'((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))
'(Parent Betty))
1 ((Person Tom)) Assumption
2 ((Person Betty)) Assumption
3 ((childOf Tom Betty)) Assumption
4 ((not (Parent ?4)) (Person ?4)) Assumption
5 ((not (Parent ?5)) (Person (S3 ?5))) Assumption
6 ((not (Parent ?6)) (childOf (S3 ?6) ?6)) Assumption
7 ((not (Person ?7)) (not (Person ?8))
(not (childOf ?8 ?7)) (Parent ?7)) Assumption
8 ((not (Parent Betty)))

```

Assumption
Assumption
Assumption
Assumption
Assumption
Assumption

Assumption
From Query

Page 319

\section*{Resolution Steps}
```

 1 ((Person Tom))
 2 ((Person Betty))
3 ((childOf Tom Betty))
7 ((not (Person ?7)) (not (Person ?8))
(not (childOf ?8 ?7)) (Parent ?7))
8 ((not (Parent Betty)))
9 ((not (Person Betty)) (not (Person ?9))
(not (childOf ?9 Betty)))
R,8,7,{Betty/?7}
13 ((not (Person Betty))
(not (childOf Tom Betty)))
14 ((not (childOf Tom Betty)))
15 nil
QED

```

Assumption
Assumption
Assumption

Assumption
From Query

R, 8,7, \{Betty/?7\}

R,9,1,\{Tom/?9\}
R,13,2,\{\}
R,14,3,\{\}

\section*{Example with SNARK}
```

snark-user(42): (initialize)
; Running SNARK from ...
nil
snark-user(43): (assert
'(forall (x)
(iff (Parent x)
(and (Person x)
(exists (y)
(and (Person y) (childOf y x)))))))
nil
snark-user(44): (assert '(Person Tom))
nil
snark-user(45): (assert '(Person Betty))
nil
snark-user(46): (assert '(childOf Tom Betty))
nil
snark-user(47): (prove '(Parent Betty))

```

Page 321

\section*{Initial Set of Clauses}
```

(Row 1 (or (not (Parent ?x)) (Person ?x)) assertion)
(Row 2 (or (not (Parent ?x)) (Person (skolembiry1 ?x))) assertion)
(Row 3 (or (not (Parent ?x)) (childOf (skolembiry1 ?x) ?x)) assertion)
(Row 4 (or (Parent ?x) (not (Person ?x)) (not (Person ?y)) (not (childOf ?y ?
assertion)
(Row 5 (Person Tom) assertion)
(Row 6 (Person Betty) assertion)
(Row 7 (childOf Tom Betty) assertion)
(Row 8 (not (Parent Betty)) negated_conjecture)
(Row 9 (or (not (Person ?x)) (not (childOf ?x Betty))) (rewrite (resolve 8 4)
(Row 10 false (rewrite (resolve 9 7) 5))

```

Page 322

\section*{Refutation}
```

(Refutation
(Row 4 (or (Parent ?x) (not (Person ?x)) (not (Person ?y)) (not (childOf ?y ?
assertion)
(Row 5 (Person Tom) assertion)
(Row 6 (Person Betty) assertion)
(Row 7 (childOf Tom Betty) assertion)
(Row 8 (not (Parent Betty)) negated_conjecture)
(Row 9 (or (not (Person ?x)) (not (childOf ?x Betty))) (rewrite (resolve 8 4)
(Row 10 false (rewrite (resolve 9 7) 5))
)
:proof-found

```

Page 323

\title{
A ubprover Example Using the Skolem Function
}
```

prover(72): (prove
'((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (Parent Betty))
,(exists x (childOf x Betty)))

```

1 ((Person Tom))
2 ((Person Betty))
3 ((Parent Betty))
4 ((not (Parent ?4)) (Person ?4))
5 ((not (Parent ?5)) (Person (S3 ?5)))
6 ((not (Parent ?6)) (childOf (S3 ?6) ?6))
7 ((not (Person ?7)) (not (Person ?8))
(not (childOf ?8 ?7)) (Parent ?7))
((not (childOf ?10 Betty)))
((not (Parent Betty)))
nil
QED

Assumption
Assumption
Assumption
Assumption
Assumption
Assumption

Assumption
From Query
R,8,6,\{Betty/?6, (S3 Betty)/?10\}
R, \(9,3,\{ \}\)

Page 324

\subsection*{4.5 Asking Wh Questions}

Given
\[
\begin{aligned}
& \forall x[\operatorname{Parent}(x) \Leftrightarrow(\operatorname{Person}(x) \wedge \exists y(\operatorname{Person}(y) \wedge \operatorname{childOf}(y, x)))] \\
& \text { Person }(\text { Tom }) \\
& \text { Person }(\text { Betty }) \\
& \text { childOf(Tom, Betty })
\end{aligned}
\]

Ask: "Who is a parent?"
Answer via constructive proof of \(\exists x \operatorname{Parent}(x)\).

Page 325

\section*{Try to Answer Wh Question}
```

(prove
,((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))
'(exists x (Parent x)))
1 ((Person Tom)) Assumption
2 ((Person Betty))
3 ((Parent Betty))
4 ((not (Parent ?4)) (Person ?4))
5 ((not (Parent ?5)) (Person (S3 ?5))) Assumption
6 ((not (Parent ?6)) (childOf (S3 ?6) ?6)) Assumption
7 ((not (Person ?7)) (not (Person ?8))
(not (childOf ?8 ?7)) (Parent ?7)) Assumption
8 ((not (childOf ?10 Betty))) From Query

```

Page 326

\section*{Resolution Steps}
```

 1 ((Person Tom)) Assumption
 2 ((Person Betty))
3 ((childOf Tom Betty))
7 ((not (Person ?7)) (not (Person ?8))
(not (childOf ?8 ?7)) (Parent ?7)) Assumption
8 ((not (Parent ?10)))
9 ((not (Person ?11)) (not (Person ?12))
(not (childOf ?12 ?11)))
R,8,7,{?7/?10}
15 ((not (Person ?16)) (not (childOf Tom ?16))) R,9,1,{Tom/?12}
16 ((not (childOf Tom Tom))) R,15,1,{Tom/?16}
17 ((not (childOf Tom Betty)))
18 nil
R,15,2,{Betty/?16}
R,17,3,{}

```

QED

\section*{The Answer Predicate}

Instead of query \(\exists x_{1} \cdots \exists x_{n} P\left(x_{1}, \ldots, x_{n}\right)\), and resolution refutation with \(\left\{\neg P\left(x_{1}, \ldots, x_{n}\right)\right\}\) until \(\}\),
use \(\forall x_{1} \cdots \forall x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \Rightarrow \operatorname{Answer}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\right)\)
and do direct resolution with
\[
\left\{\neg P\left(x_{1}, \ldots, x_{n}\right), \operatorname{Answer}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\right\}
\]
until \(\{(\) Answer... \() \cdots(\) Answer... \()\}\).

Page 328

\section*{General Procedure for Inserting The Answer Predicate}

Let:
\(Q\) be either \(\forall\) or \(\exists\);
\(\bar{Q}\) be either \(\exists\) or \(\forall\), respectively;
Prenex Normal form of query be \(Q_{1} x_{1} \cdots Q_{n} x_{n} P\left(x_{1}, \ldots, x_{n}\right)\).
Do direct resolution with clause form of
\(\overline{Q_{1}} x_{1} \cdots \overline{Q_{n}} x_{n}\left(P\left(x_{1}, \ldots, x_{n}\right) \Rightarrow \operatorname{Answer}\left(P\left(x_{1}, \ldots, x_{n}\right)\right)\right)\)
until generate \(\{(\) Answer ...) \(\cdots(\) Answer ... \()\}\).

Page 329

\section*{Using the Answer Predicate}
```

(setf *UseAnswer* t)
(prove
'((forall x (iff (Parent x)
(and (Person x)
(exists y (and (Person y) (childOf y x))))))
(Person Tom) (Person Betty) (childOf Tom Betty))
'(exists x (Parent x)))
1 ((Person Tom)) Assumption
2 ~ ((P e r s o n ~ B e t t y)) ~ A s s u m p t i o n
3 ((childOf Tom Betty)) Assumption
4 ((not (Parent ?3)) (Person ?3)) Assumption
5 ((not (Parent ?4)) (Person (S2 ?4))) Assumption
6 ((not (Parent ?5)) (childOf (S2 ?5) ?5)) Assumption
7 ((not (Person ?6)) (not (Person ?7))
(not (childOf ?7 ?6)) (Parent ?6)) Assumption
8 ((not (Parent ?9)) (Answer (Parent ?9))) From Query

```

Page 330

\section*{Resolution Steps}
```

 1 ((Person Tom))
 2 ((Person Betty))
 3 ((childOf Tom Betty))
 7 ((not (Person ?6)) (not (Person ?7))
 (not (childOf ?7 ?6)) (Parent ?6)) Assumption
 8 ((not (Parent ?9)) (Answer (Parent ?9))) From Query
 9 ((Answer (Parent ?10)) (not (Person ?10))
 (not (Person ?11)) (not (childOf ?11 ?10))) R,8,7,{?6/?9}
 15 ((Answer (Parent Betty))
(not (Person Betty)) (not (Person Tom))) R,9,3,{Betty/?10,
Tom/?11}
26 ((Answer (Parent Betty)) (not (Person Tom))) R,15,2,{}
29 ((Answer (Parent Betty))) R,26,1,{}
QED

```

Assumption
Assumption
Assumption

Assumption
From Query
9 ((Answer (Parent ?10)) (not (Person ?10)) (not (Person ?11)) (not (childOf ?11 ?10))) R,8,7,\{?6/?9\}
15 ((Answer (Parent Betty)) (not (Person Betty)) (not (Person Tom))) R,9,3,\{Betty/?10, Tom/?11\}
R,15,2,\{\}
R,26,1,\{\}

Page 331

\section*{Answer Predicate in snark}
```

snark-user(11): (assert '(forall x (iff (Parent x)

```
```

nil

```
nil
snark-user(12): (assert '(Person Tom))
snark-user(12): (assert '(Person Tom))
nil
nil
snark-user(13): (assert '(Person Betty))
snark-user(13): (assert '(Person Betty))
nil
nil
snark-user(14): (assert '(childOf Tom Betty))
snark-user(14): (assert '(childOf Tom Betty))
nil
nil
snark-user(15): (prove '(exists x (Parent x))
snark-user(15): (prove '(exists x (Parent x))
                                    :answer '(Parent x))
```

 :answer '(Parent x))
    ```
    (exists y (and (Person y)
                                    (childOf y x)))))

Page 332

\section*{snark Refutation}
```

(Refutation
(Row 3
(or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))
assertion)
(Row 4 (Person Tom) assertion)
(Row 6 (childOf Tom Betty) assertion)
(Row 7 (not (Parent ?x)) negated_conjecture
Answer (Parent ?x))
(Row 8 (or (not (Person ?x)) (not (childOf ?x ?y))) (resolve 7 3)
Answer (Parent ?y))
(Row 9 false (rewrite (resolve 8 6) 4)
Answer (Parent Betty))
)
:proof-found

```

\section*{Answer Predicate with ask}

From same SNARK KB:
```

snark-user(18): (ask '(exists x (Parent x)) :answer '(Parent x))
(Parent Betty)

```

Page 334
```

 Using :printProof
 snark-user(19): (ask '(Parent ?x) :answer '(Parent ?x)
:printProof t)
(Refutation
(Row 3 (or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))
assertion)
(Row 4 (Person Tom) assertion)
(Row 6 (childOf Tom Betty) assertion)
(Row 13 (not (Parent ?x)) negated_conjecture
Answer (Parent ?x))
(Row 14 (or (not (Person ?x)) (not (childOf ?x ?y)))
(resolve 13 3)
Answer (Parent ?y))
(Row 15 false (rewrite (resolve 14 6) 4)
Answer (Parent Betty))
)
(Parent Betty)

```

Page 335

\section*{Answer Predicate with query}

\author{
From same SNARK KB: \\ snark-user(9): (query "Who is a parent?" \\ ' (exists x (Parent x)) \\ :answer '(Parent x)) \\ Who is a parent? \\ (ask ' (exists x (Parent x))) = (Parent Betty)
}

\section*{query with :answer and :printProof}
```

snark-user(10): (query "Who is a parent?"
'(exists x (Parent x)) :answer '(Parent x) :printProof t)
Who is a parent?
(Refutation
(Row 3
(or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))
assertion)
(Row 4
(Person Tom)
assertion)
(Row }
(childOf Tom Betty)
assertion)
(Row 19
(not (Parent ?x))
negated_conjecture
Answer (Parent ?x))
(Row 20
(or (not (Person ?x)) (not (childOf ?x ?y)))
(resolve 19 3)
Answer (Parent ?y))
(Row 21
false
(rewrite (resolve 20 6) 4)
Answer (Parent Betty))
)
(ask '(exists x (Parent x))) = (Parent Betty)

```

Page 337

\section*{Disjunctive Answers}
```

(prove '((On a b)(On b c)
(Red a) (Green c)
(or (Red b) (Green b)))
'(exists (x y)
(and (Red x) (Green y) (On x y))))
1 ((On a b))
2 ((On b c))
3 ((Red a))
4 ((Green c))
5 ((Red b) (Green b)) Assumption
6 ((not (Red ?28)) (not (Green ?30))
(not (On ?28 ?30))
(Answer (and (Red ?28) (Green ?30) (On ?28 ?30)))) From Query

```
            Page 338

\section*{Resolution Steps}
```

 9 ((Answer (and (Red a) (Green ?107) (On a ?107)))
 (not (On a ?107)) (not (Green ?107))) R,6,3,{a/?28}
 10 ((Answer (and (Red ?112) (Green c) (On ?112 c)))
(not (On ?112 c)) (not (Red ?112))) R,6,4,{c/?30}
11 ((Answer (and (Red b) (Green ?117) (On b ?117)))
(not (On b ?117)) (not (Green ?117)) (Green b)) R,6,5,{b/?28}
13 ((not (Red b))
(Answer (and (Red b) (Green c) (On b c))))) R,10,2,{b/?112}

```

Page 339

\section*{Resolution Finished}
```

16 ((Answer (and (Red b) (Green c) (On b c)))
(Green b)) R,13,5,{}
20 ((not (On a b))
(Answer (and (Red a) (Green b) (On a b)))
(Answer (and (Red b) (Green c) (On b c)))) R,9,16,{b/?107}
22 ((Answer (and (Red b) (Green c) (On b c)))
(Answer (and (Red a) (Green b) (On a b)))) R,20,1,{}
QED

```

Page 340

\section*{Multiple Clauses From Query}
```

(prove '((On a b) (On b c)
(Red a) (Green c)
(or (Red b) (Green b)))
'(exists x (or (Red x) (Green x))))
1 ((On a b))
2 ((On b c)) Assumption
3 ((Red a)) Assumption
4 ((Green c)) Assumption
5 ((Red b) (Green b)) Assumption
6 ((not (Red ?25))
(Answer (or (Red ?25) (Green ?25)))) From Query
7 ((not (Green ?27))
(Answer (or (Red ?27) (Green ?27)))) From Query
8 ((Answer (or (Red a) (Green a)))) R,6,3,{a/?25}
QED

```

Assumption
Assumption
Assumption
Assumption
Assumption
6 ( (not (Red ?25)) (Answer (or (Red ?25) (Green ?25)))) From Query
7 ( (not (Green ?27))
(Answer (or (Red ?27) (Green ?27)))) From Query
8 ((Answer (or (Red a) (Green a)))) R,6,3,\{a/?25\}
QED

\section*{Resolution Produces Only 1 Answer}
```

snark-user(20): (initialize)
; Running SNARK from ...
nil
snark-user(21): (assert '(Man Socrates))
nil
snark-user(22): (assert '(Man Turing))
nil
snark-user(23): (ask '(Man ?x) :answer '(One man is ?x))
(One man is Turing)

```

Page 342

\section*{Generic and Hypothetical Answers}

Every clause that descends from a query clause (that contains an Answer predicate) is an answer of some sort. \({ }^{\text {a }}\)

Page 343

\footnotetext{
\({ }^{\text {a }}\) Debra T. Burhans and Stuart C. Shapiro, Defining Answer Classes Using Resolution Refutation, Journal of Applied Logic 5, 1 (March 2007), 70-91. http://www.cse.buffalo.edu/~shapiro/Papers/bursha05.pdf
}

\section*{Example of}

\section*{Generic and Hypothetical Answers \\ Question}
```

(prove '((forall (x y z) (if (and (Member x FBS) (Sport y)
(Athlete z) (PlaysWell z y))
(ProvidesScholarshipFor x z)))
(forall x (if (Sport x) (Activity x)))
(forall x (if (Activity x) (or (Sport x) (Game x))))
(forall x (if (or (Member x MAC) (Member x Big10) (Member Pac10 x))
(Member x FBS)))
(Member Buffalo MAC) (Member KentSt MAC)
(Member Wisconsin Big10) (Member Indiana Big10)
(Member Stanford Pac10) (Member Berkeley Pac10)
(Activity Frisbee))
'(exists x (ProvidesScholarshipFor Buffalo x)))

```

Page 344

\section*{Initial Clauses}
```

 1 ((Member Buffalo MAC)) Assumption
 2 ~ ((M e m b e r ~ K e n t S t ~ M A C)) ~ A s s u m p t i o n ~
3 ((Member Wisconsin Big10))
4 ((Member Indiana Big10)) Assumption
5 ((Member Stanford Pac10)) Assumption
6 ((Member Berkeley Pac10))
7 ((Activity Frisbee))
8 ((not (Sport ?7)) (Activity ?7))
9 ((not (Member ?11 MAC)) (Member ?11 FBS))
10 ((not (Member ?12 Big10)) (Member ?12 FBS))
11 ((not (Member Pac10 ?13)) (Member ?13 FBS))
12 ((not (Activity ?9)) (Sport ?9) (Game ?9)) Assumption
13 ((not (Member ?3 FBS)) (not (Sport ?4)) (not (Athlete ?5))
(not (PlaysWell ?5 ?4)) (ProvidesScholarshipFor ?3 ?5)) Assumption
14 ((not (ProvidesScholarshipFor Buffalo ?15))
(Answer (ProvidesScholarshipFor Buffalo ?15))) From Query

```

Page 345

\section*{Resolvents}
```

15 ((Answer (ProvidesScholarshipFor Buffalo ?16)) (not (Member Buffalo FBS)) (not (Sport ?17))
(not (Athlete ?16)) (not (PlaysWell ?16 ?17))) R,14,13,{?5/?15, Buffalo/?3}
16 ((not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo ?18)) (not (Sport ?19))
(not (Athlete ?18)) (not (PlaysWell ?18 ?19))) R,15,9,{Buffalo/?11}
17 ((not (Member Buffalo Big10)) (Answer (ProvidesScholarshipFor Buffalo ?20)) (not (Sport ?21))
(not (Athlete ?20)) (not (PlaysWell ?20 ?21))) R,15,10,{Buffalo/?12}
18 ((not (Member Pac10 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo ?22)) (not (Sport ?23))
(not (Athlete ?22)) (not (PlaysWell ?22 ?23))) R,15,11,{Buffalo/?13}
19 ((Game ?24) (not (Activity ?24)) (Answer (ProvidesScholarshipFor Buffalo ?25))
(not (Member Buffalo FBS)) (not (Athlete ?25)) (not (PlaysWell ?25 ?24))) R,15,12,{?9/?17}
20 ((Game ?26) (not (Activity ?26)) (not (Member Pac10 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo ?27))
(not (Athlete ?27)) (not (PlaysWell ?27 ?26))) R,18,12,{?9/?23}
21 ((Game ?28) (not (Activity ?28)) (not (Member Buffalo Big10)) (Answer (ProvidesScholarshipFor Buffalo ?29))
(not (Athlete ?29)) (not (PlaysWell ?29 ?28))) R,17,12,{?9/?21}
22 ((Answer (ProvidesScholarshipFor Buffalo ?30)) (not (Sport ?31)) (not (Athlete ?30))
(not (PlaysWell ?30 ?31))) R,16,1,{}
23 ((Game ?32) (not (Activity ?32)) (not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo ?33))
(not (Athlete ?33)) (not (PlaysWell ?33 ?32))) R,16,12,{?9/?19}
24 ((Game ?34) (not (Activity ?34)) (Answer (ProvidesScholarshipFor Buffalo ?35)) (not (Athlete ?35))
(not (PlaysWell ?35 ?34))) R,22,12,{?9/?31}
25 ((Game Frisbee) (Answer (ProvidesScholarshipFor Buffalo ?36)) (not (Athlete ?36))
(not (PlaysWell ?36 Frisbee))) R,24,7,{Frisbee/?34}
26 ((not (Sport ?37)) (Game ?37) (Answer (ProvidesScholarshipFor Buffalo ?38)) (not (Athlete ?38))
(not (PlaysWell ?38 ?37))) R,24,8,{?7/?34}
nil

