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1.1 Knowledge Representation

Artificial Intelligence (AI)

A field of computer science and engineering concerned with the

computational understanding of what is commonly called

intelligent behavior, and with the creation of artifacts that exhibit

such behavior.
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Knowledge Representation

A subarea of Artificial Intelligence concerned with understanding,

designing, and implementing ways of representing information in

computers so that programs (agents) can use this information

• to derive information that is implied by it,

• to converse with people in natural languages,

• to decide what to do next

• to plan future activities,

• to solve problems in areas that normally require human

expertise.
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Reasoning

Deriving information that is implied by the information already

present is a form of reasoning.

Knowledge representation schemes are useless without the ability

to reason with them.

So, Knowledge Representation and Reasoning (KRR)
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Manifesto of KRR

a program has common sense if it automatically deduces for itself a

sufficiently wide class of immediate consequences of anything it is

told and what it already knows. . . In order for a program to be

capable of learning something it must first be capable of being told

it. John McCarthy, “Programs with Common Sense”, 1959.
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Knowledge vs. Belief

Knowledge: justified true belief.

John believes that the world is flat: Not true.

Sally believes that the first player in chess can always win,

Betty believes that the second player can always win,

and Mary believes that, with optimal play on both sides, chess will

always end in a tie.

One of them is correct,

but none are justified.

So Belief Representation & Reasoning: more accurate

But we’ll continue to say KRR.
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In Class Exercise

“An Approach to Serenity”
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Easy NL Inferences

Every student studies hard.

Therefore every smart student studies.

Tuesday evening, Jack either went to the movies, played bridge, or

studied.

Tuesday evening, Jack played bridge.

Therefore, Jack neither went to the movies nor studied Tuesday

evening.
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Background Knowledge:

Some Sentences and

How We Understand Them.

John likes ice cream.

John likes to eat ice cream.

Mary likes Asimov.

Mary likes to read books written by Isaac Asimov.
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Background Knowledge:

Some Sentences and

How We Understand Them.

Bill flicked the switch.

The room was flooded with light.

Bill moved the switch to the “on” position, which caused a light to

come on, which lit up the room Bill was in.

Betty opened the blinds.

The courtyard was flooded with light.

Betty adjusted the blinds so that she could see through the window

they were in front of, after which she could see that the courtyard

on the other side of the window was bright.
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Memory Integration in Humans

After seeing these sentences (among others),

The sweet jelly was on the kitchen table.

The ants in the kitchen ate the jelly.

The ants ate the sweet jelly that was on the table.

The sweet jelly was on the table.

The jelly was on the table.

The ants ate the jelly.

subjects, with high confidence reported that they had seen the

sentence,

The ants ate the sweet jelly that was on the kitchen table.

[Bransford and Franks (1971). The abstraction of linguistic ideas. Cognitive

Psychology, 2, 331-350, as reported on

http://www.rpi.edu/∼verwyc/cognotes5.htm.]
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Requirements for

a Knowledge-Based Agent

1. “what it already knows” [McCarthy ’59]

A knowledge base of beliefs.

2. “it must first be capable of being told” [McCarthy ’59]

A way to put new beliefs into the knowledge base.

3. “automatically deduces for itself a sufficiently wide class of

immediate consequences” [McCarthy ’59]

A reasoning mechanism to derive new beliefs from ones already

in the knowledge base.
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1.2 Logic

• Logic is the study of correct reasoning.

• It is not a particular KRR language.

• There are many systems of logic (logics).

• AI KRR research can be seen as a hunt for the “right” logic.
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Commonalities among Logics

• System for reasoning.

• Prevent reasoning from “truths” to “falsities”.

(But can reason from truths and falsities to truths and

falsities.)

• Language for expressing reasoning steps.
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Parts of the Study/Specification

of a Logic

Syntax: The atomic symbols of the logical language, and the rules

for constructing well-formed, nonatomic expressions (symbol

structures) of the logic.

Semantics: The meanings of the atomic symbols of the logic, and

the rules for determining the meanings of nonatomic

expressions of the logic.

Proof Theory: The rules for determining a subset of logical

expressions, called theorems of the logic.
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2 Propositional Logic

Logics that do not analyze information below the level of the

proposition.

2.1 What is a Proposition? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 CarPool World: A Motivational “Micro-World”. . . . . . . . . . . . . .23

2.3 The “Standard” Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Important Properties of Logical Systems . . . . . . . . . . . . . . . . . . . 133

2.5 Clause Form Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
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2.1 What is a Proposition?

An expression in some language

• that is true or false

• whose negation makes sense

• that can be believed or not

• whose negation can be believed or not

• that can be put in the frame

“I believe that it is not the case that .”
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Examples

Of propositions

• Betty is the driver of the car.

• Barack Obama is sitting down or standing up.

• If Opus is a penguin, then Opus doesn’t fly.

Of non-propositions

• Barack Obama

• how to ride a bicycle

• If the fire alarm rings, leave the building.
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Sentences vs. Propositions

A sentence is an expression of a (written) language that begins

with a capital letter and ends with a period, question mark, or

exclamation point.

Some sentences do not contain a proposition:

“Hi!”, “Why?”, “Pass the salt!”

Some sentences do not express a proposition, but contain one:

“Is Betty driving the car?”

Some sentences contain more than one proposition:

If Opus is a penguin, then Opus doesn’t fly.
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2.2 CarPool World: A Motivational

“Micro-World”

• Tom and Betty carpool to work.

• On any day, either Tom drives Betty or Betty drives Tom.

• In the former case, Tom is the driver and Betty is the passenger.

• In the latter case, Betty is the driver and Tom is the passenger.

Propositions:

Betty drives Tom. Tom drives Betty.

Betty is the driver. Tom is the driver.

Betty is the passenger. Tom is the passenger.
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2.3 The “Standard” Propositional Logic

1. Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

2. Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3. Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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2.3.1 Syntax of the “Standard” Propositional Logic

Atomic Propositions

• Any letter of the alphabet, e.g.: P

• Any letter of the alphabet with a numerical subscript, e.g.: Q3

• Any alphanumeric string, e.g.: Tom is the driver

is an atomic proposition.
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Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wfp.

2. If P is a wfp, then so is (¬P ).

3. If P and Q are wfps, then so are

(a) (P ∧Q) (b) (P ∨Q)

(c) (P ⇒ Q) (d) (P ⇔ Q)

4. Nothing else is a wfp.

Parentheses may be omitted. Precedence: ¬; ∧, ∨; ⇒; ⇔.

Will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn).

Square brackets may be used instead of parentheses.
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Examples of WFPs

¬(A ∧B)⇔ (¬A ∨ ¬B)

Tom is the driver⇒ Betty is the passenger

Betty drives Tom⇔ ¬Tom is the driver
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Alternative Symbols

¬ : ∼ !

∧ : & ·

∨ : |

⇒: → ⊃ ->

⇔: ↔ ≡ <->
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A Computer-Readable Syntax for Wfps

Based on CLIF, the Common Logic Interchange Formata

Atomic Propositions: Use one of:

Embedded underscores: Betty drives Tom

Embedded hyphens: Betty-drives-Tom

CamelCase: BettyDrivesTom

sulkingCamelCase: bettyDrivesTom

Escape brackets: |Betty drives Tom|

Quotation marks: "Betty drives Tom"

Page 29
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CLIF for Non-Atomic Wfps

Print Form CLIF Form

¬P (not P)

P ∧Q (and P Q)

P ∨Q (or P Q)

P ⇒ Q (if P Q)

P ⇔ Q (iff P Q)

(P1 ∧ · · · ∧ Pn) (and P1 ...Pn)

(P1 ∨ · · · ∨ Pn) (or P1 ...Pn)
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Semantics of Atomic Propositions 1

Intensional Semantics

• Dependent on a Domain.

• Independent of any specific

interpretation/model/possible world/situation.

• Statement in a previously understood language (e.g. English)

that allows truth value to be determined in any specific

situation.

• Often omitted, but shouldn’t be.
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Intensional CarPool World Semantics

[Betty drives Tom] = Betty drives Tom to work.

[Tom drives Betty ] = Tom drives Betty to work.

[Betty is the driver ] = Betty is the driver of the car.

[Tom is the driver ] = Tom is the driver of the car.

[Betty is the passenger ] = Betty is the passenger in the car.

[Tom is the passenger ] = Tom is the passenger in the car.
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Alternative Intensional CarPool World

Semantics

[Betty drives Tom] = Tom drives Betty to work.

[Tom drives Betty ] = Betty drives Tom to work.