```

Page 346

\section*{Non-Subsumed Resolvents}
```

22 ((Answer (ProvidesScholarshipFor Buffalo ?30))
(not (Sport ?31)) (not (Athlete ?30))
(not (PlaysWell ?30 ?31)))
24 ((Game ?34) (not (Activity ?34))
(Answer (ProvidesScholarshipFor Buffalo ?35))
(not (Athlete ?35)) (not (PlaysWell ?35 ?34)))
25 ((Game Frisbee)
(Answer (ProvidesScholarshipFor Buffalo ?36))
(not (Athlete ?36)) (not (PlaysWell ?36 Frisbee)))

```
    Page 347

\section*{Interpretation of Clauses}

\section*{As Generic Answers}
```

22 ((Answer (ProvidesScholarshipFor Buffalo ?30))
(not (Sport ?31)) (not (Athlete ?30))
(not (PlaysWell ?30 ?31)))
$\forall x y[\operatorname{Athlete}(x) \wedge \operatorname{Sport}(y) \wedge \operatorname{Plays} W e l l(x, y)$
\Rightarrow ProvidesScholarshipFor(Buffalo, x)]
24 ((Game ?34) (not (Activity ?34))
(Answer (ProvidesScholarshipFor Buffalo ?35))
(not (Athlete ?35)) (not (PlaysWell ?35 ?34)))
$\forall x y[\operatorname{Athlete}(x) \wedge \operatorname{Activity}(y) \wedge \neg \operatorname{Game}(y) \wedge \operatorname{Plays} \operatorname{Well}(x, y)$
\Rightarrow ProvidesScholarshipFor (Buffalo, x)]

```

Page 348

\section*{Interpretation of Clause As Hypothetical Answer}
```

25 ((Game Frisbee)
(Answer (ProvidesScholarshipFor Buffalo ?36))
(not (Athlete ?36)) (not (PlaysWell ?36 Frisbee)))
\negGame(Frisbee) }=>\forallxy[\mathrm{ Athlete (x) ^ PlaysWell(x, Frisbee)
=> ProvidesScholarshipFor(Buffalo, x)]

```

\section*{Rule-Based Systems}

\section*{Every FOL KB}
can be expressed as a set of rules of the form
```

$\forall \bar{x}\left(C_{1}(\bar{x}) \vee \cdots \vee C_{m}(\bar{x})\right)$
or
$\forall \bar{x}\left(A_{1}(\bar{x}) \wedge \cdots \wedge A_{n}(\bar{x}) \Rightarrow C_{1}(\bar{x}) \vee \cdots \vee C_{m}(\bar{x})\right)$
or
$\forall \bar{x}\left(A_{1}(\bar{x}) \wedge \cdots \wedge A_{n}(\bar{x}) \Rightarrow C(\bar{x})\right)$
where $A_{i}(\bar{x})$ and $C_{j}(\bar{x})$ are literals.

```

Page 350

\section*{Wh Questions in Rule-Based Systems}

Given rule \(\forall \bar{x}(A(\bar{x}) \Rightarrow C(\bar{x}))\)
Ask \(C(\bar{y})\) ?
Backchain to subgoal \(A(\bar{x}) \mu\), where \(\mu\) is an mgu of \(C(\bar{x}))\) and \(C(\bar{y}))\)
Moral: Unification is generally needed in backward chaining systems.

Unification is correct pattern matching when both structures have variables.

\section*{Forward Chaining \& Unification}

Forward chaining generally matches a ground fact with rule antecedents.

Forward chaining does not generally require unification.

Page 352

\section*{Common Formalizing Difficulties}

Every raven is black: \(\forall x(\operatorname{Raven}(x) \Rightarrow \operatorname{Black}(x))\)
Some raven is black: \(\exists x(\operatorname{Raven}(x) \wedge \operatorname{Black}(x))\)
Note the satisfying models of the incorrect
\(\exists x(\operatorname{Raven}(x) \Rightarrow \operatorname{Black}(x))\)

Page 353

\section*{Another Formalizing Difficulty}

Note where a Skolem function appears in
\(\forall x(\operatorname{Parent}(x) \Leftrightarrow \exists y \operatorname{childOf}(y, x))\)
\(\Leftrightarrow \forall x((\operatorname{Parent}(x) \Rightarrow \exists y \operatorname{childOf}(y, x))\) \(\wedge((\exists y \operatorname{childOf}(y, x)) \Rightarrow \operatorname{Parent}(x)))\)
\(\Leftrightarrow \forall x((\neg \operatorname{Parent}(x) \vee \exists y \operatorname{childOf}(y, x))\) \(\wedge(\neg(\exists y \operatorname{childOf}(y, x)) \vee \operatorname{Parent}(x)))\)
\(\Leftrightarrow \forall x((\neg \operatorname{Parent}(x) \vee \exists y \operatorname{childOf}(y, x))\) \(\wedge(\forall y(\neg \operatorname{childOf}(y, x)) \vee \operatorname{Parent}(x)))\)
\(\Leftrightarrow \forall x(\operatorname{Parent}(x) \Rightarrow \operatorname{childOf}(f(x), x))\) \(\wedge \forall x \forall y(\operatorname{childOf}(y, x) \Rightarrow \operatorname{Parent}(x))\)

\section*{What's "First-Order" About FOL?}

In a first-order logic:
Predicate and function symbols cannot be arguments of predicates or functions;

Variables cannot be in predicate or function position.
E.G. \(\forall r[\operatorname{Transitive}(r) \Leftrightarrow \forall x y z[r(x, y) \wedge r(y, z) \Rightarrow r(x, z)]]\)
is not a first-order sentence.
"The adjective 'first-order' is used to distinguish the languages we shall study here from those in which there are predicates having other predicates or functions as arguments or in which predicate quantifiers or function quantifiers are permitted, or both." [Elliott Mendelson, Introduction to Mathematical Logic, Fifth Edition, CRC Press, Boca Raton, FL, 2010, p. 48.]

Page 355

\section*{Russell's Theory of Types}

\author{
Designed to solve paradox: \(\exists s \forall c[s(c) \Leftrightarrow \neg c(c)]\) \\ has instance \(S(S) \Leftrightarrow \neg S(S)\)
}

Page 356

\section*{\(N^{\text {th }}\)-Order Logic}

Assign type 0 to individuals and to terms denoting individuals.
Assign type \(i+1\) to any set and to any function or predicate symbol that denotes a set, possibly of tuples, such that the maximum type of any of its elements is \(i\).
Also assign type \(i+1\) to any variable that range over type \(i\) objects.
Note that the type of a functional term is the type of its range - the \(n^{\text {th }}\) element of the \(n\)-tuples of the set which the function denotes.

Syntactically, if the maximum type of the arguments of a ground atomic wff is \(i\), then the type of the predicate is \(i+1\).
No predicate of type \(i\) may take a ground argument of type \(i\) or higher.

Page 357

\section*{First-Order Logic Defined}

First-order logic has a language that obeys Russell's Theory of Types, and whose highest type symbol is of type 1 .
\(n^{t h}\)-order logic has a language that obeys Russell's Theory of Types, and whose highest type symbol is of type \(n\).
\(\Omega\)-ordered logic has no limit, but must still follow the rules.
E.g., \(\forall r[\operatorname{Transitive}(r) \Leftrightarrow \forall x y z[r(x, y) \wedge r(y, z) \Rightarrow r(x, z)]]\)
is a formula of Second-Order Logic:
Type 0 objects: individuals in the domain
Type 1 symbols: \(x, y, z\) because they range over type 0 objects
Type 1 objects: binary relations over type 0 objects
Type 2 symbols: \(r\) because it ranges over type 1 objects,
Transitive because it denotes a set of type 1 objects
Page 358

\section*{Nested Beliefs}

Can a proposition be an argument of a proposition？
Consider：
```

$\forall p($ Believes $($ Solomon,$p) \Rightarrow p)$
Believes(Solomon, Round(Earth)) \Rightarrow Round(Earth)
Believes(Solomon, Round(Earth))
\vDash Round (Earth)

```

If Round（Earth）is an atomic wff，it＇s not a term，and only terms may be arguments of functions and predicates．

Even if it could：
\(\llbracket R o u n d(\) Earth \() \rrbracket=\) True if \(\llbracket\) Earth \(\rrbracket \in \llbracket\) Round \(\rrbracket\) ，else False．
So 【Believes（Solomon，Round（Earth））】＝True
iff 〈 【Solomon】，True－or－False〉 \(\in \llbracket\) Believes \(\rrbracket\)
Page 359

\section*{Reifying Propositions and the Holds Predicate}

So how can we represent in FOL
"Everything that Solomon believes is true"?
- Reify (some) propositions.

Make them objects in the domain.
Represent them using individual constants or functional terms.
- Use Holds \((P)\) to mean
"P holds (is true) in the given situation".
- Examples:
\[
\begin{aligned}
& \forall p(\text { Believes }(\text { Solomon }, p) \Rightarrow \operatorname{Holds}(p)) \\
& \text { Believes }(\text { Solomon }, \operatorname{Round}(\text { Earth })) \Rightarrow \operatorname{Holds}(\text { Round }(\text { Earth }))
\end{aligned}
\]

\section*{Semantics of the Holds Predicate}
```

$\forall p($ Believes $($ Solomon,$p) \Rightarrow$ Holds $(p)) \wedge$ Believes $($ Solomon, Round (Earth $))$
\Rightarrow Holds(Round(Earth))

```

Type 0 individuals and terms:
\([\) Solomon \(]=\llbracket\) Solomon \(\rrbracket=\) A person named Solomon
\([\) Earth \(]=\llbracket\) Earth \(\rrbracket=\) The planet Earth
\([\) Round \((\) Earth \()]=\llbracket\) Round \((\) Earth \() \rrbracket=\) The proposition that the Earth is round
Type 1 objects and symbols:
\(p\) : A variable ranging over type 0 propositions
\(\llbracket R o u n d \rrbracket=\) A function from type 0 physical objects to type 0 propositions.
\(\llbracket H o l d s \rrbracket=\mathrm{A}\) set of type 0 propositions.
\(\llbracket B e l i e v e s \rrbracket=\) A set of pairs, type 0 People \(\times\) type 0 propositions
Type 1 atomic formulas:
\([\operatorname{Holds}(x)]=\) The type 1 proposition that \([x]\) is True.
\(\llbracket H o l d s(x) \rrbracket=\) True if \(\llbracket x \rrbracket \in \llbracket H o l d s \rrbracket\); False otherwise
\([\operatorname{Believes}(x, y)]=\) The type 1 proposition that \([x]\) believes \([y]\)
\(\llbracket\) Believes \((x, y) \rrbracket=\) True if \(\langle\llbracket x \rrbracket, \llbracket y \rrbracket\rangle \in \llbracket\) Believes \(\rrbracket\); False otherwise

Page 361

\section*{5 Summary of Part I}

Artificial Intelligence (AI): A field of computer science and engineering concerned with the computational understanding of what is commonly called intelligent behavior, and with the creation of artifacts that exhibit such behavior.

Knowledge Representation and Reasoning (KR or KRR):
A subarea of Artificial Intelligence concerned with understanding, designing, and implementing ways of representing information in computers, and using that information to derive new information based on it.
KR is more concerned with belief than "knowledge". Given that an agent (human or computer) has certain beliefs, what else is reasonable for it to believe, and how is it reasonable for it to act, regardless of whether those beliefs are true and justified.

Page 362

\section*{What is Logic?}

Logic is the study of correct reasoning.
There are many systems of logic (logics). Each is specified by specifying:
- Syntax: Specifying what counts as a well-formed expression
- Semantics: Specifying the meaning of well-formed expressions
- Intensional Semantics: Meaning relative to a Domain
- Extensional Semantics: Meaning relative to a Situation
- Proof Theory: Defining proof/derivation, and how it can be extended.

\section*{Relevance of Logic}

Any system that consists of
- a collection of symbol structures, well-formed relative to some syntax;
- a set of procedures for adding new structures to that collection based on what's already in there.
is a logic.
But:
Do the symbol structures have a consistent semantics?
Are the procedures sound relative to that semantics?
Soundness is the essence of "correct reasoning."

Page 364

\section*{KR and Logic}

Given that a Knowledge Base is represented in a language with a well-defined syntax, a well-defined semantics, and that reasoning over it is a well-defined procedure, a KR system is a logic.

KR research can be seen as a search for the best logic to capture human-level reasoning.

\section*{Relations Among Inference Problems}
\[
\begin{array}{lcc}
\text { Syntax } & \text { Derivation } & \text { Theoremhood } \\
A_{1}, \ldots, A_{n} \vdash Q & \Leftrightarrow & \vdash A_{1} \wedge \ldots \wedge A_{n} \Rightarrow Q \\
\Downarrow \uparrow & & \\
& \Downarrow \uparrow \\
\text { Semantics } \quad \text { Logical Entailment } & \Leftrightarrow & \models A_{1} \wedge \ldots \wedge A_{n} \Rightarrow Q \\
A_{1}, \ldots, A_{n} \models Q & \text { Validity }
\end{array}
\]

Semantics Logical Entailment
\((\Downarrow\) Soundness)

Page 366

\section*{Inference/Reasoning Methods}

Given a \(\mathrm{KB} /\) set of assumptions \(\mathcal{A}\) and a query \(\mathcal{Q}\) :
- Model Finding
- Direct: Find satisfying models of \(\mathcal{A}\), see if \(\mathcal{Q}\) is True in all of them.
- Refutation: Find if \(\mathcal{A} \cup\{\neg \mathcal{Q}\}\) is unsatisfiable.
- Natural Deduction
- Direct: Find if \(\mathcal{A} \vdash \mathcal{Q}\).
- Resolution
- Direct: Find if \(\mathcal{A} \vdash \mathcal{Q}\) (incomplete).
- Refutation: Find if \(\bigwedge \mathcal{A} \wedge \neg \mathcal{Q}\) is inconsistent.

Page 367

\section*{Classes of Logics}
- Propositional Logic
- Finite number of atomic propositions and models.
- Model finding and resolution are decision procedures.
- Finite-Model Predicate Logic
- Finite number of terms, atomic formulae, and models.
- Reducible to propositional logic.
- Model finding and resolution are decision procedures.
- First-Order Logic
- Infinite number of terms, atomic formulae, and models.
- Not reducible to propositional logic.
- There are no decision procedures.
- Resolution plus factoring is refutation complete.

Page 368

\section*{Logics We Studied}
1. Standard Propositional Logic
2. Clause Form Propositional Logic
3. Standard Finite-Model Predicate Logic
4. Clause Form Finite-Model Predicate Logic
5. Standard First-Order Predicate Logic
6. Clause Form First-Order Predicate Logic

Page 369

\section*{Proof Procedures We Studied}
1. Direct model finding: truth tables, decreasoner, relsat (complete search) walksat, gsat (stochastic search)
2. Semantic tableaux (model-finding refutation)
3. Wang algorithm (model-finding refutation), wang
4. Hilbert-style axiomatic (direct), brief
5. Fitch-style natural deduction (direct)
6. Resolution (refutation), prover, SNARK

Page 370

\section*{Utility Notions and Techniques}
1. Material implication
2. Possible properties of connectives commutative, associative, idempotent
3. Possible properties of well-formed expressions free, bound variables open, closed, ground expressions
4. Possible semantic properties of wffs contradictory, satisfiable, contingent, valid
5. Possible properties of proof procedures sound, consistent, complete, decision procedure, semi-decision procedure

Page 371

\section*{More Utility Notions and Techniques}
5. Substitutions
application, composition
6. Unification
most general common instance (mgci),
most general unifier (mgu)
7. Translation from standard form to clause form

Conjunctive Normal Form (CNF),
Skolem functions/constants
8. Resolution Strategies
subsumption, unit preference, set of support
9. The Answer Literal

Page 372

\section*{Unification}
- Unification is a least-commitment method of choosing a substitution for Universal Instantiation \((\forall E)\).
- Unification is correct pattern matching when both structures have variables.
- Unification is generally needed in backward chaining systems.

Page 373

\section*{AI-Logic Connections}
\begin{tabular}{l|l} 
AI & Logic \\
\hline \hline \begin{tabular}{l} 
rules \\
or domain rules
\end{tabular} & \begin{tabular}{l} 
non-atomic assumptions \\
or non-logical axioms
\end{tabular} \\
\hline inference engine procedures & rules of inference \\
\hline knowledge base & derivation
\end{tabular}

Page 374

\section*{6 Prolog}
6.1 Horn Clauses ..... 376
6.2 Prolog ..... 379

\subsection*{6.1 Horn Clauses}

A Horn Clause is a clause with at most one positive literal.
Either \(\left\{\neg Q_{1}(\bar{x}), \ldots, \neg Q_{n}(\bar{x})\right\}\) (negative Horn clause)
or \(\{C(\bar{x})\}\) (fact or positive or definite Horn clause)
or \(\left\{\neg A_{1}(\bar{x}), \ldots, \neg A_{n}(\bar{x}), C(\bar{x})\right\}\) (positive or definite Horn clause)
which is the same as
\(A_{1}(\bar{x}) \wedge \cdots \wedge A_{n}(\bar{x}) \Rightarrow C(\bar{x})\)
where \(A_{i}(\bar{x}), C(\bar{x})\), and \(Q(\bar{x})\) are atoms.

Page 376

\section*{SLD Resolution}

Selected literals, Linear pattern, over Definite clauses
SLD derivation of clause \(c\) from set of clauses \(S\) is
\(c_{1}, \ldots, c_{n}=c\)
s.t. \(c_{1} \in S\)
and \(c_{i+1}\) is resolvent of \(c_{i}\) and a clause in \(S\). [B\&L, p. 87]
If \(S\) is a set of Horn clauses, then there is a resolution derivation of \(\}\) from \(S\) iff there is an SLD derivation of \(\}\) from \(S\).

Page 377

\section*{SLDSolve}
```

procedure SLDSolve(KB,query) returns true or false \{
$/^{*} \mathrm{~KB}=\left\{\right.$ rule $_{1}, \ldots$, rule $\left._{n}\right\}$
${ }^{*}$ rule $_{i}=\left\{h_{i}, \neg b_{i 1}, \ldots, \neg b_{i k_{i}}\right\}$
* query $=\left\{\neg q_{1}, \ldots, \neg q_{m}\right\} \quad * /$
if ($m=0$) return true;
for $i:=1$ to $n\{$
if $\left(\left(\mu:=\operatorname{Unify}\left(q_{1}, h_{i}\right)\right) \neq\right.$ FAIL
and SLDSolve(KB, $\left.\left.\left\{\neg b_{i 1} \mu, \ldots, \neg b_{i k_{i}} \mu, \neg q_{2} \mu, \ldots, \neg q_{m} \mu\right\}\right)\right)\{$
return true;
\}
\}
return false;
\}

```

Where \(h_{i}, b_{i j}\), and \(q_{i}\) are atomic formulae.
See B\&L, p. 92
Page 378

\subsection*{6.2 Prolog}

\section*{Example Prolog Interaction}
```

timberlake:~/.xemacs:1:35 sicstus
SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009
Licensed to SP4cse.buffalo.edu
| ?- consult(user).
% consulting user...
| driver(X) :- drives(X,_).
| passenger(Y) :- drives(_,Y).
| drives(betty,tom).
|
% consulted user in module user, 0 msec 1200 bytes
yes
| ?- driver(X), passenger(Y).
X = betty,
Y = tom ?
yes
| ?- halt.

```

Page 379

\section*{Variables are Capitalized}
```

SICStus 4.0.5 (x86-linux-glibc2.3): Thu Feb 12 09:47:39 CET 2009
Licensed to SP4cse.buffalo.edu
| ?- [user].
% compiling user...
| canary(Tweety).

* [Tweety] - singleton variables
|
% compiled user in module user, 10 msec 152 bytes
yes
| ?- canary(Tweety).
true ?
yes
| ?- canary(oscar).
yes
| ?-

```

Page 380

\section*{Prolog Program with Two Answers}
```

% From Rich \& Knight, 2nd Edition (1991) p. 192.
likesToEat(X,Y) :- cat(X), fish(Y).
cat(X) :- calico(X).
fish(X) :- tuna(X).
tuna(charlie).
tuna(herb).
calico(puss).