[Betty is the driver ] = Tom is the passenger in the car.

[Tom is the driver ] = Betty is the passenger in the car.

[Betty is the passenger ] = Tom is the driver of the car.

[Tom is the passenger ] = Betty is the driver of the car.
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Alternative CarPool World

Syntax/Intensional Semantics

[A] = Betty drives Tom to work.

[B ] = Tom drives Betty to work.

[C ] = Betty is the driver of the car.

[D ] = Tom is the driver of the car.

[E ] = Betty is the passenger in the car.

[F ] = Tom is the passenger in the car.
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Intensional Semantics Moral

• Don’t omit.

• Don’t presume.

• No “pretend it’s English semantics”.
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Intensional Semantics of WFPs

[¬P ] = It is not the case that [P ].

[P ∧Q ] = [P ] and [Q ].

[P ∨Q ] = Either [P ] or [Q ] or both.

[P ⇒ Q ] = If [P ] then [Q ].

[P ⇔ Q ] = [P ] if and only if [Q ].
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Example CarPool World Intensional

WFP Semantics

[Betty drives Tom⇔ ¬Tom is the driver ]

= Betty drives Tom to work

if and only if Tom is not the driver of the car.
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Terminology

• ¬P is called the negation of P .

• P ∧Q is called the conjunction of P and Q.

P and Q are referred to as conjuncts.

• P ∨Q is called the disjunction of P and Q.

P and Q are referred to as disjuncts.

• P ⇒ Q is called a conditional or implication.

P is referred to as the antecedent;

Q as the consequent.

• P ⇔ Q is called a biconditional or equivalence.
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2.3.2 Semantics of Atomic Propositions 2

Extensional Semantics

• Relative to an interpretation/model/possible world/situation.

• Either True or False.
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Extensional CarPool World Semantics

Denotation in Situation

Proposition 1 2 3 4 5

Betty drives Tom True True True False False

Tom drives Betty True True False True False

Betty is the driver True True True False False

Tom is the driver True False False True False

Betty is the passenger True False False True False

Tom is the passenger True False True False False

Note: n propositions ⇒ 2n possible situations.

6 propositions in CarPool World

⇒ 26 = 64 different situations.
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Extensional Semantics of WFPs

[[¬P ]] is True if [[P ]] is False. Otherwise, it is False.

[[P ∧Q ]] is True if [[P ]] is True and [[Q ]] is True. Otherwise, it is

False.

[[P ∨Q ]] is False if [[P ]] is False and [[Q ]] is False. Otherwise, it is

True.

[[P ⇒ Q ]] is False if [[P ]] is True and [[Q ]] is False. Otherwise, it is

True.

[[P ⇔ Q ]] is True if [[P ]] and [[Q ]] are both True, or both False.

Otherwise, it is False.

Note that this is the outline of a recursive function that evaluates a wfp,

given the truth values of its atomic propositions.
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Extensional Semantics Truth Tables

P True False

¬P False True

P True True False False

Q True False True False

P ∧Q True False False False

P ∨Q True True True False

P ⇒ Q True False True True

P ⇔ Q True False False True

Notice that each column of these tables represents a different

situation.
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Material Implication

P ⇒ Q is True when P is False.

So,

If the world is flat, then the moon is made of green cheese

is considered True if if . . . then is interpreted as material

implication.
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(P ⇒ Q)⇔ (¬P ∨Q)

P True True False False

Q True False True False

¬P False False True True

P ⇒ Q True False True True

¬P ∨Q True False True True

(P ⇒ Q) is sometimes taken as a abbreviation of (¬P ∨Q)

Note: “Uninterpreted Language”, Formal Logic,

applicable to every logic in the class.
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Example CarPool World Truth Table

Betty drives Tom True True False False

Tom is the driver True False True False

¬Tom is the driver False True False True

Betty drives Tom ⇔ ¬Tom is the driver False True True False
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Computing Denotations

Use the procedure sketched on page 41.

Use Spreadsheet:

See http://www.cse.buffalo.edu/~shapiro/Courses/CSE563/

truthTable.xls/

Use Boole program from Barwise & Etchemendy package
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Computing the Denotation of a Wfp

in a Model

Construct a truth table containing all atomic wfps and the wfp

whose denotation is to be computed, and restrict the truth table to

the desired model.