```

Page 381

\section*{Listing the Fish Program}
```

| ?- listing.
calico(puss).
cat(A) :-
calico(A).
fish(A) :-
tuna(A).
likesToEat(A, B) :-
cat(A),
fish(B).
tuna(charlie).
tuna(herb).

```
yes

Note: consult(File) loads the File in interpreted mode, whereas [File] loads the File in compiled mode. listing is only possible in interpreted mode.

Page 382

\section*{Running the Fish Program}
```

timberlake:CSE563:39:1 sicstus
SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009
Licensed to SP4cse.buffalo.edu
| ?- ['fish.prolog'].
% compiling /projects/shapiro/CSE563/fish.prolog...
% compiled /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1808 b
yes
| ?- likesToEat(puss,X).
X = charlie ? ;
X = herb ? ;
no
| ?- halt.
timberlake:CSE563:40:1

```

Page 383

\section*{Tracing the Fish Program}
```

| ?- ['fish.prolog'].
% consulting /projects/shapiro/CSE563/fish.prolog...
% consulted /projects/shapiro/CSE563/fish.prolog in module use]
yes
| ?- trace.
% The debugger will first creep -- showing everything (trace)
yes
% trace

```

\section*{Tracing First Answer}
| ?- likesToEat (puss,X).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 1 & 1 & Call & likesToEat (pus & ss, _442) \\
\hline & 2 & 2 & Call & cat (puss) ? & \\
\hline & 3 & 3 & Call & calico(puss) & \\
\hline & 3 & 3 & Exit & calico(puss) & \\
\hline & 2 & 2 & Exit & cat(puss) ? & \\
\hline & 4 & 2 & Call & fish(_442) ? & \\
\hline & 5 & 3 & Call & tuna(_442) ? & \\
\hline ? & 5 & 3 & Exit & tuna(charlie) & \\
\hline ? & 4 & 2 & Exit & fish(charlie) & \\
\hline ? & 1 & 1 & Exit & likesToEat (pus & ? , char \\
\hline \multicolumn{6}{|l|}{\(\mathrm{X}=\) charlie ? ;} \\
\hline
\end{tabular}

Page 385

\section*{Tracing the Second Answer}
```

X = charlie ? ;
1 1 Redo: likesToEat(puss,charlie) ?
4 2 Redo: fish(charlie) ?
5 3 Redo: tuna(charlie) ?
5 3 Exit: tuna(herb) ?
4 2 Exit: fish(herb) ?
1 1 Exit: likesToEat(puss,herb) ?
X = herb ? ;
no
% trace
| ?- notrace.
% The debugger is switched off
yes

```

\section*{Backtracking Example}
```

Program:
bird(tweety).
bird(oscar).
bird(X) :- feathered(X).
feathered(maggie).
large(oscar).
ostrich(X) :- bird(X), large(X).
Run (No backtracking needed):
| ?- ostrich(oscar).
1 1 Call: ostrich(oscar) ?
2 2 Call: bird(oscar) ?
? 2 2 Exit: bird(oscar) ?
3 2 Call: large(oscar) ?
3 2 Exit: large(oscar) ?
? 1 1 Exit: ostrich(oscar) ?
yes

```

Page 387

\section*{Backtracking Used}
```

| ?- ostrich(X).
1 1 Call: ostrich(_368) ?
2 2 Call: bird(_368) ?
? 2 2 Exit: bird(tweety) ?
3 2 Call: large(tweety) ?
3 2 Fail: large(tweety) ?
2 2 Redo: bird(tweety) ?
2 Exit: bird(oscar) ?
4 2 Call: large(oscar) ?
4 2 Exit: large(oscar) ?
? 1 1 Exit: ostrich(oscar) ?
X = oscar ?
yes

```

Page 388

\section*{Backtracking: Effect of Query}
```

/projects/shapiro/CSE563/Examples/Prolog/backtrack.prolog:
supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).
managerOf(jones,accountingDepartment).
managerOf(smith,itDepartment).
departmentOf(kelly,accountingDepartment).
departmentOf(brown,itDepartment).

```

Backtracking not needed:
```

| ?- supervisorOf(smith,X).

```
```

 1 1 Call: supervisorOf(smith,_380) ?
 2 2 Call: managerOf(smith,_772) ?
 2 2 Exit: managerOf(smith,itDepartment) ?
 3 2 Call: departmentOf(_380,itDepartment) ?
 3 2 Exit: departmentOf(brown,itDepartment) ?
 1 1 Exit: supervisorOf(smith,brown) ?
 X = brown ?
yes

```

\section*{Backtracking Example, part 2}
```

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).
manager0f(jones,accountingDepartment).
manager0f(smith,itDepartment).
departmentOf(kelly,accountingDepartment).
departmentOf(brown,itDepartment).
| ?- supervisorOf(X,brown).
1 1 Call: supervisorOf(_368,brown) ?
2 2 Call: managerOf(_368,_772) ?
? 2 2 Exit: managerOf(jones,accountingDepartment) ?
3 2 Call: departmentOf(brown,accountingDepartment) ?
3 2 Fail: departmentOf(brown,accountingDepartment) ?
2 2 Redo: managerOf(jones,accountingDepartment) ?
2 2 Exit: managerOf(smith,itDepartment) ?
4 2 Call: departmentOf(brown,itDepartment) ?
4 2 Exit: departmentOf(brown,itDepartment) ?
1 1 Exit: supervisorOf(smith,brown) ?
X = smith ?
yes

```

Page 390

\section*{Negation by Failure} \& The Closed World Assumption
```

| ?- [user].
% consulting user...
| manager(jones, itSection).
| manager(smith, accountingSection).
|
% consulted user in module user, 0 msec 416 bytes
yes
| ?- manager(smith, itSection).
no
| ?- manager(kelly, accountingSection).
no

```

Negation by failure: "no" means didn't succeed.
CWA: If it's not in the KB, it's not true.
Page 391

\section*{Cut: Preventing Backtracking KB Without Cut}
```

| ?- consult(user).
% consulting user...
| bird(oscar).
| bird(tweety).
| bird(X) :- feathered(X).
| feathered(maggie).
| large(oscar).
| ostrich(X) :- bird(X), large(X).
|
% consulted user in module user, 0 msec 1120 bytes
yes

```

\section*{No Backtracking Needed}
```

| ?- trace.
% The debugger will first creep -- showing everything (trace)
yes
% trace
| ?- ostrich(oscar).

	1	1 Call: ostrich(oscar) ?
	2	2 Call: bird(oscar) ?
$?$	2	2 Exit: bird(oscar) ?
	3	2 Call: large (oscar) ?
	3	2 Exit: large (oscar) ?
$?$	1	1 Exit: ostrich(oscar) ?

yes
% trace

```

Page 393

\section*{Unwanted Backtracking}
| ?- ostrich(tweety).
\begin{tabular}{ll}
1 & 1 Call: ostrich(tweety) ? \\
2 & 2 Call: bird(tweety) ? \\
2 & 2 Exit: bird(tweety) ? \\
3 & 2 Call: large(tweety) ? \\
3 & 2 Fail: large(tweety) ? \\
2 & 2 Redo: bird(tweety) ? \\
4 & 3 Call: feathered(tweety) ? \\
4 & 3 Fail: feathered(tweety) ? \\
2 & 2 Fail: bird(tweety) ? \\
1 & 1 Fail: ostrich(tweety) ?
\end{tabular}
no
No need to try to solve bird(tweety) another way.
Page 394

\section*{KB With Cut}
```

| ?- consult(user).
% consulting user...
| bird(oscar).
| bird(tweety).
| bird(X) :- feathered(X).
| feathered(maggie).
| large(oscar).
| ostrich(X) :- bird(X), !, large(X).
|
% consulted user in module user, 0 msec -40 bytes
yes
% trace

```

\section*{No Extra Backtracking}

no
\% trace

Page 396
```

 Cut Fails the Head Instance: Program
 | ?- [user].
% compiling user...
| yellow(bigbird).
bird(tweety)
canary(X) :- bird(X), !, yellow(X).
canary(X).

* [X] - singleton variables
|
% compiled user in module user, 0 msec 600 bytes
yes
| ?- canary(fred).
yes
| ?- canary(bigbird).
yes
| ?- canary(tweety).
no
| ?-

```

Page 397

\section*{fail: Forcing Failure}
```

If something is a canary, it is not a penguin.
| ?- consult(user).
% consulting user...
| penguin(X) :- canary(X), !, fail.
| canary(tweety).
|
% consulted user in module user, 0 msec 416 bytes
yes
% trace
| ?- penguin(tweety).
1 Call: penguin(tweety) ?
2 Call: canary(tweety) ?
2 2 Exit: canary(tweety) ?
1 1 Fail: penguin(tweety) ?
no
% trace

```

Page 398

\section*{Cut Fails the Head Instance: Program}
```

penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).
canary(tweety).
bird(willy).
swims(willy).

```

Page 399

\section*{Cut Fails the Head Instance: Run}
```

| ?- penguin(willy).
1 Call: penguin(willy) ?
2 2 Call: canary(willy) ?
2 2 Fail: canary(willy) ?
3 2 Call: bird(willy) ?
3 2 Exit: bird(willy) ?
4 2 Call: swims(willy) ?
4 2 Exit: swims(willy) ?
1 Exit: penguin(willy) ?
yes
% trace
| ?- penguin(tweety).
1 Call: penguin(tweety) ?
2 2 Call: canary(tweety) ?
2 2 Exit: canary(tweety) ?
1 1 Fail: penguin(tweety) ?

```
no

Page 400

\section*{Cut Fails Head Alternatives}
```

| ?- penguin(X).
1 1 Call: penguin(_368) ?
2 2 Call: canary(_368) ?
2 2 Exit: canary(tweety) ?
1 Fail: penguin(_368) ?

```
no
Moral:
Use cut when seeing if a ground atom is satisfied (T/F question), but not when generating satisfying instances (wh questions).

Page 401

\section*{Bad Rule Order}
```

penguin(X) :- bird(X), swims(X).
penguin(X) :- canary(X), !, fail.
bird(X) :- canary(X).
canary(tweety).
% trace
| ?- penguin(tweety).
1 Call: penguin(tweety) ?
2 2 Call: bird(tweety) ?
3 Call: canary(tweety) ?
3 3 Exit: canary(tweety) ?
2 2 Exit: bird(tweety) ?
4 2 Call: swims(tweety) ?
4 Fail: swims(tweety) ?
5 2 Call: canary(tweety) ?
5 2 Exit: canary(tweety) ?
1 1 Fail: penguin(tweety) ?

Page 402

Good Rule Order

```
penguin(X) :- canary(X), !, fail.
penguin(X) :- bird(X), swims(X).
bird(X) :- canary(X).
canary(tweety).
% trace
| ?- penguin(tweety).
    1 Call: penguin(tweety) ?
2 2 Call: canary(tweety) ?
2 2 Exit: canary(tweety) ?
1 1 Fail: penguin(tweety) ?
```

no

SICSTUS Allows "or" In Body.

```
bird(willy).
swims(willy).
canary(tweety).
penguin(X) :-
    canary(X), !, fail;
    bird(X), swims(X).
bird(X) :- canary(X).
| ?- ['twoRuleCutOr.prolog'].
% compiling /projects/shapiro/CSE563/twoRuleCutOr.prolog...
* clauses for user:bird/1 are not together
* Approximate lines: 8-10, file: '/projects/shapiro/CSE563/twoRuleCutOr.prolog'
% compiled /projects/shapiro/CSE563/twoRuleCutOr.prolog in module user, 0 msec 928 bytes
yes
| ?- penguin(willy).
yes
| ?- penguin(tweety).
no
```

Page 404

not: "Negated" Antecedents

A bird that is not a canary is a penguin.
| penguin(X) :- $\operatorname{bird}(X),!, \+c a n a r y(X)$.
| bird(opus).
| canary(tweety).
\% compiled user in module user, 0 msec 512 bytes
| ?- penguin(opus).

1	1 Call: penguin(opus) ?
2	2 Call: bird(opus) ?
2	2 Exit: bird(opus) ?
3	2 Call: canary(opus) ?
3	2 Fail: canary(opus) ?
1	1 Exit: penguin(opus) ?

yes
$\backslash+$ is SICStus Prolog's version of not.
It is negation by failure, not logical negation.
Page 405

Can Use Functions

```
driver(X) :- drives(X,_).
drives(mother(X),X) :- schoolchild(X).
schoolchild(betty).
schoolchild(tom).
| ?- driver(X).
X = mother(betty) ? ;
X = mother(tom) ? ;
no
```


Infinitely Growing Terms

```
driver(X) :- drives(X,_).
drives(mother(X),X) :- commuter(X).
commuter(betty).
commuter(tom).
commuter(mother(X)) :- commuter(X).
| ?- driver(X).
X = mother(betty) ? ;
X = mother(tom) ? ;
X = mother(mother(betty)) ? ;
X = mother(mother(tom)) ? ;
X = mother (mother(mother(betty))) ? ;
X = mother(mother(mother(tom))) ?
yes
```


Prolog Does Not Do the Occurs Check

```
<pollux:CSE563:2:31> sicstus
| ?- [user].
% consulting user...
| mother(motherOf(X), X).
|
% consulted user in module user, 0 msec 248 bytes
yes
| ?- mother(Y, Y).
Y = motherOf(motherOf (motherOf(motherOf(motherOf (motherOf (
                                    motherOf(motherOf(motherOf(motherOf (. . .))))))))))
yes
| ?-
```

Page 408

"=" and "is"

```
| ?- p(X, b, f(c,Y)) = p(a, U, f(V,U)).
U = b,
V = c,
X = a,
Y = b ?
yes
| ?- X is 2*(3+6).
X = 18 ?
yes
| ?- X = 2*(3+6).
X = 2*(3+6) ?
yes
| ?- X is 2*(3+6), Y is X/3.
X = 18,
Y = 6.0 ?
yes
| ?- Y is X/3, X is 2*(3+6).
! Instantiation error in argument 2 of is/2
! goal: _76 is _73/3
```

Page 409

Avoid Left Recursive Rules

To define ancestor as the transitive closure of parent.
The base case: ancestor (X,Y) :- parent(X,Y).
Three possible recursive cases:

1. ancestor (X, Y) :- parent (X,Z), ancestor (Z, Y).
2. ancestor (X,Y) :- ancestor (X,Z), parent(Z,Y).
3. ancestor (X,Y) :- ancestor (X,Z), ancestor (Z, Y).

Versions (2) and (3) will cause infinite loops.

Page 410

7 A Potpourri of Subdomains

7.1 Taxonomies 412
7.2 Time 418
7.3 Things vs. Substances 425

Taxonomies: Categories as Intensional Sets

In mathematics, a set is defined by its members.
This is an extensional set.
Plato: Man is a featherless biped.
An intensional set is defined by properties.
Aristotle: Man is a rational animal.
A category (type, class) is an intensional set.

Page 412

Taxonomies: Need for Two Relations

With sets, there's a difference between
set membership, \in

$$
\begin{array}{r}
5 \in\{1,3,5,7,9\} \\
\{1,3,5,7,9\} \subset\{1,2,3,4,5,6,7,8,9\}
\end{array}
$$

One difference is that subset is transitive:
$\{1,3,5\} \subset\{1,3,5,7,9\}$ and $\{1,3,5,7,9\} \subset\{1,2,3,4,5,6,7,8,9\}$ and $\{1,3,5\} \subset\{1,2,3,4,5,6,7,8,9\}$
membership is not:
$5 \in\{1,3,5,7,9\}$ and $\{1,3,5,7,9\} \in\{\{1,3,5,7,9\},\{2,4,6,8\}\}$ but $5 \notin\{\{1,3,5,7,9\},\{2,4,6,8\}\}$

Similarly, we need both the instance relation and the subcategory relation.

Page 413

Taxonomies:

Categories as Unary Predicates

One way to represent taxonomies:
Canary(Tweety)
$\forall x[(\operatorname{Canary}(x) \Rightarrow \operatorname{Bird}(x)]$
$\forall x[(\operatorname{Bird}(x) \Rightarrow \operatorname{Vertebrate}(x)]$
$\forall x[(\operatorname{Vertebrate}(x) \Rightarrow$ Chordate $(x)]$
$\forall x[(\operatorname{Chordate}(x) \Rightarrow \operatorname{Animal}(x)]$

Taxonomies: Reifying

To reify: to make a thing of.
Allows discussion of "predicates" in FOL.
Membership: Member or Instance or Isa
Isa(Tweety, Canary)
Subcategory: Subclass or Ako (sometimes, even, Isa)
Ako(Canary, Bird)
Ako(Bird, Vertebrate)
Ako(Vertebrate, Chordate)
Ako(Chordate, Animal)
Axioms:
$\forall x \forall c_{1} \forall c_{2}\left[\operatorname{Isa}\left(x, c_{1}\right) \wedge \operatorname{Ako}\left(c_{1}, c_{2}\right) \Rightarrow \operatorname{Isa}\left(x, c_{2}\right)\right]$
$\forall c_{1} \forall c_{2} \forall c_{3}\left[\operatorname{Ako}\left(c_{1}, c_{2}\right) \wedge \operatorname{Ako}\left(c_{2}, c_{3}\right) \Rightarrow \operatorname{Ako}\left(c_{1}, c_{3}\right)\right]$
Page 415

Discussing Categories

$$
\begin{aligned}
& \text { Isa }(\text { Canary, Species }) \\
& \text { Isa }(\text { Bird }, \text { Class }) \\
& \text { Isa }(\text { Chordate }, \text { Phylum }) \\
& \text { Isa }(\text { Animal, Kingdom }) \\
& \text { Extinct(Dinosaur })
\end{aligned}
$$

Note: That's Isa, not Ako.
If categories are predicates, requires second-order logic.
Other relationships: exhaustive subcategories, disjoint categories, partitions.

DAG (directed acyclic graph), rather than just a tree.
E.g., human: man vs. woman; child vs. adult vs. senior.

Page 416

Transitive Closure

It's sometimes useful (especially in Prolog)
to have a second relation, R_{2}
be the transitive closure of a relation, R_{1}.
$\forall R_{1}, R_{2}\left[\right.$ transitiveClosureO $f\left(R_{2}, R_{1}\right)$

$$
\begin{aligned}
\Leftrightarrow & {\left[\forall x, y\left(R_{1}(x, y) \Rightarrow R_{2}(x, y)\right)\right.} \\
& \left.\wedge \forall x, y, z\left[R_{1}(x, y) \wedge R_{2}(y, z) \Rightarrow R_{2}(x, z)\right]\right]
\end{aligned}
$$

E.g. ancestor is the transitive closure of parent:
$\forall x, y[\operatorname{parent}(x, y) \Rightarrow \operatorname{ancestor}(x, y)]$
$\forall x, y, z[\operatorname{parent}(x, y) \wedge \operatorname{ancestor}(y, z) \Rightarrow \operatorname{ancestor}(x, z)]$

7.2 Time

How would you represent time?
Discuss

Page 418

Subjective vs. Objective: Subjective

Make now an individual in the domain.
Include other times relative to now.
OK if time doesn't move.

Page 419

Subjective vs. Objective: Objective

Make now a meta-logical variable with some time-denoting term as value.

Relate times to each other, e.g. Before $(t 1, t 2)$.
Now can move by giving now a new value.

Points vs. Intervals: Points

Use numbers: integers, rationals, reals?
Computer reals aren't really dense.
How to assign numbers to times?
Granularity: How big, numerically, is a day, or any other interval of time?

If an interval is defined as a pair of points, which interval is the midpoint in, if one interval immediately follows another?

Page 421

Points vs. Intervals: Intervals

Use intervals only: no points at all.
More cognitively accurate.
Granularity is not fixed.
A "point" is just an interval with nothing inside it.

Page 422

James Allen's Interval Relations

[James F. Allen, Maintaining Knowledge About Temporal Intervals, Communications of the ACM 26, 11 (Nov 1983), 832-843.]

Page 423

A Smaller Set of Temporal Relations

If fewer distinctions are needed, one may use
before (x, y) for Allen's before $(x, y) \vee \operatorname{meets}(x, y)$
$\operatorname{during}(x, y)$ for Allen's starts $(x, y) \vee \operatorname{during}(x, y) \vee \operatorname{finishes}(x, y)$
overlaps (x, y) and equals (x, y)
and appropriate converses.

Page 424

7.3 Things vs. Substances Count Nouns vs. Mass Nouns

A count noun denotes a thing.
Count nouns can be singular or plural.
Things can be counted.
One dog. Two dogs.
A mass noun denotes a substance.
Mass nouns can only be singular.
One can have a quantity of a substance.
A glass of water. A pint of ice cream.

Page 425

A Quantity of a Substance is a Thing

water a substance
a lake $=$ a body of water a thing
lakes a plurality of things
40 acres of lakes a quantity of a substance

Page 426

Nouns with mass and count senses

A noun might have both senses.
a piece of pie vs. A piece of a pie
two pieces of steak vs. two steaks
Any count noun can be "massified".
Any thing can be put through "the universal grinder".
I can't get up; I've got cat on my lap.

Page 427

8 SNePS

8.1 SNePSLOG Semantics 429
8.2 SNePSLOG Syntax 433
8.3 SNePSLOG Proof Theory 446
8.4 Loading and Running SNePSLOG 456
8.5 Reasoning Heuristics 467
8.6 SNePS as a Network 489
8.7 SNeRE: The SNePS Rational Engine 499

8.1 SNePSLOG Semantics The Intensional Domain of (Mental) Entities

Frege: The Morning Star is the Evening Star. different from The Morning Star is the Morning Star.

Russell: George IV wanted to know whether Scott was the author of Waverly.
not George IV wanted to know whether the author of Waverly was the author of Waverly.

Jerry Siegel and Joe Shuster: Clark Kent is a mild-mannered reporter; Superman is the man of steel.

Page 429

Intensions vs. Extensions

the Morning Star and the Evening Star
Scott and the author of Waverly

Clark Kent and Superman

are different intensions, or intensional entities, or mental entities, or just entities,
even though they are coreferential, or extensionally equivalent, or have the same extensions.

SNePSLOG Semantics

Intensional Representation

SNePSLOG individual ground terms denote intensions, (mental) entities.

Mental entities include propositions.
Propositions are first-class members of the domain. SNePSLOG wffs denote propositions.

Assume that for every entity in the domain there is a term that denotes it.

Make unique names assumption: no two terms denote the same entity.

Page 431

The Knowledge Base

Think of the SNePS KB as the contents of the mind of an intelligent agent.

The terms in the KB denote mental entities that the agent has conceived of (so far).

Some of the wffs are asserted.
These denote propositions that the agent believes.
The rules of inference sanction believing some additional proposition(s), but drawing that inference is optional. I.e., the agent is not logically omniscient.

8.2 SNePSLOG Syntax Atomic Symbols

Individual Constants, Variables, Function Symbols:
any Lisp symbol, number, or string.
All that matters is the sequence of characters.
I.e. "4", $\backslash 4$, and 4, are the same.

The sets of individual constants, variables, and function symbols should be distinct, but don't have to be.

SNePSLOG Syntax Terms

An individual constant is a term.
A variable is a term.
If $\mathrm{t} 1, \ldots, \mathrm{tn}$ are terms, then $\{\mathrm{t} 1, \ldots, \mathrm{tn}\}$ is a set of terms.
If f is a function symbol or a variable, then $f()$ is a term.
If $\mathrm{t} 1, \ldots, \mathrm{tn}$ are terms or sets of terms and f is a function symbol or variable, then $f(t 1, \ldots, t n)$ is a term.

A function symbol needn't have a fixed arity, but it might be a mistake of formalization otherwise.

Page 434

SNePSLOG Syntax Atomic Wffs

If x is a variable, then x is a wff.
If P is a proposition-valued function symbol or variable, then P() is a wff.

If t1, ..., tn are terms or sets of terms
and P is a proposition-valued function symbol or variable, then $\mathrm{P}(\mathrm{t} 1, \ldots, \mathrm{tn})$ is a wff.

A predicate symbol needn't have a fixed arity, but it might be a mistake of formalization otherwise.

If $\mathrm{P} 1, \ldots, \mathrm{Pn}$ are wffs, then $\{\mathrm{P} 1, \ldots, \mathrm{Pn}\}$ is a set of wffs.
Abbreviation: If P is a wff, then P is an abbreviation of $\{\mathrm{P}\}$.
Every wff is a proposition-denoting term.
Page 435

SNePSLOG Syntax/Semantics AndOr

If $\left\{P_{1}, \ldots, P_{n}\right\}$ is a set of wffs (proposition-denoting terms), and i and j are integers such that $0<=i<=j<=n$, then andor $(i, j)\left\{P_{1}, \ldots, P_{n}\right\}$ is a wff (proposition-denoting term).

The proposition that at least i and at most j of P_{1}, \ldots, P_{n} are True.

Page 436

SNePSLOG Syntax/Semantics Abbreviations of AndOr

${ }^{\sim} P=\operatorname{andor}(0,0)\{P\}$

$$
\begin{aligned}
& \operatorname{and}\left\{P_{1}, \ldots, P_{n}\right\}=\operatorname{andor}(n, n)\left\{P_{1}, \ldots, P_{n}\right\} \\
& \operatorname{or}\left\{P_{1}, \ldots, P_{n}\right\}=\text { andor }(1, n)\left\{P_{1}, \ldots, P_{n}\right\} \\
& \text { nand }\left\{P_{1}, \ldots, P_{n}\right\}=\operatorname{andor}(0, n-1)\left\{P_{1}, \ldots, P_{n}\right\} \\
& \operatorname{nor}\left\{P_{1}, \ldots, P_{n}\right\}=\operatorname{andor}(0,0)\left\{P_{1}, \ldots, P_{n}\right\} \\
& \operatorname{xor}\left\{P_{1}, \ldots, P_{n}\right\}=\operatorname{andor}(1,1)\left\{P_{1}, \ldots, P_{n}\right\} \\
& P_{1} \text { and } \ldots \text { and } P_{n}=\operatorname{andor}(n, n)\left\{P_{1}, \ldots, P_{n}\right\} \\
& P_{1} \text { or } \ldots \text { or } P_{n}=\operatorname{andor}(1, n)\left\{P_{1}, \ldots, P_{n}\right\}
\end{aligned}
$$

SNePSLOG Syntax/Semantics Thresh

If $\left\{P_{1}, \ldots, P_{n}\right\}$ is a set of wffs (proposition-denoting terms) and i and j are integers such that $0<=i<=j<=n$, then $\operatorname{thresh}(i, j)\left\{P_{1}, \ldots, P_{n}\right\}$ is a wff (proposition-denoting term).

The proposition that either fewer than i or more than j of P_{1}, \ldots, P_{n} are True.

Page 438

SNePSLOG Syntax/Semantics Abbreviations of Thresh

iff $\left\{P_{1}, \ldots, P_{n}\right\}$
is an abbreviation of $\operatorname{thresh}(1, n-1)\left\{P_{1}, \ldots, P_{n}\right\}$
P_{1} <=> \cdots <=> P_{n}
is an abbreviation of $\operatorname{thresh}(1, n-1)\left\{P_{1}, \ldots, P_{n}\right\}$
thresh (i) $\left\{P_{1}, \ldots, P_{n}\right\}$
is an abbreviation of thresh $(i, n-1)\left\{P_{1}, \ldots, P_{n}\right\}$

SNePSLOG Syntax/Semantics Numerical Entailment

If $\left\{P_{1}, \ldots, P_{n}\right\}$ and $\left\{Q_{1}, \ldots, Q_{m}\right\}$ are sets of wffs (proposition-denoting terms), and i is an integer, $1<=i<=n$, then
$\left\{P_{1}, \ldots, P_{n}\right\} i=>\left\{Q_{1}, \ldots, Q_{m}\right\}$ is a wff (proposition-denoting term).

The proposition that whenever at least i of P_{1}, \ldots, P_{n} are True, then so is any $Q_{j} \in\left\{Q_{1}, \ldots, Q_{m}\right\}$.

Page 440

SNePSLOG Syntax/Semantics
 Abbreviations of Numerical Entailment

$\left\{P_{1}, \ldots, P_{n}\right\} \Rightarrow\{Q 1, \ldots, Q m\}$
is an abbreviation of $\left\{P_{1}, \ldots, P_{n}\right\}$ 1=> $\left\{Q_{1}, \ldots, Q_{m}\right\}$
$\left\{P_{1}, \ldots, P_{n}\right\}$ v $=>\{Q 1, \ldots, Q m\}$
is also an abbreviation of $\left\{P_{1}, \ldots, P_{n}\right\} 1 \Rightarrow\left\{Q_{1}, \ldots, Q_{m}\right\}$
$\left\{P_{1}, \ldots, P_{n}\right\} \&=>\{Q 1, \ldots, Q m\}$
is an abbreviation of $\left\{P_{1}, \ldots, P_{n}\right\} \quad n=>\left\{Q_{1}, \ldots, Q_{m}\right\}$

Page 441

SNePSLOG Syntax/Semantics Universal Quantifier

If P is a wff (proposition-denoting term) and x_{1}, \ldots, x_{n} are variables, then
all $\left(x_{1}, \ldots, x_{n}\right)(P)$ is a wff (proposition-denoting term).
The proposition that for every sequence of ground terms, t_{1}, \ldots, t_{n}, $\mathrm{P}\left\{t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right\}$ is True.

SNePSLOG Syntax/Semantics Numerical Quantifier

If \mathcal{P} and \mathcal{Q} are sets of wffs, x_{1}, \ldots, x_{n} are variables, and i, j, and k are integers such that $0<=i<=j<=k$, then
nexists $(i, j, k)\left(x_{1}, \ldots, x_{n}\right)(\mathcal{P}: \mathcal{Q})$ is a wff.
The proposition that there are k sequences of ground terms, t_{1}, \ldots, t_{n}, that satisfy every $P \in \mathcal{P}$, and, of them, at least i and at most j also satisfy every $Q \in \mathcal{Q}$.

SNePSLOG Syntax/Semantics
 Abbreviations of Numerical Quantifier

```
nexists(_, j, _) ( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})(\mathcal{P}:\mathcal{Q}
is an abbreviation of nexists (0,j,\infty) ( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})(\mathcal{P}:\quad\mathcal{Q}
nexists(i, -, k)( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})(\mathcal{P}:\mathcal{Q}
is an abbreviation of nexists (i,k,k) ( }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})(\mathcal{P}:\quad\mathcal{Q}
```


SNePSLOG Syntax/Semantics Wffs are Terms

Every wff is a proposition-denoting term.
So, e.g., Believes(Tom, ~Penguin(Tweety))
is a wff, and a well-formed term.
For a more complete, more formal syntax, see
The SNePS 2.7.1 User's Manual,
http://www.cse.buffalo.edu/sneps/Manuals/manual271.pdf.

8.3 SNePSLOG Proof Theory Implemented Rules of Inference Reduction Inference

Reduction Inference ${ }_{1}$: If α is a set of terms and $\beta \subset \alpha$,

$$
\mathrm{P}\left(\mathrm{t}_{1}, \ldots, \alpha, \ldots \mathrm{t}_{n}\right) \vdash \mathrm{P}\left(\mathrm{t}_{1}, \ldots, \beta, \ldots \mathrm{t}_{n}\right)
$$

Reduction Inference e_{2} : If α is a set of terms, and $\mathrm{t} \in \alpha$,

$$
\mathrm{P}\left(\mathrm{t}_{1}, \ldots, \alpha, \ldots \mathrm{t}_{n}\right) \vdash \mathrm{P}\left(\mathrm{t}_{1}, \ldots, \mathrm{t}, \ldots \mathrm{t}_{n}\right)
$$

Example of Reduction Inference

```
: clearkb
Knowledge Base Cleared
: Member({Fido, Rover, Lassie}, {dog, pet}).
    wff1!: Member({Lassie,Rover,Fido},{pet,dog})
CPU time : 0.00
: Member ({Fido, Lassie}, dog)?
    wff2!: Member({Lassie,Fido},dog)
    CPU time : 0.00
```


SNePSLOG Proof Theory Implemented Rules of Inference for AndOr

AndOr $\mathrm{I}_{1}: \mathrm{P}_{1}, \ldots, \mathrm{P}_{n} \vdash \operatorname{andor}(n, n)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\}$
AndOr $\mathbf{I}_{2}:{ }^{\sim} \mathrm{P}_{1}, \ldots,{ }^{\sim} \mathrm{P}_{n} \vdash$ andor $(0,0)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\}$
AndOr \mathbf{E}_{1} : andor $(i, j)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\},{ }^{\sim} \mathrm{P}_{1}, \ldots,{ }^{\sim} \mathrm{P}_{n-i} \vdash \mathrm{P}_{j}$ for $n-i<j \leq n$

AndOr \mathbf{E}_{2} : andor $(i, j)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{j} \vdash{ }^{\sim} \mathrm{P}_{k}$, for $j<k \leq n$

SNePSLOG Proof Theory Implemented Rules of Inference for Thresh

Thresh \mathbf{E}_{1} : When at least i args are true, and at least $n-j-1$ args are false, conclude that any other arg is true.
$\operatorname{thresh}(i, j)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\}$,
$\mathrm{P}_{1}, \ldots, \mathrm{P}_{i}, \neg \mathrm{P}_{i+1}, \ldots, \neg \mathrm{P}_{i+n-j-1}$
$\vdash \mathrm{P}_{i+n-j}$
Thresh \mathbf{E}_{2} : When at least $i-1$ args are true, and at least $n-j$ args are false, conclude that any other arg is false.
$\operatorname{thresh}(i, j)\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\}$,
$\mathrm{P}_{1}, \ldots, \mathrm{P}_{i-1}, \neg \mathrm{P}_{i+1}, \ldots, \neg \mathrm{P}_{i+n-j}$
$\vdash \neg \mathrm{P}_{i}$
Page 449

SNePSLOG Proof Theory Implemented Rules of Inference for \&=>

$$
\begin{aligned}
& \&=> \mathrm{I}: \text { If } \mathcal{A}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{n} \vdash \mathrm{Q}_{i} \text { for } 1 \leq i \leq m \\
&\text { then } \left.\mathcal{A} \vdash\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \& \&=>\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m}\right\} \\
& \&=>\mathrm{E}:\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \&=>\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m}\right\}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{n} \vdash \mathrm{Q}_{i}, \\
& \text { for } 1 \leq i \leq m
\end{aligned}
$$

Page 450

SNePSLOG Proof Theory Implemented Rules of Inference for $\mathrm{v}=>$

$$
\begin{aligned}
& \mathrm{v}=>\mathrm{I}: \text { If } \mathcal{A} \vdash \mathrm{P} \mathrm{v}=>\mathrm{Q} \text { and } \mathcal{A} \vdash \mathrm{Q} \mathrm{v}=>\mathrm{R} \text { then } \mathcal{A} \vdash \mathrm{P} \mathrm{v}=>\mathrm{R} \\
& \mathrm{v}=>\mathrm{E}:\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \mathrm{v}=>\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m}\right\}, \mathrm{P}_{i}, \vdash \mathrm{Q}_{j}, \\
& \quad \text { for } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

Page 451

SNePSLOG Proof Theory Implemented Rules of Inference for $i=>$

$$
\begin{aligned}
& \mathrm{i}=>\mathrm{E}:\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n}\right\} \mathrm{i}=>\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{m}\right\}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{i} \vdash \mathrm{Q}_{j}, \\
& \quad \text { for } 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

Page 452

SNePSLOG Proof Theory Implemented Rules of Inference for all

Universal Elimination for universally quantified versions of andor, thresh, v=>, \&=>, and $i=>$.

UVBR \& Symmetric Relations

In any substitution $\left\{t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right\}$, if $x_{i} \neq x_{j}$, then $t_{i} \neq t_{j}$
: all(u,v,x,y)(childOf(\{u,v\}, \{x,y\}) => Siblings(\{u,v\})).
: childOf(\{Tom,Betty, John, Mary\}, \{Pat,Harry\}).
: Siblings(\{?x,?y\})?

```
wff14!: Siblings({Mary,John})
wff13!: Siblings({John,Betty})
wff12!: Siblings({Betty,Tom})
wff11!: Siblings({Mary,Betty})
wff10!: Siblings({John,Tom})
wff9!: Siblings({Mary,Tom})
```

Page 454

SNePSLOG Proof Theory
 Implemented Rules of Inference
 for nexists

nexists E_{1} :

$$
\begin{aligned}
& \text { nexists }(\mathrm{i}, \mathrm{j}, \mathrm{k})(\overline{\mathrm{x}})(\overline{\mathrm{P}}(\overline{\mathrm{x}}): \mathrm{Q}(\overline{\mathrm{x}})), \\
& \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{1}\right), \mathrm{Q}\left(\overline{\mathrm{t}}_{1}\right), \ldots, \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{\mathrm{j}}\right), \mathrm{Q}\left(\bar{t}_{j}\right), \\
& \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{\mathrm{j}+1}\right) \\
& \vdash \neg \mathrm{Q}\left(\overline{\mathrm{t}}_{\mathrm{j}+1}\right)
\end{aligned}
$$

nexists E_{2} :

$$
\begin{aligned}
& \text { nexists }(i, j, k)(\bar{x})(\overline{\mathrm{P}}(\overline{\mathrm{x}}): \mathrm{Q}(\overline{\mathrm{x}})), \\
& \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{1}\right), \neg \mathrm{Q}\left(\overline{\mathrm{t}}_{1}\right), \ldots, \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{\mathrm{k}-\mathrm{i}}\right), \neg \mathrm{Q}\left(\overline{\mathrm{t}}_{\mathrm{k}-\mathrm{i}}\right), \\
& \overline{\mathrm{P}}\left(\overline{\mathrm{t}}_{\mathrm{k}-i+1}\right) \\
& \vdash \mathrm{Q}\left(\overline{\mathrm{t}}_{\mathrm{k}-i+1}\right)
\end{aligned}
$$

8.4 Loading SNePSLOG

```
cl-user(2): :ld /projects/snwiz/bin/sneps
; Loading /projects/snwiz/bin/sneps.lisp
;;; Installing streamc patch, version 2.
Loading system SNePS...10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
SNePS-2.7 [PL:2 2010/09/04 02:35:18] loaded.
Type '(sneps)' or '(snepslog)' to get started.
cl-user(3): (snepslog)
    Welcome to SNePSLOG (A logic interface to SNePS)
Copyright (C) 1984--2010 by Research Foundation of
State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!
Type 'copyright' for detailed copyright information.
Type 'demo' for a list of example applications.
```

Page 456

Running SNePSLOG

```
cl-user(3): (snepslog)
    Welcome to SNePSLOG (A logic interface to SNePS)
Copyright (C) 1984--2010 by Research Foundation of
State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!
Type 'copyright' for detailed copyright information.
Type 'demo' for a list of example applications.
: clearkb
Knowledge Base Cleared
    CPU time : 0.00
: Member({Fido, Rover, Lassie}, {dog, pet}).
    wff1!: Member({Lassie,Rover,Fido},{pet,dog})
CPU time : 0.00
: Member ({Fido, Lassie}, dog)?
    wff2!: Member({Lassie,Fido},dog)
CPU time : 0.00
```

Page 457

Common SNePSLOG Commands

```
: clearkb
Knowledge Base Cleared
: all(x)(dog(x) => animal(x)). ; Assert into the KB
wff1!: all(x)(dog(x) => animal(x))
: dog(Fido). ; Assert into the KB
        wff2!: dog(Fido)
    : dog(Fido)?? ; Query assertion without inference
        wff2!: dog(Fido)
```


Common SNePSLOG Commands

```
: animal(Fido)?? ; Query assertion without inference
: animal(Fido)? ; Query assertion with inference
    wff3!: animal(Fido)
: dog(Rover)! ; Assert into the KB & do forward inference
    wff6!: animal(Rover)
    wff5!: dog(Rover)
: list-asserted-wffs ; Print all asserted wffs
    wff6!: animal(Rover)
    wff5!: dog(Rover)
    wff3!: animal(Fido)
    wff2!: dog(Fido)
    wff1!: all(x)(dog(x) => animal(x))
    Page 459
```


Tracing Inference