E.g., play with http:

//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.xls/

Use the program /projects/shapiro/CSE563/denotation
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Example Runs of denotation Program

cl-user(1): (denotation ’(if p (if q p))

’((p . True) (q . False)))

True

cl-user(2): (denotation

’(if BettyDrivesTom

(not TomIsThePassenger))

’((BettyDrivesTom . True)

(TomIsThePassenger . True)))

False
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Model Finding

A model satisfies a wfp if the wfp is True in that model.

If a wfp P is False in a model, M, then M satisfies ¬P .

A model satisfies a set of wfps if they are all True in the model.

A model,M, satisfies the wfps P1, . . . , Pn if and only ifM, satisfies

P1 ∧ . . . ∧ Pn.

Task: Given a set of wfps, A, find satisfying models.

I.e., models that assign all wfps in A the value True.
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Model Finding with a Spreadsheet

Play with http:

//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpw.xls/
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An Informal Model Finding Algorithm

(Exponential)

• Given: Wfps labeled True, False, or unlabeled.

• If any wfp is labeled both True and False, terminate with

failure.

• If all atomic wfps are labeled, return labeling as a model.

• If ¬P is

– labeled True, try labeling P False.

– labeled False, try labeling P True.

• If P ∧Q is

– labeled True, try labeling P and Q True.

– labeled False, try labeling P False, and try labeling Q False.
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Model Finding Algorithm, cont’d

• If P ∨Q is

– labeled False, try labeling P and Q False.

– labeled True, try labeling P True, and try labeling Q True.

• If P ⇒ Q is

– labeled False, try labeling P True and Q False.

– labeled True, try labeling P False,

and try labeling Q True.

• If P ⇔ Q is

– labeled True, try labeling P and Q both True,

and try labeling P and Q both False.

– labeled False, try labeling P True and Q False,

and try labeling P False and Q True.
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Tableau Procedure for Model Findinga

T : BP ⇒ ¬BD

T : TD ⇒ BP

F : ¬BD

Page 53

aBased on the semantic tableaux of Evert W. Beth, The Foundations of Math-

ematics, (Amsterdam: North Holland), 1959.



Tableau Procedure Example: Step 1

T : BD

T : BP ⇒ ¬BD

T : TD ⇒ BP

F : ¬BD ←
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Tableau Procedure Example: Step 2

F : BP T : ¬BD

×

�����
PPPP

T : BD

T : BP ⇒ ¬BD ←

T : TD ⇒ BP

F : ¬BD
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Tableau Procedure Example: Step 3

F : TD

√
T : BP

×

����
PPPP

F : BP
T : ¬BD

×

����
hhhhhhhh

T : BD

T : BP ⇒ ¬BD

T : TD ⇒ BP ←

F : ¬BD

Model: [[BD ]] = True; [[BP ]] = False; [[TD ]] = False
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Lisp Program for Tableau Procedure
Function: (models trueWfps &optional falseWfps trueAtoms falseAtoms)

<timberlake:~:1:62> mlisp

...

cl-user(1): :ld /projects/shapiro/CSE563/modelfinder

; Loading /projects/shapiro/CSE563/modelfinder.cl

cl-user(2): (models ’( (if BP (not BD)) (if TD BP)) ’((not BD)))

(((BD . True) (BP . False) (TD . False)))

cl-user(3): (models ’( BDT (if BDT (and BD TP)) (not (or TP BD))))

nil

cl-user(4): (models ’( (if BDT (and BD TP)) (if TDB (and TD BP))))

(((TD . True) (BP . True) (BD . True) (TP . True))

((BD . True) (TP . True) (TDB . False))

((TD . True) (BP . True) (BDT . False))

((BDT . False) (TDB . False)))
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Decreasoner,a An Efficient Model Finder

On nickelback.cse.buffalo.edu

or timberlake.cse.buffalo.edu,

do

cd /projects/shapiro/CSE563/decreasoner

and try

python ubdecreasonerP.py examples/ShapiroCSE563/cpwProp.e

and

python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropFindModels.e

Page 58

aDecreasoner is by Erik T. Mueller, and uses relsat, by Roberto J. Bayardo

Jr. and Robert C. Schrag, and walksat, by Bart Selman and Henry Kautz.