```
: trace inference
Tracing inference.
: animal(Fido)?
I wonder if wff3: animal(Fido)
holds within the BS defined by context default-defaultct
I wonder if wff5: dog(Fido)
holds within the BS defined by context default-defaultct
I know wff2!: dog({Rover,Fido})
Since wff1!: all(x)(dog(x) => animal(x))
and wff5!: dog(Fido)
I infer wff3: animal(Fido)
    wff3!: animal(Fido)
CPU time : 0.01
: untrace inference
Untracing inference.
    CPU time : 0.00
: animal(Rover)?
    wff6!: animal(Rover)
```


Recursive Rules
 Don't Cause Infinite Loops

```
: all(x,y)(parentOf(x,y) => ancestorOf(x,y)).
    wff1!: all(y,x)(parentOf(x,y) => ancestorOf(x,y))
: all(x,y,z)({ancestorOf(x,y), ancestorOf(y,z)} &=> ancestorOf(x,z)).
    wff2!: all(z,y,x)({ancestorOf(y,z),ancestorOf(x,y)} &=> {ancestorOf(x,z)})
: parentOf(Sam,Lou).
    wff3!: parentOf(Sam,Lou)
: parentOf(Lou,Stu).
    wff4!: parentOf(Lou,Stu)
: ancestorOf(Max,Stu).
    wff5!: ancestorOf(Max,Stu)
: ancestorOf(?x,Stu)?
    wff8!: ancestorOf(Sam,Stu)
    wff6!: ancestorOf(Lou,Stu)
    wff5!: ancestorOf(Max,Stu)
CPU time : 0.01
```

Page 461

Infinitely Growing Terms Get Cut Off

```
: all(x)(Duck(motherOf(x)) => Duck(x)).
    wff1!: all(x)(Duck(motherOf(x)) => Duck(x))
CPU time : 0.00
: Duck(Daffy)?
I wonder if wff2: Duck(Daffy)
holds within the BS defined by context default-defaultct
I wonder if wff5: Duck(motherOf(Daffy))
holds within the BS defined by context default-defaultct
I wonder if wff8: Duck(motherOf(motherOf(Daffy)))
holds within the BS defined by context default-defaultct
I wonder if wff32: Duck(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(Daffy))
holds within the BS defined by context default-defaultct
SNIP depth cutoff beyond *depthcutoffback* = 10
I wonder if wff35: Duck(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherl
holds within the BS defined by context default-defaultct
SNIP depth cutoff beyond *depthcutoffback* = 10
SNIP depth cutoff beyond *depthcutoffback* = 10
    CPU time : 0.05
```

Page 462

Eager-Beaver Search

```
: all(x)(Duck(motherOf(x)) => Duck(x)).
    wff1!: all(x)(Duck(motherOf(x)) => Duck(x))
: all(x)({walksLikeaDuck(x), talksLikeaDuck(x)} &=> Duck(x)).
    wff2!: all(x)({talksLikeaDuck(x),walksLikeaDuck(x)} &=> {Duck(x)})
: and{talksLikeaDuck(Daffy),walksLikeaDuck(Daffy)}.
    wff5!: walksLikeaDuck(Daffy) and talksLikeaDuck(Daffy)
: Duck(Daffy)? (1)
I wonder if wff6: Duck(Daffy)
I wonder if wff9: Duck(motherOf(Daffy))
I wonder if wff3: talksLikeaDuck(Daffy)
I wonder if wff4: walksLikeaDuck(Daffy)
It is the case that wff4: walksLikeaDuck(Daffy)
It is the case that wff3: talksLikeaDuck(Daffy)
Since wff2!: all(x)({talksLikeaDuck(x),walksLikeaDuck(x)} &=> {Duck(x)})
and wff3!: talksLikeaDuck(Daffy)
and wff4!: walksLikeaDuck(Daffy)
I infer wff6: Duck(Daffy)
    wff6!: Duck(Daffy)
CPU time : 0.02
```

Page 463

Contradictions The KB

```
: clearkb
Knowledge Base Cleared
: all(x)(nand{Mammal(x), Fish(x)}).
    wff1!: all(x)(nand{Fish(x),Mammal(x)})
: all(x)(LivesInWater(x) => Fish(x)).
    wff2!: all(x)(LivesInWater(x) => Fish(x))
: all(x)(BearsYoungAlive(x) => Mammal(x)).
    wff3!: all(x)(BearsYoungAlive(x) => Mammal(x))
: LivesInWater(whale).
    wff4!: LivesInWater(whale)
: BearsYoungAlive(whale).
    wff5!: BearsYoungAlive(whale)
```

Page 464

Contradictions

The Contradiction

```
: ?x(whale)?
    A contradiction was detected within context default-defaultct.
    The contradiction involves the newly derived proposition:
        wff6!: Mammal(whale)
    and the previously existing proposition:
        wff7!: ~Mammal(whale)
    You have the following options:
        1. [C]ontinue anyway, knowing that a contradiction is derivable;
        2. [R]e-start the exact same run in a different context which is
        not inconsistent;
    3. [D]rop the run altogether.
    (please type c, r or d)
=><= d
```

Page 465

SNePSLOG Demonstrations

```
: demo
Available demonstrations:
    1: Socrates - Is he mortal?
    2: UVBR - Demonstrating the Unique Variable Binding Rule
    3: The Jobs Puzzle - A solution with the Numerical Quantifif
    4: Pegasus - Why winged horses lead to contradictions
    5: Schubert's Steamroller
    6: Rule Introduction - Various examples
    7: Examples of various SNeRE constructs.
    8: Enter a demo filename
Your choice (q to quit):
```

Page 466

8.5 Reasoning Heuristics

Logically equivalent SNePSLOG wffs
are interpreted differently by the SNePS Reasoning System.

Page 467

$\mathrm{v}=>$-Elimination

Instead of
$P()$
$(P()$ or $Q()) \Rightarrow R()$
which would require or-I followed by $=>-\mathrm{E}$
Have

$$
\begin{gathered}
P() \\
\{P(), Q()\} \mathrm{v}=>\mathrm{R}() \\
\mathrm{R}()
\end{gathered}
$$

which requires only $\mathrm{v}=>-\mathrm{E}$
Page 468

Example of v=>-E

```
: P().
    wff1!: P()
: {P(),Q()} v=> R().
    wff4!: {Q(),P()} v=> {R()}
: trace inference
Tracing inference.
: R()?
I wonder if wff3: R()
holds within the BS defined by context default-defaultct
I wonder if wff2: Q()
holds within the BS defined by context default-defaultct
I know wff1!: P()
Since wff4!: {Q(),P()} v=> {R()}
and wff1!: P()
I infer wff3: R()
    wff3!: R()
```

Page 469

Bi-Directional Inference Backward Inference

```
: {p(), q()} v=> {r(), s()}.
    wff5!: {q(),p()} v=> {s(),r()}
: p().
    wff1!: p()
:r()?
I wonder if wff3: r()
holds within the BS defined by context default-defaultct
I wonder if wff2: q()
holds within the BS defined by context default-defaultct
I know wff1!: p()
Since wff5!: {q(),p()} v=> {s(),r()}
and wff1!: p()
I infer wff3: r()
    wff3!: r()
```

Page 470

Bi-Directional Inference Forward Inference

```
: {p(), q()} v=> {r(), s()}.
    wff5!: {q(),p()} v=> {s(),r()}
: p()!
Since wff5!: {q(),p()} v=> {s(),r()}
and wff1!: p()
I infer wff4: s()
Since wff5!: {q(),p()} v=> {s(),r()}
and wff1!: p()
I infer wff3: r()
    wff4!: s()
    wff3!: r()
    wff1!: p()
```

Page 471

Bi-Directional Inference Forward-in-Backward Inference

```
: {p(), q()} v=> {r(), s()}.
    wff5!: {q(),p()} v=> {s(),r()}
: r()?
I wonder if wff3: r()
holds within the BS defined by context default-defaultct
I wonder if wff2: q()
holds within the BS defined by context default-defaultct
I wonder if wff1: p()
holds within the BS defined by context default-defaultct
: p()!
Since wff5!: {q(),p()} v=> {s(),r()}
and wff1!: p()
I infer wff3: r()
    wff3!: r()
    wff1!: p()
```

Active connection graph cleared by clear-infer.
Page 472

Bi-Directional Inference Backward-in-Forward Inference

```
: p().
    wff1!: p()
: p() => (q() => r()).
    wff5!: p() => (q() => r())
:q()!
I know wff1!: p()
Since wff5!: p() => (q() => r())
and wff1!: p()
I infer wff4: q() => r()
I know wff2!: q()
Since wff4!: q() => r()
and wff2!: q()
I infer wff3: r()
    wff4!: q() => r()
    wff3!: r()
    wff2!: q()
```

Page 473

Modus Tollens Not Implemented

```
: all(x)(p(x) => q(x)).
    wff1!: all(x)(p(x) => q(x))
: p(a).
    wff2!: p(a)
: q(a)?
    wff3!: q(a)
: ~q(b).
    wff6!: ~q(b)
: p(b)?
:
```


Use Disjunctive Syllogism Instead

```
: all(x)(or{~ p(x), q(x)}).
    wff1!: all(x)(q(x) or ~}p(x)
: p(a).
    wff2!: p(a)
: q(a)?
    wff3!: q(a)
: ~q(b).
    wff7!: ~q(b)
: p(b)?
    wff9!: ~p(b)
```

Page 475

=> Is Not Material Implication

If \Rightarrow is material implication,

$$
\neg(P \Rightarrow Q) \Leftrightarrow(P \wedge \neg Q)
$$

and

$$
\neg(P \Rightarrow Q) \models P
$$

But ~ (p => q) just means that its not the case that p => q:
: ~ (p() => q()).
wff4!: ~(p() => q())
: p()?

Page 476

Use or

 Instead of Material Implication

 Instead of Material Implication}

```
: ~(~p() or q()).
    wff5!: nor{q(),~p()}
: p()?
    wff1!: p()
```

 Page 477

Ordering of Nested Rules Matters Optimal Order

```
: wifeOf(Caren,Stu).
: wifeOf(Ruth,Mike).
: brotherOf(Stu,Judi).
: brotherOf(Mike,Lou).
: parentOf(Judi,Ken).
: parentOf(Lou,Stu).
: all(w,x)(wifeOf(w,x)
    => all(y) (brotherOf (x,y)
        => all(z)(parentOf (y,z)
                            => auntOf(w,z)))).
: auntOf(Caren,Ken)?
I wonder if wff8: auntOf(Caren,Ken)
I wonder if p7: wifeOf(Caren,x)
I know wff1!: wifeOf(Caren,Stu)
I wonder if p8: brotherOf(Stu,y)
I know wff3!: brotherOf(Stu,Judi)
I wonder if wff5!: parentOf(Judi,Ken)
I know wff5!: parentOf(Judi,Ken)
    wff8!: auntOf(Caren,Ken)
CPU time : 0.03
```

Page 478

Ordering of Nested Rules Matters Bad Order

```
all(x,y)(brotherOf(x,y)
    => all(w)(wifeOf(w,x)
        => all(z)(parentOf(y,z)
                            => auntOf(w,z)))).
: auntOf(Caren,Ken)?
I wonder if wff8: auntOf(Caren,Ken)
I wonder if p1: brotherOf(x,y)
I know wff3!: brotherOf(Stu,Judi)
I know wff4!: brotherOf(Mike,Lou)
I wonder if wff12: wifeOf(Caren,Mike)
I wonder if wff1!: wifeOf(Caren,Stu)
I know wff1!: wifeOf(Caren,Stu)
I wonder if wff5!: parentOf(Judi,Ken)
I know wff5!: parentOf(Judi,Ken)
    wff8!: auntOf(Caren,Ken)
CPU time : 0.04
```

Page 479

Ordering of Nested Rules Matters Parallel

```
all(w,x,y,z)({wifeOf(w,x),brotherOf(x,y),parentOf(y,z)}
    &=> auntOf(w,z)).
: auntOf(Caren,Ken)?
I wonder if wff8: auntOf(Caren,Ken)
I wonder if p5: parentOf(y,Ken)
I wonder if p2: brotherOf(x,y)
I wonder if p6: wifeOf(Caren,x)
I know wff5!: parentOf(Judi,Ken)
I know wff3!: brotherOf(Stu,Judi)
I know wff4!: brotherOf(Mike,Lou)
I know wff1!: wifeOf(Caren,Stu)
    wff8!: auntOf(Caren,Ken)
CPU time : 0.03
```

Page 480

Lemmas (Expertise) Knowledge Base

: all(r)(transitive(r)

$$
\Rightarrow \text { all }(x, y, z)(\{r(x, y), r(y, z)\} \& r(x, z))) .
$$

: transitive(biggerThan).
: biggerThan(elephant,lion).
: biggerThan(lion,hyena).
: biggerThan(hyena,rat).

Lemmas: First Task

```
: biggerThan(?x,rat)?
I wonder if p6: biggerThan(x,rat)
I know wff5!: biggerThan(hyena,rat)
I wonder if wff2!: transitive(biggerThan)
I know wff2!: transitive(biggerThan)
I infer wff6: all(z,y,x)({biggerThan(x,y),biggerThan(y,z)} &=> {biggerThan(x,z)})
I wonder if p8: biggerThan(y,rat)
I wonder if p10: biggerThan(x,y)
I know wff5!: biggerThan(hyena,rat)
I wonder if p12: biggerThan(rat,z)
I know wff3!: biggerThan(elephant,lion)
I know wff4!: biggerThan(lion,hyena)
I infer wff7: biggerThan(lion,rat)
I infer wff8: biggerThan(elephant,rat)
wff8!: biggerThan(elephant,rat)
wff7!: biggerThan(lion,rat)
wff5!: biggerThan(hyena,rat)
CPU time : 0.09
```

Page 482

Second Task

```
: clear-infer
: biggerThan(truck,SUV).
: biggerThan(SUV,sedan).
: biggerThan(sedan,roadster).
: biggerThan(?x,roadster)?
I wonder if p14: biggerThan(x,roadster)
I know wff11!: biggerThan(sedan,roadster)
I wonder if p10: biggerThan(x,y)
I wonder if p16: biggerThan(y,roadster)
I know wff3!: biggerThan(elephant,lion)
I know wff4!: biggerThan(lion,hyena)
I know wff5!: biggerThan(hyena,rat)
I know wff7!: biggerThan(lion,rat)
I know wff8!: biggerThan(elephant,rat)
I know wff9!: biggerThan(truck,SUV)
I know wff10!: biggerThan(SUV,sedan)
I know wff11!: biggerThan(sedan,roadster)
I infer wff12: biggerThan(SUV,roadster)
I infer wff13: biggerThan(truck,roadster)
I wonder if p17: biggerThan(roadster,z)
wff13!: biggerThan(truck,roadster)
wff12!: biggerThan(SUV,roadster)
wff11!: biggerThan(sedan,roadster)
CPU time : 0.04
```

Page 483

Contexts

```
: demo /projects/shapiro/CSE563/Examples/SNePSLOG/facultyMeeting.snepslog
```

```
*.
: ;;; Example of Contexts
```

;;; from
;; J. P. Martins \& S. C. Shapiro, Reasoning in Multiple Belief Spaces IJCAI-83, 370-373.
: all(x)(meeting(x) => xor\{time(x,morning), time(x,afternoon)\}).
wff1!: all(x)(meeting(x) \Rightarrow (xor\{time (x, afternoon),time(x,morning) \}))
: all $(x, y)(\{\operatorname{meeting}(x), m e e t i n g(y)\} \&=>\operatorname{all}(t)(x o r\{t i m e(x, t), t i m e(y, t)\}))$.
wff2!: all (y,x)(\{meeting(y),meeting(x)\} \& $=>\{\operatorname{all}(t)(x o r\{t i m e(y, t), t i m e(x, t)\})\})$
: meeting(facultyMeeting).
wff3!: meeting(facultyMeeting)
: meeting(seminar).
wff4!: meeting(seminar)
: meeting(tennisGame).
wff5!: meeting(tennisGame)
: time(seminar,morning).
wff6!: time(seminar,morning)
: time(tennisGame, afternoon).
wff7!: time(tennisGame, afternoon)
: set-context stuSchedule \{wff1,wff2,wff3,wff4,wff6\}
((assertions (wff6 wff4 wff3 wff2 wffi)) (named (stuSchedule)) (kinconsistent nil))
: set-context tonySchedule \{wff1,wff2,wff3,wff5,wff7\}
((assertions (wff7 wff5 wff3 wff2 wff1)) (named (tonySchedule)) (kinconsistent nil))
: set-context patSchedule \{wff1,wff2,wff3,wff4,wff5,wff6,wff7\}
((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wff1)) (named (patSchedule default-defaultct)) (kinconsistent nil))

Page 484

Stu's Schedule

```
: set-default-context stuSchedule
((assertions (wff6 wff4 wff3 wff2 wff1)) (named (stuSchedule))
    (kinconsistent nil))
: list-asserted-wffs
    wff6!: time(seminar,morning)
    wff4!: meeting(seminar)
    wff3!: meeting(facultyMeeting)
    wff2!: all(y,x)({meeting(y),meeting(x)}
                            &=> {all(t)(xor{time(y,t),time(x,t)})})
    wff1!: all(x)(meeting(x)
        => (xor{time(x, afternoon),time(x,morning)}))
: time(facultyMeeting,?t)?
    wff10!: time(facultyMeeting,afternoon)
    wff9!: ~ time(facultyMeeting,morning)
```

Page 485

Tony's Schedule

```
: set-default-context tonySchedule
((assertions (wff7 wff5 wff3 wff2 wff1)) (named (tonySchedule))
    (kinconsistent nil))
: list-asserted-wffs
    wff12!: xor{time(facultyMeeting,afternoon),time(facultyMeeting,morning)}
    wff7!: time(tennisGame,afternoon)
    wff5!: meeting(tennisGame)
    wff3!: meeting(facultyMeeting)
    wff2!: all(y,x)({meeting(y),meeting(x)}
                            &=> {all(t)(xor{time(y,t),time(x,t)})})
    wff1!: all(x)(meeting(x)
                            => (xor{time(x,afternoon),time(x,morning)}))
: time(facultyMeeting,?t)?
    wff11!: ~
    wff8!: time(facultyMeeting,morning)
```

Page 486

Pat's Schedule

```
: set-default-context patSchedule
((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wff1))
    (named (patSchedule default-defaultct)) (kinconsistent nil))
: time(facultyMeeting,?t)?
    A contradiction was detected within context patSchedule.
    The contradiction involves the newly derived proposition:
        wff8!: time(facultyMeeting,morning)
    and the previously existing proposition:
        wff9!: ~
    You have the following options:
    1. [C]ontinue anyway, knowing that a contradiction is derivable;
    2. [R]e-start the exact same run in a different context which is
        not inconsistent;
    3. [D]rop the run altogether.
    (please type c, r or d)
=><= d
```

Page 487

Resulting Contexts

: describe-context stuSchedule
((assertions (wff6 wff4 wff3 wff2 wff1)) (named (stuSchedule)) (kinconsistent nil))
: describe-context tonySchedule
((assertions (wff7 wff5 wff3 wff2 wffi)) (named (tonySchedule)) (kinconsistent nil))
: describe-context patSchedule
((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wffi))
(named (patSchedule default-defaultct)) (kinconsistent t))

Page 488

8.6 SNePS as a Network: Semantic Networks

Some psychological evidence.
More efficient search than logical inference.
Unclear semantics.
Page 489

SNePS as a Network

: clearkb
: Canary(Tweety).
: Penguin(Opus).
: Ako(\{Canary, Penguin\}, Bird).
: Ako(Bird, Animal).
: show

Page 490

Defining Case Frames

```
: set-mode-3
Net reset
In SNePSLOG Mode 3.
Use define-frame <pred> <list-of-arc-labels>.
: define-frame Canary(class member) "[member] is a [class]"
Canary(x1) will be represented by {<class, Canary>, <member, x1>}
: define-frame Penguin(class member) "[member] is a [class]"
Penguin(x1) will be represented by {<class, Penguin>, <member, x1>}
: define-frame Ako(nil subclass superclass) "Every [subclass] is a [superclas
Ako(x1, x2) will be represented by {<subclass, x1>, <superclass, x2>}
```

Page 491

Entering the KB

: Canary (Tweety). wff1!: Canary(Tweety)
: Penguin(Opus). wff2!: Penguin(Opus)
: Ako(\{Canary, Penguin\}, Bird). wff3!: Ako(\{Penguin, Canary\},Bird)
: Ako(Bird, Animal). wff4!: Ako(Bird,Animal)

Page 492

The Knowledge Base

```
: list-terms
    wff1!: Canary(Tweety)
    wff2!: Penguin(Opus)
    wff3!: Ako({Penguin,Canary},Bird)
    wff4!: Ako(Bird,Animal)
    : describe-terms
    Tweety is a Canary.
    Opus is a Penguin.
    Every Penguin and Canary is a Bird.
    Every Bird is a Animal.
```

 Page 493

The Network

: show

Page 494

Path-Based Inference

: define-path class (compose class
(kstar (compose subclass- ! superclass))
class implied by the path (compose class (kstar
(compose subclass- ! superclass)))
class- implied by the path (compose (kstar (compose superclass! subclass))
class-)
Page 495

Using Path-Based Inference

```
: list-asserted-wffs
wff4!: Ako(Bird,Animal)
wff3!: Ako({Penguin,Canary},Bird)
wff2!: Penguin(Opus)
wff1!: Canary(Tweety)
: define-frame Animal(class member) "[member] is a [class]"
Animal(x1) will be represented by {<class, Animal>, <member, x1>}
: trace inference
Tracing inference.
: Animal(Tweety)?
I wonder if wff5: Animal(Tweety)
holds within the BS defined by context default-defaultct
I know wff1!: Canary(Tweety)
    wff5!: Animal(Tweety)
```

Page 496

Rules About Functions in Mode 3

```
: set-mode-3
: define-frame WestOf(relation domain range)
: define-frame isAbove(relation domain range)
: define-frame Likes(relation liker likee)
: define-frame r(relation domain range)
: define-frame anti-symmetric(nil antisymm)
: all(r)(anti-symmetric(r) => all(x,y) (r(x,y) => ~r (y,x))).
wff1!: all(r)(anti-symmetric(r) => (all(y,x)(r(x,y) => (~rr(y,x)))))
: anti-symmetric({WestOf, isAbove, Likes}).
: WestOf(Buffalo,Rochester).
: isAbove(penthouse37,lobby37).
: Likes(Betty,Tom).
: WestOf(?x,?y)?
    wff9!: ~WestOf(Rochester,Buffalo)
    wff3!: WestOf(Buffalo,Rochester)
: isAbove(?x,?y)?
    wff13!: ~ isAbove(lobby37,penthouse37)
    wff4!: isAbove(penthouse37,lobby37)
: Likes(?x,?y)?
wff5!: Likes(Betty,Tom)
```

Page 497

Procedural Attachment in SNePS

```
cl-user(3): (snepslog)
: load /projects/snwiz/Libraries/expressions.snepslog
: define-frame Value(nil obj val) "the value of [obj] is [val]"
: define-frame radius(nil radiusof) "the radius of [radiusof]"
: define-frame volume(nil volumeof) "the volume of [volumeof]"
: all(x,r,p)({Value(radius(x), r), Value(pi,p)}
    &=> all(v)(is(v,/(*(4.0,*(p,*(r,*(r,r)))),3.0))
                            => Value(volume(x),v))).
```

: Value(pi,3.14159).
: Value(radius(sphere1), 9.0).
: Value(volume(sphere1), ?x)?
wff13!: Value(volume(sphere1),3053.6257)

Page 498

8.7 SNeRE: The SNePS Rational Engine Motivation

Coming to believe something
is different from acting.

Prolog Searches In Order The KB

```
| ?- [user].
% consulting user...
| q(X) :- q1(X), q2(X).
| q1(X) :- p(X), s(X).
| q2(X) :- r(X), s(X).
| s(X) :- t(X).
| p(a).
| r(a).
| t(a).
|
% consulted user in module user, 0 msec 1592 bytes
yes
```

Page 500

Prolog Searches In Order The Run

```
| ?- trace.
% The debugger will first creep -- showing everything (trace)
yes
% trace
| ?- q(a)
    1 1 Call: q(a) ?
    2 2 Call: q1(a) ?
    3 3 Call: p(a) ?
    3 3 Exit: p(a) ?
    4 Call: s(a) ?
    5 4 Call: t(a) ?
    5 4 Exit: t(a) ?
    4 Exit: s(a) ?
    2 2 Exit: q1(a) ?
    6 2 Call: q2(a) ?
    7 3 Call: r(a) ?
    7 3 Exit: r(a) ?
    8 Call: s(a) ?
    9 4 Call: t(a) ?
    9 4 Exit: t(a) ?
    8 Exit: s(a) ?
    6 2 Exit: q2(a) ?
    1 1 Exit: q(a) ?
yes
```

Page 501

SNePS Avoids Extra Search The KB

: clearkb
Knowledge Base Cleared
: all(x)(\{q1(x), q2(x)\} \&=> q(x)).
: all(x)(\{p(x), s(x)\} \&=> q1(x)).
: all $(x)\left(\{r(x), s(x)\} \&=>q^{2}(x)\right)$.
: all(x)(t(x) $=>$ s(x)).
: p(a).
: r(a).
: t(a).
Page 502

SNePS Avoids Extra Search The Search

```
: trace inference
Tracing inference.
:q(a)?
I wonder if wff8: q(a)
I wonder if wff10: q2(a)
I wonder if wff12: q1(a)
I wonder if wff14: s(a)
I wonder if wff6!: r(a)
I wonder if wff14: s(a)
I wonder if wff5!: p(a)
I know wff6!: r(a)
I know wff5!: p(a)
I wonder if wff7!: t(a)
I know wff7!: t(a)
```

Page 503

SNePS Avoids Extra Search The Answers

```
Since wff4!: all(x)(t(x) => s(x))
and wff7!: t(a)
I infer wff14: s(a)
Since wff3!: all(x)({s(x),r(x)} &=> {q2(x)})
and wff14!: s(a)
and wff6!: r(a)
I infer wff10: q2(a)
Since wff2!: all(x)({s(x),p(x)} &=> {q1(x)})
and wff14!: s(a)
and wff5!: p(a)
I infer wff12: q1(a)
Since wff1!: all(x)({q2(x),q1(x)} &=> {q(x)})
and wff10!: q2(a)
and wff12!: q1(a)
I infer wff8: q(a)
    wff8!: q(a)
```

Page 504

Primitive Acts

```
: set-mode-3
Net reset
In SNePSLOG Mode 3
Use define-frame <pred> <list-of-arc-labels>.
: define-frame say(action line)
say(x1) will be represented by {<action, say>, <line, x1>}
--> (define-primaction sayaction ((line))
    (format sneps:outunit "~A" line))
sayaction
--> (attach-primaction say sayaction)
t
--> ~^
: perform say("Hello world")
Hello world
```

Page 505

Effects: The KB

```
: set-mode-3
Net reset
In SNePSLOG Mode 3.
Use define-frame <pred> <list-of-arc-labels>.
Effect(x1, x2) will be represented by {<act, x1>, <effect, x2>}
: define-frame say (action line)
: define-frame said (act agent object)
: define-frame Utterance (class member)
: ^^
--> (define-primaction sayaction ((line))
    (format sneps:outunit "~A" line))
sayaction
-->
(attach-primaction say sayaction)
t
--> "-
: Utterance("Hello world").
: all(x)(Utterance(x) => Effect(say(x), said(I,x))).
```

Page 506

Effects: The Run

```
: list-asserted-wffs
    wff2!: all(x)(Utterance(x) => Effect(say(x),said(I,x)))
    wff1!: Utterance(Hello world)
: perform say("Hello world")
Hello world
: list-asserted-wffs
    wff5!: Effect(say(Hello world),said(I,Hello world))
    wff4!: said(I,Hello world)
    wff2!: all(x)(Utterance(x) => Effect(say(x),said(I,x)))
    wff1!: Utterance(Hello world)
```

Page 507

Defined Acts

```
: set-mode-3
ActPlan(x1, x2) will be represented by {<act, x1>, <plan, x2>}
: define-frame say (action part1 part2)
: define-frame greet (action object)
: define-frame Person (class member)
--> (define-primaction sayaction ((part1) (part2))
    (format sneps:outunit "~A ~A~%"
        part1 part2))
sayaction
-->
(attach-primaction say sayaction)
t
--> ^^
: all(x)(Person(x) => ActPlan(greet(x), say(Hello,x))).
: Person(Mike).
: perform greet(Mike).
Hello Mike
```

Page 508

Other Propositions about Acts

```
GoalPlan(p, a)
Precondition(a, p)
```


Control Acts

```
achieve(p)
do-all({a1, ..., an})
do-one({a1, ..., an})
snif({if(p1,a1), ..., if(pn,an)[, else(da)]})
sniterate({if(p1,a1), ..., if(pn,an)[, else(da)]})
snsequence(a1, a2)
withall(x, p(x), a(x) [, da])
withsome(x, p(x), a(x) [, da])
```

Must use attach-primaction on whichever you want to use.

Page 510

Policies

```
ifdo(p, a)
whendo( }p,a
wheneverdo(p,a)
```


Mental Acts

```
believe(p)
disbelieve(p)
adopt(p)
unadopt(p)
```

Page 512

The Execution Cycle

```
perform(act):
    pre := {p | Precondition(act,p)};
    notyet := pre - {p | p f pre & \vdash p};
    if notyet }\not=\mathrm{ nil
        then perform(snsequence(do-all({a| p 隹 notyet
                                    & a = achieve(p)}),
        act))
        else {effects := {p | Effect(act,p)};
        if act is primitive
            then apply(primitive-function(act), objects(act));
            else perform(do-one({p | ActPlan(act,p)}))
        believe(effects)}
```

Page 513

Examples

SNePSLOG demo \#7
/projects/robot/Karel/ElevatorWorld/elevator.snepslog
/projects/robot/Karel/DeliveryWorld/DeliveryAgent.snepslog
/projects/robot/Karel/WumpusWorld/WWAgent.snepslog
/projects/robot/Fevahr/Ascii/afevahr.snepslog
/projects/robot/Fevahr/Java/jfevahr.snepslog
/projects/robot/Greenfoot/ElevatorWorld/sneps/elevator.snepslog /projects/robot/Greenfoot/WumpusWorld/sneps/WWAgent.snepslog

Page 514

9 Belief Revision/Truth Maintenance

9.1 Motivation 516
9.2 Relevance Logic Motivation 537
9.3 Relevance Logic Syntax \& Semantics 540
9.4 Relevance Logic Proof Theory 542

9.1 Motivation

Floors Above and Below Ground

```
: xor{OnFloor(1),OnFloor(2),OnFloor(3),OnFloor(4)}.
: {OnFloor(1), OnFloor(2)} => {Location(belowGround)}.
: {OnFloor(3), OnFloor(4)} => {Location(aboveGround)}.
: perform believe(OnFloor(1))
: list-asserted-wffs
wff13!: ~ OnFloor(2)
wff12!: ~ OnFloor(3)
wff11!: ~ OnFloor(4)
wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}
wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}
wff6!: Location(belowGround)
wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}
wff1!: OnFloor(1)
```

Page 516

Motivation

Disbelieving an Hypothesis

: perform disbelieve(OnFloor(1))
: list-asserted-wffs
wff9!: \{OnFloor(4),OnFloor(3)\} v=> \{Location(aboveGround)\} wff7!: \{OnFloor(2),OnFloor(1)\} v=> \{Location(belowGround)\} wff5!: xor\{OnFloor(4),OnFloor (3), OnFloor (2), OnFloor (1) \}

Note the absence of Location(belowGround)

Page 517

Moral

If retain derived beliefs (lemmas), need a way to delete them when their foundations are removed.

Page 518

When Needed 1

If the KB contains beliefs about the (some) world, and the world changes, and the KB does not have a model of time. I.e. the beliefs in the KB are of the form, I believe this is true now.

What's needed

Links from hypotheses to propositions derived from them.

=> vs. when(ever)do: Assertions

: Floor (\{1, 2, 3, 4\}).
: xor\{OnFloor(1), OnFloor (2), OnFloor (3), OnFloor (4)\}.
: \{OnFloor(1), OnFloor(2)\} => \{Location(belowGround)\}.
: \{OnFloor(3), OnFloor(4)\} => \{Location(aboveGround)\}.
: perform withall(f, Floor(f),
adopt (wheneverdo(OnFloor(f), believe(HaveBeenOnFloor(f)))),
noop()).
: perform believe(OnFloor(1))

Page 521

=> vs. when(ever)do: The KB

```
: list-asserted-wffs
    wff37!: ~ OnFloor(2)
    wff36!: ~ OnFloor(3)
    wff35!: ~ OnFloor(4)
    wff31!: wheneverdo(OnFloor(4),believe(HaveBeenOnFloor(4)))
    wff27!: wheneverdo(OnFloor(3),believe(HaveBeenOnFloor(3)))
    wff23!: wheneverdo(OnFloor(2),believe(HaveBeenOnFloor(2)))
    wff19!: wheneverdo(OnFloor(1),believe(HaveBeenOnFloor(1)))
    wff17!: HaveBeenOnFloor(1)
    wff16!: Floor(1)
    wff15!: Floor(2)
    wff14!: Floor(3)
    wff13!: Floor(4)
    wff10!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}
    wff8!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}
    wff7!: Location(belowGround)
    wff6!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}
    wff2!: OnFloor(1)
    wff1!: Floor({4,3,2,1})
```

Page 522

=> vs. when(ever)do: Move Floors

```
: perform believe(OnFloor(4))
: list-asserted-wffs
    wff39!: ~OnFloor(1)
wff37!: ~OnFloor(2)
wff36!: ~OnFloor(3)
wff31!: wheneverdo(OnFloor(4),believe(HaveBeenOnFloor(4)))
wff29!: HaveBeenOnFloor(4)
wff27!: wheneverdo(OnFloor(3),believe(HaveBeenOnFloor(3)))
wff23!: wheneverdo(OnFloor(2),believe(HaveBeenOnFloor(2)))
wff19!: wheneverdo(OnFloor(1),believe(HaveBeenOnFloor(1)))
wff17!: HaveBeenOnFloor(1)
wff16!: Floor(1)
wff15!: Floor(2)
wff14!: Floor(3)
wff13!: Floor(4)
wff10!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}
wff9!: Location(aboveGround)
wff8!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}
wff6!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}
wff5!: OnFloor(4)
wff1!: Floor({4,3,2,1})
```

HaveBeenOnFloor(1) remains; OnFloor(1) doesn't.

Page 523

Moral

The consequents of
=>, v=>, \&=>, or, nand, xor, iff, andor, thresh, and nexists are derived and retain a connection to their underlying hypotheses.

Whatever is believe'd is a hypothesis.
Use =>, v=>, \&=>, or, nand, xor, iff, andor, thresh, and nexists for logical implications.

Use whendo ($p 1$, believe ($p 2$)) or wheneverdo ($p 1$, believe ($p 2$)) for decisions.

Page 524

Contingent Plans

: xor\{Location(BellHall), Location(home)\}.
: Location(BellHall) => ActPlan(getMail, go(MailRoom)).
: Location(home) => ActPlan(getMail, go(mailBox)).
: perform believe(Location(BellHall))
: ActPlan(getMail, ?how)? wff5!: ActPlan(getMail,go(MailRoom))
: perform believe(Location(home))
: ActPlan(getMail, ?how)?
wff8!: ActPlan(getMail,go(mailBox))

Page 525

Moral

Using this design for contingent plans, along with retention of lemmas, depends on belief revision.

Page 526

Motivation

Sea Creatures

: all(x)(andor (0,1)\{Ako(x, mammal), Ako(x, fish)\}).
: all(x)(LiveIn(x, water) => Ako(x, fish)).
: all(x)(BearYoung(x, live) => Ako(x, mammal)).
: LiveIn(whales, water).
: LiveIn(sharks, water).
: BearYoung(whales, live).
: BearYoung(dogs, live).
Page 527

Motivation

Are Whales Fish or Mammals?

: Ako(whales, ?x)?

A contradiction was detected within context default-defaultc The contradiction involves the newly derived proposition: wff8!: Ako(whales,mammal)
and the previously existing proposition:
wff9!: ~Ako(whales, mammal)

Page 528

SNeBR Options

You have the following options:

1. [C]ontinue anyway, knowing that a contradiction is derivab
2. [R]e-start the exact same run in a different context which not inconsistent;
3. [D]rop the run altogether.
(please type c, r or d)
=><= r

In order to make the context consistent you must delete at leas one hypothesis from each of the following sets of hypotheses: (wff6 wff4 wff3 wff2 wff1)

Page 529

Possible Culprits

In order to make the context consistent you must delete
at least one hypothesis from the set listed below.
An inconsistent set of hypotheses:

```
    1 : wff6!: BearYoung(whales,live)
    (2 supported propositions: (wff8 wff6) )
    2 : wff4!: LiveIn(whales,water)
    (3 supported propositions: (wff10 wff9 wff4) )
    3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))
    (2 supported propositions: (wff8 wff3) )
    4 : wff2!: all(x)(LiveIn(x,water) => Ako(x,fish))
    (3 supported propositions: (wff10 wff9 wff2) )
5 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
    (2 supported propositions: (wff9 wff1) )
```

Page 530

Choosing the Culprit

Enter the list number of a hypothesis to examine or [d] to discard some hypothesis from this list,
[a] to see ALL the hypotheses in the full context,
[r] to see what you have already removed,
[q] to quit revising this set, or
[i] for instructions
(please type a number $O R \mathrm{~d}, \mathrm{a}, \mathrm{r}, \mathrm{q}$ or i)
=><= d

Enter the list number of a hypothesis to discard,
[c] to cancel this discard, or [q] to quit revising this set.
=><= 4

Page 531

Remaining Possible Culprits

```
The consistent set of hypotheses:
    1 : wff6!: BearYoung(whales,live)
            (2 supported propositions: (wff8 wff6) )
    2 : wff4!: LiveIn(whales,water)
            (1 supported proposition: (wff4) )
    3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))
            (2 supported propositions: (wff8 wff3) )
    4 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
            (1 supported proposition: (wff1) )
    Enter the list number of a hypothesis to examine or
    [d] to discard some hypothesis from this list,
    [a] to see ALL the hypotheses in the full context,
    [r] to see what you have already removed,
    [q] to quit revising this set, or
    [i] for instructions
    (please type a number OR d, a, r, q or i)
=><= q
```

Page 532

Other Hypotheses

```
    The following (not known to be inconsistent) set of
    hypotheses was also part of the context where the
    contradiction was derived:
    (wff7 wff5)
    Do you want to inspect or discard some of them?
=><= no
    Do you want to add a new hypothesis? no
    wff11!: ~Ako(whales,fish)
    wff8!: Ako(whales,mammal)
CPU time : 0.03
```

Page 533

Resultant KB

```
: list-asserted-wffs
    wff12!: ~ (all(x)(LiveIn(x,water) => Ako(x,fish)))
    wff11!: ~Ako(whales,fish)
    wff8!: Ako(whales,mammal)
    wff7!: BearYoung(dogs,live)
    wff6!: BearYoung(whales,live)
    wff5!: LiveIn(shakes,water)
    wff4!: LiveIn(whales,water)
    wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))
    wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
```


Moral
 When Needed 2

If accepting information from multiple sources, or just one possibly inconsistent source, need a way to recognize contradictions, and to find the culprit, and to delete it, and its implications.

What's Needed

Links between derived propositions and hypotheses they were derived from.

Page 536

9.2 Relevance Logic (R)
 Motivation

Paradoxes of Implication 1 Anything Implies a Truth

1	A	Hyp
2	B	Hyp
3	A	Reit, 1
4	$B \Rightarrow A$	$\Rightarrow \mathrm{I}, 2-3$
5	$A \Rightarrow(B \Rightarrow A)$	$\Rightarrow \mathrm{I}, 1-4$

But it seems that B had nothing to do with deriving A.
Page 537

Motivation of \mathbf{R}
 Paradoxes of Implication 2
 A Contradiction Implies Anything

1	$A \wedge \neg A$	Hyp
2	$\neg B$	Hyp
3	$A \wedge \neg A$	Reit, 1
4	A	$\wedge \mathrm{E}, 3$
5	$\neg A$	$\wedge \mathrm{E}, 3$
6	B	$\neg \mathrm{I}, 2-5$
7	$(A \wedge \neg A) \Rightarrow B$	$\Rightarrow \mathrm{I}, 1-6$

But it seems that $\neg B$ had nothing to do with deriving the contradiction.

What's Needed

A way to determine when a hypothesis is really used to derive another wff.

When a hypothesis is relevant to a conclusion.

9.3 R
 Relevance Logic
 The Logic of Relevant Implication

Syntax: The same as Standard FOL.
Intensional Semantics: The same as Standard FOL.
Extensional Semantics: The same as Standard FOL for terms.
For wffs: a four-valued logic, using True, False, Neither, and Both.

Page 540

KB Interpretations of R's 4 Truth Values

True true
False false
Neither unknown
Both contradictory, "I've been told both."
or a "true contradiction"
such as Russell's set both is and isn't a member of itself.

Page 541

9.4 R Proof Theory Structural Rules of Inference

where n is a new integer.
Page 542

R Rules for \Rightarrow

i.	$A,\{n\}$	Hyp	i.	A, α	
j.	B, α, s.t. $n \in \alpha$		j.	$(A \Rightarrow B)$,	
k	$(A \Rightarrow B), \alpha-\{n\}$	$\Rightarrow I, i-j$	k.	$B, \alpha \cup \beta$	$\Rightarrow E, i, j$

Page 543

How the Paradoxes of Implication are Blocked 1

Can't then apply $\Rightarrow I$

Page 544

R Rules for \wedge

$$
\begin{array}{r|ll}
i_{1} \cdot & A_{1}, \alpha \\
\vdots \\
i_{n} . & A_{n}, \alpha \\
j . & A_{1} \wedge \cdots \wedge A_{n}, \alpha & \wedge I, i_{1}, \ldots, i_{n} \\
& i . & A_{1} \wedge \cdots \wedge A_{n}, \alpha \\
\vdots \\
j . & A_{k}, \alpha & \wedge E, i
\end{array}
$$

Page 545

Why $\wedge I$ Requires the Same OS
 If Not

1	$A,\{1\}$	Hyp, 2-5
2	$B,\{2\}$	Hyp, 3-5
3	$A,\{1\}$	Reit, 1
4	$(A \wedge B),\{1,2\}$	$\wedge \mathrm{I}$?
5	$A,\{1,2\}$	$\wedge \mathrm{E}, 4$
6	$(B \Rightarrow A),\{1\}$	$\Rightarrow \mathrm{I}, 2-5$
7	$(A \Rightarrow(B \Rightarrow A)),\{ \}$	$\Rightarrow \mathrm{I}, 1-6$

Reconstruct paradox of implication.
Note: Empty os means a theorem.
Page 546

Extended Rule for $\wedge I$

$$
\begin{array}{r|l}
i_{1} \cdot & A_{1}, \alpha \\
& \vdots \\
i_{n} \cdot & A_{n}, \eta \\
j \cdot & A_{1} \wedge \cdots \wedge A_{n},(\alpha \cup \cdots \cup \eta)^{*} \wedge I, i_{1}, \ldots, i_{n}
\end{array}
$$

Can't apply $\wedge E$ to an extended wff.

Page 547

R Rules for \neg

$$
\begin{array}{l|ll}
i . & \neg \neg A, \alpha & \\
j . & A, \alpha & \neg E, i
\end{array}
$$

Page 548

Extended R Rule for $\neg I$

i.	$A,\{n\}$	Hyp
j. $j+1$. $j+2$.	$\begin{aligned} & B, \alpha \\ & \neg B, \beta \\ & \neg A,((\alpha \cup \beta)-\{n\})^{*} \text { s.t. } n \in(\alpha \cup \beta) \end{aligned}$	$\neg I, i-(j+1)$
i.	$\neg A,\{n\}$	Hyp
j.	B, α	
$j+1$.	$\neg B, \beta$	
$j+2$	$A,((\alpha \cup \beta)-\{n\})^{*}$ s.t. $n \in(\alpha \cup \beta)$	$\neg I, i-(j+1)$
	Page 549	

How the Paradoxes of Implication are Blocked 2

1.	$(A \wedge \neg A),\{1\}$	$H y p$
2.	$\neg B,\{2\}$	$H y p$
3.	$(A \wedge \neg A),\{1\}$	Reit, 1
4.	$A,\{1\}$	$\wedge E, 3$
5.	$\neg A,\{1\}$	$\wedge E, 3$

Can't then apply $\neg I$
R is a paraconsistent logic:
a contradiction does not imply anything whatsoever.
Page 550

R Rule for $\vee I$

$$
\begin{array}{l|l}
i . & A_{i}, \alpha \\
j . & A_{1} \vee \cdots \vee A_{i} \vee \cdots \vee A_{n}, \alpha \quad \vee I, i
\end{array}
$$

Page 551

R Rule for $\vee E$

$$
\begin{array}{r|l}
i_{1} \cdot & A_{1} \vee \cdots \vee A_{n}, \alpha \\
i_{2} \cdot & \\
A_{1} \Rightarrow B, \beta \\
\vdots \\
i_{3} \cdot & A_{n} \Rightarrow B, \beta \\
j \cdot & B, \alpha \cup \beta
\end{array}
$$

Page 552

Irrelevance of Disjunctive Syllogism

1	$((A \vee B) \wedge \neg A),\{1\}$	Hyp
2	$\neg A,\{1\}$	$\wedge \mathrm{E}, 1$
3	$(A \vee B),\{1\}$	$\wedge \mathrm{E}, 1$
4	$A,\{2\}$	Hyp
5	$\neg B,\{3\}$	Hyp
6	$A,\{2\}$	Reit, 4
7	$\neg A,\{1\}$	Reit, 2
8	B	$\neg \mathrm{I}, 5-7$
9	$A \Rightarrow B$	$\Rightarrow \mathrm{I}, 4-8$
10	$B,\{4\}$	Hyp
11	$B,\{4\}$	Rep, 10
12	$B \Rightarrow B,\{ \}$	$\Rightarrow \mathrm{I}, 10-11$
13	B	$\vee \mathrm{E}, 3,9,12$

So \vee is just truth-functional.

Page 553

R Rules for Intensional OR (\oplus)

$$
\begin{array}{r|l}
\text { i. } & (\neg A \Rightarrow B), \alpha \\
& \vdots \\
j . & (\neg B \Rightarrow A), \alpha \\
j+1 . & (A \oplus B), \alpha \quad \oplus I, i, j
\end{array}
$$

$$
\begin{array}{r|rr|l}
\text { i. } & (A \oplus B), \alpha & i . & (A \oplus B), \alpha \\
j . & \neg & & \vdots \\
j+1 . & B, \alpha \cup \beta & \oplus E & j . \\
\vdots B, \beta & \\
j+1 . & A, \alpha \cup \beta & \oplus E
\end{array}
$$

Page 554

R Rules for \Leftrightarrow

$$
\begin{aligned}
& \begin{array}{r|r}
\text { i. } & (A \Rightarrow B), \alpha \\
& \vdots \\
j . & (B \Rightarrow A), \alpha \\
j+1 . & (A \Leftrightarrow B), \alpha \Leftrightarrow I, i, j
\end{array}
\end{aligned}
$$

Page 555

R Rules for \forall

$$
\begin{aligned}
& \begin{array}{r|ll}
\text { i. } & A(a),\{n\} & H y p \\
\cline { 2 - 3 } j . & \vdots & \\
j+1 . & B(a), \alpha \text { s.t. } n \in \alpha & \\
& \forall x(A(x) \Rightarrow B(x)), \alpha-\{n\} & \forall I, i-j
\end{array} \\
& \begin{array}{r|ll}
\text { i. } & A(t), \alpha \\
& \vdots \\
j . & \forall x(A(x) \Rightarrow B(x)), \beta & \\
j+1 . & B(t), \alpha \cup \beta \quad \forall E, i, j
\end{array}
\end{aligned}
$$

Where a is an arbitrary individual not otherwise used in the proof, and t is free for x in $B(x)$.
Note \forall only governs \Rightarrow.
Page 556

R Rules for \exists

Where $A(x)$ is the result of replacing some or all occurrences of t in $A(t)$ by x, t is free for x in $A(x)$;
a is an indefinite individual not otherwise used in the proof, $A(a / x)$ is the result of replacing all occurrences of x in $A(x)$ by a, and there is no occurrence of a in B.

Page 557

Why the Subproof Contours?

1. To keep track of assumptions for each derived wff. But this is accomplished by os.
2. To differentiate hypotheses from derived wffs.

Introduce support: $\langle\{$ hyp \mid der $\mid e x t\}$,os \rangle with origin tag and origin set.

SNePS KB

The SNePS KB consists of a collection of supported wffs.
A wff may have more than one support if it was derived in multiple ways.

Every implemented rule of inference specifies how the derived wff is derived from its parent(s) and how its support is derived from the support(s) of its parent(s).

Contexts and Belief Spaces

A context is a set of hypotheses.
A belief space defined by a context c is the set containing every wff whose os is a subset of c.

Page 560

SNePSLOG Example

: expert
: xor\{OnFloor (1), OnFloor (2), OnFloor (3), OnFloor (4) \}. wff5!: xor\{OnFloor (4), OnFloor (3), OnFloor (2), OnFloor (1) \} \{<hyp, \{wff5\}>\}
: \{OnFloor (1) , OnFloor (2) \} => \{Location(belowGround)\}. wff7!: \{OnFloor(2),OnFloor(1)\} v=> \{Location(belowGround)\} \{<hyp,\{wff7\}>\}
: \{OnFloor (3) , OnFloor (4) \} => \{Location(aboveGround)\}. wff9!: \{OnFloor(4),OnFloor(3)\} v=> \{Location(aboveGround)\} $\{<h y p,\{w f f 9\}>\}$

Page 561
: perform believe(OnFloor(1))
: describe-context
((assertions (wff9 wff7 wff5 wff1))
(named (default-defaultct)) (kinconsistent nil))

Page 562

```
: list-asserted-wffs
    wff13!: ~ OnFloor(2) {<der,{wff1,wff5}>}
    wff12!: ~ OnFloor(3) {<der,{wff1,wff5}>}
    wff11!: ~ OnFloor(4) {<der,{wff1,wff5}>}
    wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}
        {<hyp,{wff9}>}
    wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}
        {<hyp,{wff7}>}
    wff6!: Location(belowGround) {<der,{wff1,wff7}>}
    wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}
        {<hyp,{wff5}>}
    wff1!: OnFloor(1) {<hyp,{wff1}>}
```

: perform disbelieve(OnFloor(1))
: describe-context
((assertions (wff9 wff7 wff5)) (named (default-defaultct)) (kinconsistent nil))
: list-asserted-wffs
wff9!: \{OnFloor(4),OnFloor(3)\} v=> \{Location(aboveGround)\} \{<hyp,\{wff9\}>\}
wff7!: \{OnFloor(2),OnFloor(1)\} v=> \{Location(belowGround)\} \{<hyp,\{wff7\}>\}
wff5!: xor\{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor (1)\} \{<hyp,\{wff5\}>\}

Page 564

SNePSLOG Example of $\neg I$

```
wff5!: BearYoung(whales,live) {<hyp,{wff5}>}
wff4!: LiveIn(whales,water) {<hyp,{wff4}>}
wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))
    {<hyp,{wff3}>}
wff2!: all(x)(LiveIn(x,water) => Ako(x,fish))
    {<hyp,{wff2}>}
wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
    {<hyp,{wff1}>}
```

: Ako(whales, ?x)?
A contradiction was detected within context default-defaultct. The contradiction involves the newly derived proposition:
wff8!: Ako(whales,mammal) \{<der,\{wff3,wff5\}>\}
and the previously existing proposition:
wff9!: ~Ako(whales,mammal) \{<der,\{wff1,wff2,wff4\}>\}

In order to make the context consistent you must delete at least one hypothesis from each of the following sets of hypotheses: (wff5 wff4 wff3 wff2 wff1)

Page 566

The Culprit Set

```
1 : wff5!: BearYoung(whales,live) {<hyp,{wff5}>}
    (2 supported propositions: (wff8 wff5) )
2 : wff4!: LiveIn(whales,water) {<hyp,{wff4}>}
    (3 supported propositions: (wff9 wff7 wff4) )
3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal)) {<hyp,{wff3
    (2 supported propositions: (wff8 wff3) )
4 : wff2!: all(x)(LiveIn(x,water) => Ako(x,fish)) {<hyp,{wff2}>}
    (3 supported propositions: (wff9 wff7 wff2) )
5 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
            {<hyp,{wff1}>}
    (2 supported propositions: (wff9 wff1) )
        Page 567
```


KB after deleting wff2

```
wff10!: ~ (all(x)(LiveIn(x,water) => Ako(x,fish)))
    {<ext,{wff1,wff3,wff4,wff5}>}
wff8!: Ako(whales,mammal) {<der,{wff3,wff5}>}
wff7!: ~ Ako(whales,fish) {<der,{wff1,wff3,wff5}>}
wff5!: BearYoung(whales,live) {<hyp,{wff5}>}
wff4!: LiveIn(whales,water) {<hyp,{wff4}>}
wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))
    {<hyp,{wff3}>}
wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
    {<hyp,{wff1}>}
```


10 The Situation Calculus

Page 569

Motivation (McCarthy)

I'm in my study at home. My car is in the garage. I want to get to the airport. How do I decide that I should walk to the garage and drive to the airport, rather than vice versa?

A commonsense planning problem.

Page 570

Solution Sketch

My study and garage are in my home.
To get from one place to another in my home, I should walk.
My garage and the airport are in the county.
To get from one place to another in the county, I should drive.

Page 571

Situations

When an agent acts, some propositions change as a result of acting, and some are independent of acting.
E.g. the fact that the airport is in the county is independent of my acting, but whether I'm in my study, in the garage, or at the airport, changes when I act.

We say that an act takes us from one situation to another.
Propositions that are dependent on situations are called propositional fluents. E.g. At(study, S0), At(garage, S1) vs. In(study, home), In (airport, county)

Situational Fluents

We can view an act as something that's done in some situation, and takes us to another situation.

Let $d o(a, s)$ be a two-argument functional term.
$\llbracket d o(a, s) \rrbracket=$ the situation that results from doing the act $\llbracket a \rrbracket$ in the situation $\llbracket s \rrbracket$.

So, At(study, S0), At(garage, do(walk(study, garage), SO))

Planning in the Situational Calculus

Describe the situation $S 0$.
Give domain rules describing the effects of actions.
Find a solution for $A t$ (airport, ?s)

Formalization in SNARK Non-Fluent Propositions

```
(assert '(Walkable home))
(assert '(Drivable county))
(assert '(In study home))
(assert '(In garage home))
(assert '(In garage county))
(assert '(In airport county))
```


Effect Axioms

```
(assert '(all (x y z s)
    (=> (and (At x s) (In x z) (In y z)
    (Walkable z))
    (At y (do (walk x y) s)))))
(assert '(all (x y z s)
    (=> (and (At x s) (In x z) (In y z)
    (Drivable z))
    (At y (do (drive x y) s)))))
```

Initial Situation
(assert '(At study SO))

Page 576

SNARK Solves the Problem

```
(query "How do you go to the airport?"
    '(At airport ?s)
    :answer '(By doing ?s))
```

```
How do you go to the airport?
    (ask '(At airport ?s))
    = (At airport (do (drive garage airport)
    (do (walk study garage) SO)))
```

Page 577

Example 2: BlocksWorld Domain Axioms

```
(assert '(all s (Clear Table s)))
(assert '(all (x y s) (=> (and (Block y) (On x y s))
    (not (Clear y s)))))
(assert '(all (x s) (=> (Held x s)
                                (not (Clear x s)))))
```

Page 578

BlocksWorld Effect Axioms

(assert

$$
\begin{aligned}
& \text { ' (all (} \mathrm{x} \text { y s) (=> (and (On x y s) (Clear x s)) } \\
& \text { (and (Held x (do (pickUp x) s)) } \\
& \text { (Clear y (do (pickUp x) s)))))) }
\end{aligned}
$$

(assert

$$
\begin{aligned}
& \text { ' (all (} \mathrm{x} \text { y s) (=> (and (Held x s) (Clear y s)) } \\
& \text { (and (On x y (do (putOn x y) s)) } \\
& \text { (not (Held x (do (putOn x y) s))) } \\
& \text { (Clear x (do (putOn x y) s))))) }
\end{aligned}
$$

Page 579

Initial Situation

```
(assert '(Block A))
(assert '(Block B))
(assert '(Block C))
(assert '(On A B SO))
(assert '(On B Table SO))
(assert '(On C Table SO))
(assert '(Clear A SO))
(assert '(Clear C SO))
```


Solving A Simple Problem

```
(query "How do you achieve holding Block A?"
    ,(Held A ?s)
    :answer '(By doing ?s))
```

How do you achieve holding Block A?
(ask ' (Held A ?s)) = (By doing (do (pickUp A) SO))

Page 581

A Harder Problem

(query "How do you put Block A on Block C" , (On A C ?s)
:answer '(By doing ?s))
Just loops!

Page 582

The Frame Problem

We want
(On A C (do (putOn A C) (do (pickUp A) SO)))
but this requires C to be clear in situation
(do (pickUp A) SO)
That can't be decided.
We need to specify what propositional fluents don't change when an action is performed.

A Frame Axiom

```
(assert
```

```
\[
\begin{aligned}
& \text { ' (all (x y s) (=> (and (Clear x s) (not (= x y))) } \\
& \text { (Clear x (do (pickUp y) s))))) }
\end{aligned}
\]
```

Page 584

Another Problem

Still doesn't work, because we don't know that (not (= C A))

Page 585

Unique Names Axioms

```
(assert '(not (= A B)))
(assert '(not (= A C)))
(assert '(not (= B C)))
```

Also need
(use-paramodulation)
after (initialize)
This includes the theory of equality with resolution.

Page 586

Success!

```
(query "How do you put Block A on Block C" '(On A C ?s)
    :answer '(By doing ?s))
```

How do you put Block A on Block C
(ask '(On A C ?s))
= (By doing (do (putOn A C) (do (pickUp A) SO)))

11 Summary

Artificial Intelligence (AI): A field of computer science and engineering concerned with the computational understanding of what is commonly called intelligent behavior, and with the creation of artifacts that exhibit such behavior.

Knowledge Representation and Reasoning (KR or KRR):
A subarea of Artificial Intelligence concerned with understanding, designing, and implementing ways of representing information in computers, and using that information to derive new information based on it.
KR is more concerned with belief than "knowledge". Given that an agent (human or computer) has certain beliefs, what else is reasonable for it to believe, and how is it reasonable for it to act, regardless of whether those beliefs are true and justified.

Page 588

What is Logic?

- Logic is the study of correct reasoning.
- There are many systems of logic (logics). Each is specified by specifying:
- Syntax: Specifying what counts as a well-formed expression
- Semantics: Specifying the meaning of well-formed expressions
* Intensional Semantics: Meaning relative to a Domain
* Extensional Semantics: Meaning relative to a Situation
- Proof Theory: Defining proof/derivation, and how it can be extended.

KR and Logic

Given that a Knowledge Base is represented in a language with a well-defined syntax, a well-defined semantics, and that reasoning over it is a well-defined procedure, a KR system is a logic.

KR research can be seen as a search for the best logic to capture human-level reasoning.

Proof Theory and Semantics

Proof	Derivation	Theoremhood
Theory	$A_{1}, \ldots, A_{n} \vdash P$	\Leftrightarrow
	$\vdash A_{1} \wedge \ldots \wedge A_{n} \Rightarrow P$	
$\Downarrow \uparrow$		
$A_{1}, \ldots, A_{n} \models P$	\Leftrightarrow	$\models A_{1} \wedge \ldots \wedge A_{n} \Rightarrow P$

Semantics Logical Implication Validity

$(\Downarrow$ Soundness)
(介 Completeness)

Page 591

Inference/Reasoning Methods

Given a $\mathrm{KB} /$ set of assumptions \mathcal{A} and a query \mathcal{Q} :

- Model Finding
- Direct: Find satisfying models of \mathcal{A}; see if \mathcal{Q} is true in all of them.
- Refutation: Find if $\mathcal{A} \cup\{\neg \mathcal{Q}\}$ is unsatisfiable.
- Natural Deduction
- Direct: Find if $\mathcal{A} \vdash \mathcal{Q}$.
- Resolution
- Direct: Find if $\mathcal{A} \vdash \mathcal{Q}$ (incomplete).
- Refutation: Find if $\bigwedge \mathcal{A} \wedge \neg \mathcal{Q}$ is inconsistent.

Page 592

Logics We Studied

1. Standard Propositional Logic
2. Clause Form Propositional Logic
3. Standard Finite-Model Predicate Logic
4. Clause Form Finite-Model Predicate Logic
5. Standard First-Order Predicate Logic
6. Clause Form First-Order Predicate Logic
7. Horn Clause Logic
8. Relevance Logic
9. SNePSLOG \& SNeRE
10. The Situation Calculus
11. Description Logics

Page 593

Classes of Logics

- Propositional Logic
- Finite number of atomic propositions and models.
- Model finding and resolution are decision procedures.
- Finite-Model Predicate Logic
- Finite number of terms, atomic formulae, and models.
- Reducible to propositional logic.
- Model finding and resolution are decision procedures.
- First-Order Logic
- Infinite number of terms, atomic formulae, and models.
- Not reducible to propositional logic.
- There are no decision procedures.
- Resolution plus factoring is refutation complete.

Page 594

Proof Procedures We Studied

1. Direct model finding: truth tables, decreasoner, relsat (complete search) walksat, gsat (stochastic search)
2. Wang algorithm (model-finding refutation), wang
3. Semantic tableaux (model-finding refutation)
4. Hilbert-style axiomatic (direct), brief
5. Fitch-style natural deduction (direct)
6. Resolution (refutation), prover, SNARK
7. SLD resolution (refutation), Prolog
8. SNePS (direct), SNePS

Page 595

Utility Notions and Techniques

1. Material implication
2. Possible properties of connectives commutative, associative, idempotent
3. Possible properties of well-formed expressions free, bound variables open, closed, ground expressions
4. Possible semantic properties of wffs contradictory, satisfiable, contingent, valid
5. Possible properties of proof procedures sound, consistent, complete, decision procedure, semi-decision procedure

Page 596

More Utility Notions and Techniques

5. Substitutions
application, composition
6. Unification
most general common instance (mgci),
most general unifier (mgu)
7. Translation from standard form to clause form

Conjunctive Normal Form (CNF),
Skolem functions/constants
8. Resolution Strategies
subsumption, unit preference, set of support
9. The Answer Literal

Page 597

Yet More Utility Notions and Techniques

9. Closed vs. Open World Assumption
10. Negation by failure
11. Origin sets, contexts
12. Belief Revision/Truth-Maintenance

Page 598

Domain Modeling

1. Formalization in various logics
2. Reification
3. Ontologies/Taxonomies/Hierarchies

- extensional vs. intensional
- instance vs. subcategory
- Single (DAGs) vs multiple inheritance
- transitive relations/transitive closure
- mutually exclusive/disjoint categories
- exhaustive set of subcategories
- partitioning of a category

Page 599

More Domain Modeling

4. Time

- subjective vs. objective
- points vs. intervals
- Allen's relations

5. Things (Count Nouns) vs. Substances (Mass Nouns)
6. Acting

- situations
- fluents

Page 600

12 Production Systems
 Architecture
 Working (Short-term) Memory

Contains set (unordered, no repeats) of Working Memory Elements (WMEs).
Each being a rather flat, ground (no variables) symbol structure.

Page 601

Rule (Long-term) Memory

Contains set (unordered, no repeats) of
Production Rules.
Each being a condition-action rule of form
if condition $_{1} \ldots$ condition $_{n}$ then action $_{1} \ldots$ action $_{m}$
Each condition and action being like a WME, but allowing variables (and, maybe, other expressions)

Page 602

Rule Triggering

A rule if condition $_{1} \ldots$ condition $_{n}$ then action $_{1} \ldots$ action $_{m}$ is triggered
if there is a substitution, σ
such that each condition σ is a WME.
A single rule can be triggered in multiple ways (by multiple substitutions).

Page 603

Rule Firing

A rule if condition $_{1} \ldots$ condition $_{n}$ then action $_{1} \ldots$ action $_{m}$ that is triggered in a substitution σ fires by performing every action $_{i} \sigma$.

Page 604

Production System Execution Cycle

loop

Collect $\mathcal{T}=\{\mathrm{r} \sigma \mid \mathrm{r} \sigma$ is a triggered rule $\}$
if \mathcal{T} is not empty
Choose a $r \sigma \in \mathcal{T}$
Fire $r \sigma$
until \mathcal{T} is empty.

Page 605

Some Typical Actions

- stop
- delete a WME
- add a WME
- modify a WME
- formatted print

Conflict Resolution Strategies

Purpose: to "Choose a $r \sigma \in \mathcal{T}$ "
Specificity: If the conditions of one rule are a subset of a second rule, choose the second rule. [B \& L, p. 126]

Recency: Based on recency of addition or modification of WMEs, or on recency of a rule firing. [B \& L, p. 126]

Refactoriness: Don't allow the same substitution instance of a rule to fire again. [B \& L, p. 127]

Salience: Explicit salience value. "The use of salience is generally discouraged" [http://herzberg.ca.sandia.gov/jess/docs/70/ rules.html\#salience].

The Rete Algorithm Assumptions

Rule memory doesn't change.
WM changes only slightly on each cycle.
WMEs are ground.
Production Systems are data-driven (use forward chaining).
Many rules share conditions.

Page 608

The Rete Network

Create a network from the conditions (Like a discrimination tree) with rules at the leaves.

Create a token for each WME.
Pass each token through the network, stopping when it doesn't satisfy a test; resuming when the WME is modified.

When tokens reach a leaf, the rule is triggered.
Kinds of branch nodes
α nodes: Simple test.
β nodes: Constraints caused by different conditions.

13 Description Logics

Main reference:
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, Eds., The Description Logic
Handbook: Theory, Implementation and Applications, Second Edition, Cambridge University Press, Cambridge, UK, 2007.

DL: Main Ideas

- Terminological Box or T-Box. Definition of Concepts ("Classes") and Roles ("Properties").
- Assertional Box or A-Box.

Assertions about individuals (instances)

- Unary predicates $=$ concepts
- Binary predicates $=$ roles
- Necessary and Sufficient conditions on classes.
- Subsumption Hierarchy

Page 611

Syntax of a Simple $\mathrm{DL}^{\text {a }}$ Atomic Symbols

- Positive integers: $1,2,3$
- Atomic concepts: Thing, Pizza, PizzaTopping, PizzaBase Thing is the top of the hierarchy.
- Roles: hasTopping, hasBase
- Constants: item1, item2

Page 612

[^2]
Syntax of a Simple DL
 Concepts

- Every atomic concept is a concept
- If r is a role and d is a concept, [ALL $r d]$ is a concept. The concept of individuals all of whose r 's are d 's. E.g., [ALL hasTopping VegetarianTopping]
- If r is a role and n is a positive integer, [EXISTS $n r$] is a concept.

The concept of individuals that have at least $n r$'s.
E.g., [EXISTS 1 hasTopping]

- If r is a role and c is a constant, [FILLS $r c$] is a concept.

The concept of individuals one of whose r 's is c.
E.g., [FILLS hasTopping item2]

- If d_{1}, \ldots, d_{n} are concepts, [AND d_{1}, \ldots, d_{n}] is a concept The concept that is the intersection of d_{1}, \ldots, d_{n}. E.g., [AND Pizza [EXISTS 1 hasTopping]
[ALL hasTopping VegetarianTopping]]
Page 613

Syntax of a Simple DL
 Sentences

- If d_{1} and d_{2} are concepts, $\left(d_{1} \sqsubseteq d_{2}\right)$ is a sentence.
d_{1} is subsumed by d_{2}
E.g., VegetarianPizza \sqsubseteq Pizza
- If d_{1} and d_{2} are concepts, $\left(d_{1} \doteq d_{2}\right)$ is a sentence.
d_{1} and d_{2} are equivalent
E.g., VegetarianPizza \doteq [AND Pizza [EXISTS 1 hasTopping] [ALL hasTopping VegetarianTopping]]
- If c is a constant and d is a concept, $(c \rightarrow d)$ is a sentence. The individual c satisfies the description expressed by d. E.g., item1 \rightarrow Pizza

Necessary and Sufficient Conditions

A necessary condition on a class, d, is a property, p, such that if an individual, c, is an instance of d, it is necessary that c satisfy p.

A sufficient condition on a class, d, is a property, p, such that if an individual, c, satisfies p, then that is a sufficient reason to decide that it is an instance of d.

A defined concept has both necessary and sufficient conditions.
A primitive concept has only necessary conditions.

Subsumption Hierarchy

$\left(d_{1} \sqsubseteq d_{2}\right)$
d_{1} is subsumed by d_{2}
E.g., VegetarianPizza \sqsubseteq Pizza
means that every instance of d_{1} is an instance of d_{2}.
Every DL concept is subsumed by Thing, the top of the hierarchy.

Page 616

Classification Algorithm

Decision procedure for placing every defined concept correctly in the subsumption hierarchy.

Note: Two concepts that subsume each other are the same.
Note: No concept can be computed as being subsumed by a primitive concept.

Page 617

Examples Using Classic Defined and Primitive Concepts

```
: (cl-startup)
t
: (cl-define-concept 'PizzaTopping 'Classic-Thing)
*WARNING*: The new concept PizzaTopping is identical
    to the existing concept @c{Classic-Thing}.
@c{Classic-Thing}
: (cl-define-primitive-concept 'PizzaBase 'Classic-Thing)
@c{PizzaBase}
```

Page 618

Creating An Individual

: (cl-create-ind 'base1 'PizzaBase)
@i\{base1\}
: (cl-instance? @base1 @PizzaBase)
t
: (cl-print-ind @base1)
Base1 ->
Derived Information:
Primitive ancestors: PizzaBase Classic-Thing
Parents: PizzaBase
Ancestors: Thing Classic-Thing
@i\{base1\}
Page 619

Defining Some Roles

: (cl-define-primitive-role 'hasIngredient :inverse 'isIngredientOf)
@r\{hasIngredient\}
: (cl-define-primitive-role 'hasBase :parent 'hasIngredient :inverse 'isBaseOf)
@r\{hasBase\}
: (cl-define-primitive-role 'hasTopping :parent 'hasIngredient :inverse 'isToppingOf)
@r\{hasTopping\}

Page 620

Necessary and Sufficient Conditions

```
: (cl-define-concept 'Pizza '(and Classic-Thing (at-least 1 hasBase)
                                    (at-least 1 hasTopping)))
@c{Pizza}
: (cl-create-ind 'pizza1 'Pizza)
@i{pizza1}
: (cl-print-ind @pizza1)
Pizza1 ->
Derived Information:
    Parents: Pizza
    Ancestors: Thing Classic-Thing
    Role Fillers and Restrictions:
        Hasingredient[1 ; INF]
        Hastopping[1 ; INF]
        Hasbase[1 ; INF]
@i{pizza1}
: (cl-create-ind 'item3 '(and (fills hasBase base3) (fills hasTopping topping3)))
@i{item3}
: (cl-print-ind @item3)
Item3 ->
Derived Information:
    Parents: Pizza
    Ancestors: Thing Classic-Thing
    Role Fillers and Restrictions:
    Hasingredient[2 ; INF] -> Base3 Topping3
    Hastopping[1 ; INF] -> Topping3
    Hasbase[1 ; INF] -> Base3
@i{item3}
```

Page 621

Classification

```
: (cl-define-concept 'PreparedFood '(and Classic-Thing (at-least 1 hasIngredient)))
@c{PreparedFood}
: (cl-print-concept @PreparedFood)
PreparedFood ->
    Derived Information:
        Parents: Classic-Thing
        Ancestors: Thing
    Children: Pizza
    Role Restrictions:
        Hasingredient[1 ; INF]
@c{PreparedFood}
: (cl-print-concept @Pizza)
Pizza ->
    Derived Information:
        Parents: PreparedFood
        Ancestors: Thing Classic-Thing
    Role Restrictions:
        Hasingredient[1 ; INF]
        Hastopping[1 ; INF]
        Hasbase[1 ; INF]
@c{Pizza}
: (cl-instance? @pizza1 @PreparedFood)
t
```

Page 622

Disjoint Concepts

```
: (cl-startup)
t
: (cl-define-primitive-concept 'PizzaTopping 'Classic-Thing)
@c{PizzaTopping}
: (cl-define-disjoint-primitive-concept 'CheeseTopping 'PizzaTopping 'pizzaToppings)
@c{CheeseTopping}
: (cl-define-disjoint-primitive-concept 'MeatTopping 'PizzaTopping 'pizzaToppings)
@c{MeatTopping}
: (cl-define-disjoint-primitive-concept 'SeafoodTopping 'PizzaTopping 'pizzaToppings)
@c{SeafoodTopping}
: (cl-define-disjoint-primitive-concept 'VegetableTopping 'PizzaTopping 'pizzaToppings)
@c{VegetableTopping}
classic(56): (cl-define-primitive-concept 'ProbeInconsistentTopping
                                    '(and CheeseTopping VegetableTopping))
*WARNING*: Disjoint primitives: @tc{CheeseTopping}, @tc{VegetableTopping}.
*CLASSIC ERROR* while processing
    (cl-define-primitive-concept ProbeInconsistentTopping (and CheeseTopping
        VegetableTopping))
        occurred on object @c{ProbeInconsistentTopping-*INCOHERENT*}:
    Trying to combine disjoint primitives: @tc{CheeseTopping} and
        @tc{VegetableTopping}.
classic-error
(disjoint-prims-conflict @tc{CheeseTopping} @tc{VegetableTopping})
nil
@c{ProbeInconsistentTopping-*INCOHERENT*}
```

Page 623

Open World

```
: (cl-define-primitive-concept 'MushroomTopping 'VegetableTopping)
@c{MushroomTopping}
: (cl-define-primitive-concept 'OnionTopping 'VegetableTopping)
@c{OnionTopping}
: (cl-define-concept 'VegetarianPizza '(and Pizza (all hasTopping VegetableTopping)))
@c{VegetarianPizza}
: (cl-create-ind 'mt1 'MushroomTopping)
@i{mt1}
: (cl-create-ind 'ot1 'OnionTopping)
@i{ot1}
: (cl-create-ind 'pizza2 '(and Pizza (fills hasTopping mt1) (fills hasTopping ot1)))
@i{pizza2}
: (cl-instance? @pizza2 @VegetarianPizza)
nil
: (cl-ind-close-role @pizza2 @hasTopping)
@i{pizza2}
: (cl-instance? @pizza2 @VegetarianPizza)
t
```

Page 624

Typology of DL Languages

Construct	Syntax	Language			
Concept	A				
Role name	R	FL_{0}			
Intersection	$\mathrm{C} \cap \mathrm{D}$				
Value Restriction	\forall R.C		FL-		
Limited existential quantification	$\exists \mathrm{R} . \mathrm{T}$			AL	
Top or Universal	T				S
Bottom	\perp				
Atomic negation	$\neg \mathrm{A}$				
Negation	$\neg \mathrm{C}$		C		
Union	$\mathrm{C} \cup \mathrm{D}$		U		
Existential restriction	$\exists \mathrm{R} . \mathrm{C}$		E		

Language $\mathrm{S}=\mathrm{ALC}_{R^{+}}=$ALC plus transitive roles.
From A. Gòmez-Pèrez, M. Fernàndez-Lòpez \& O. Corcho, Ontological Engineering, Springer-Verlag, London, 2004, Table 1.1, p. 17.

Page 625

Typology, continued

Construct	Syntax	Language
Number restrictions	$(\geq \mathrm{nR})(\leq \mathrm{nR})$	N
Nominals	$\left\{\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{n}}\right\}$	O
Role hierarchy	$\mathrm{R} \subseteq \mathrm{S}$	H
Inverse role	R^{\prime}	I
Qualified number restriction	$(\geq \mathrm{n}$ R.C $)(\leq \mathrm{n}$ R.C $)$	Q

Key to abbreviations under "Syntax":
A: atomic concept
C, D: concept definitions
R : atomic role
S : role definition
From A. Gòmez-Pèrez, M. Fernàndez-Lòpez \& O. Corcho, Ontological Engineering, Springer-Verlag, London, 2004, Table 1.1, p. 17.

Page 626

14 Abduction

Abduction is the non-sound inference
from
$P \Rightarrow Q$
and Q
to
P

See Brachman 8 Levesque, Chapter 13.

Page 627

Some Uses of Abduction

1. Explanation
from $I t$'s raining \Rightarrow The grass is wet
and The grass is wet to $I t^{\prime}$ s raining
2. Diagnosis
from Infection \Rightarrow Fever
and Fever to Infection
3. Plan Recognition
from Cooking pasta \Rightarrow Boil water
and Boil water to Cooking pasta
4. Text Understanding
from $\forall x(\operatorname{gotGoodService~}(x) \Rightarrow \operatorname{leftBigTip}(x))$
and Betty left a big tip. to Betty got good service.
Page 628

Prime Implicates

Applies to KRR using resolution.
For some KB and some clause C, if
$\mathrm{KB} \vDash C$
and for any $C \prime$ s.t. $C \prime$ is a proper subset of C
KB $\notin C \prime$
C is a prime implicate of KB.

Page 629

Example of Computing Prime Implicate

```
prover(4): (prove '( (=> (and p q r) g)
    (=> (and (not p) q) g)
    (=> (and (not q) r) g))
'g)
```

	(p (n ot q) g)		Assumption
	(q ($\mathrm{not} \mathrm{r)} \mathrm{g)}$		Assumption
3	(not p) (not q) (not r)	g)	Assumption
4	($($ not g))		From Query
5	(p (not q))	R, 4, 1, \{\}	
6	($\mathrm{q}(\mathrm{not} \mathrm{r)}$)	R,4,2, \{\}	Subsumed
7	(not p) (not q) (not r))	R,4,3, \{\}	Subsumed
8	((not r) p)	R,5,6, \{\}	Subsumed
11	(not q) (not r))	R,7,8, \{\}	Subsumed
12	($($ not r))	R,11,6, \{\}	

Example from Brachman \mathcal{G} Levesque, p 271.
Page 630

Example 2

```
prover(8): (prove '((forall x (=> (enterRestaurant x) (beSeated x)))
    (forall x (=> (beSeated x) (beServed x)))
    (forall x (=> (beServed x) (getFood x)))
    (forall x (=> (getFood x) (eatFood x)))
    (forall x (=> (eatFood x) (and (pay x) (leaveTip x))))
    (forall x (=> (gotGoodService x) (leftBigTip x)))
    (enterRestaurant Betty))
    '(leftBigTip Betty))
((enterRestaurant Betty)) Assumption
((not (enterRestaurant ?1)) (beSeated ?1)) Assumption
((not (beSeated ?3)) (beServed ?3)) Assumption
((not (beServed ?5)) (getFood ?5)) Assumption
5 ((not (getFood ?7)) (eatFood ?7)) Assumption
6 ((not (eatFood ?9)) (pay ?9)) Assumption
((not (eatFood ?10)) (leaveTip ?10)) Assumption
((not (gotGoodService ?12)) (leftBigTip ?12)) Assumption
((not (leftBigTip Betty)) (Answer (leftBigTip Betty))) From Query
((not (gotGoodService Betty))
    (Answer (leftBigTip Betty))) R,9,8,{Betty/?12}
nil
I.e., (=> (gotGoodService Betty) (leftBigTip Betty))
```

Page 631

Interpretation

Possible interpretations of
(=> (gotGoodService Betty) (leftBigTip Betty)):

1. Abduction: Since (leftBigTip Betty), infer (gotGoodService Betty).
2. Diagnosis: Since (not (leftBigTip Betty)), infer (not (gotGoodService Betty)).
3. Hypothetical Answer: If (gotGoodService Betty) then (leftBigTip Betty).
4. Why Not: Didn't infer (leftBigTip Betty) because didn't know (gotGoodService Betty).

Page 632

[^0]: ${ }^{\text {a }}$ ISO/IEC, Information technology - Common Logic (CL): a framework for a family of logic-based languages, ISO/IEC 24707:2007(E), 2007.

[^1]: ${ }^{\text {a Based on the semantic tableaux of Evert W. Beth, The Foundations of Math- }}$ ematics, (Amsterdam: North Holland), 1959.

[^2]: ${ }^{\text {a }}$ From Ronald J. Brachman \& Hector J. Levesque, Knowledge Representation and Reasoning, Morgan Kaufmann/Elsevier, 2004, Chapter 9, with examples from Matthew Horridge, Simon Jupp, Georgina Moulton, Alan Rector, Robert Stevens, \& Chris Wroe, A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools: Edition 1.1, The University of Manchester, 2007.