Decreasoner Example Input File

/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/

cpwPropFindModels.e:

;;; Example of Finding Models for Some Wfp

;;; In a SubDomain of Propositional Car Pool World

;;; Stuart C. Shapiro

;;; January 23, 2009

proposition BettyIsDriver ; Betty is the driver of the car.

proposition TomIsDriver ; Tom is the driver of the car.

proposition BettyIsPassenger ; Betty is the passenger in the car.

;;; A set of well-formed propositions to find models of within CPW

(BettyIsPassenger -> !BettyIsDriver).

(TomIsDriver -> BettyIsPassenger).

!!BettyIsDriver.
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Decreasoner Example Run

<timberlake:decreasoner:1:60> python ubdecreasonerP.py

examples/ShapiroCSE563/cpwPropFindModels.e

...

model 1:

BettyIsDriver.

!BettyIsPassenger.

!TomIsDriver.
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Semantic Properties of WFPs

• A wfp is satisfiable if it is True in at least one situation.

• A wfp is contingent if it is True in at least one situation and

False in at least one situation.

• A wfp is valid (|= P ) if it is True in every situation.

A valid wfp is also called a tautology.

• A wfp is unsatisfiable or contradictory

if it is False in every situation.
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Examples

P True True False False

Q True False True False

¬P False False True True

Q⇒ P True True False True

P ⇒ (Q⇒ P ) True True True True

P ∧ ¬P False False False False

¬P , Q⇒ P , and P ⇒ (Q⇒ P ) are satisfiable,

¬P and Q⇒ P are contingent,

P ⇒ (Q⇒ P ) is valid,

P ∧ ¬P is contradictory.
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Logical Entailment

{A1, . . . , An} logically entails B in logic L

A1, . . . , An |=L B

if B is True in every situation in which every Ai is True.

If L is assumed,

A1, . . . , An |= B

If n = 0, we have validity

|= B,

i.e., B is True in every situation.

Page 63



Examples

P True True False False

Q True False True False

¬P False False True True

Q⇒ P True True False True

P ⇒ (Q⇒ P ) True True True True

P ∧ ¬P False False False False

|= P ⇒ (Q⇒ P )

P |= Q⇒ P

Q,Q⇒ P |= P
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A Metatheorem

A1, . . . , An |= B

iff

A1 ∧ · · · ∧An |= B
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Semantic Deduction Theorem

(Metatheorem)

A1, . . . , An |= P if and only if |= A1 ∧ · · · ∧An ⇒ P .

So deciding validity and logical entailment are equivalent.
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Domain Knowledge (Rules)

Used to reduce the set of situations to those that “make sense”.
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Domain Rules for CarPool World

Betty is the driver ⇔ ¬Betty is the passenger

Tom is the driver ⇔ ¬Tom is the passenger

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

Tom drives Betty ∨ Betty drives Tom
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Sensible CarPool World Situations

The only 2 of the 64 in which all domain rules are True:

Denotation in Situation

Proposition 3 4

Betty drives Tom True False

Tom drives Betty False True

Betty is the driver True False

Tom is the driver False True

Betty is the passenger False True

Tom is the passenger True False

Betty drives Tom ⇔ ¬Tom is the driver True True
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General Effect of Domain Rules

The number of models that satisfy a set of wfps is reduced (or stays

the same) as the size of the set increases.

For a set of wfps, Γ, and a wfp P , if the number of models that

satisfy Γ ∪ {P} is strictly less than the number of models that

satisfy Γ, then P is independent of Γ.
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Computer Tests of CPW Domain Rules

Spreadsheet: http:

//www.cse.buffalo.edu/~shapiro/Courses/CSE563/cpwRules.xls

Decreasoner (on nickelback or timberlake):

cd /projects/shapiro/CSE563/decreasoner

python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e
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CarPool World Domain Rules in

Decreasoner
proposition BettyDrivesTom ; Betty drives Tom to work.

proposition TomDrivesBetty ; Tom drives Betty to work.

proposition BettyIsDriver ; Betty is the driver of the car.

proposition TomIsDriver ; Tom is the driver of the car.

proposition BettyIsPassenger ; Betty is the passenger in the car.

proposition TomIsPassenger ; Tom is the passenger in the car.

;;; CPW Domain Rules

BettyIsDriver <-> !BettyIsPassenger.

TomIsDriver <-> !TomIsPassenger.

BettyDrivesTom -> BettyIsDriver & TomIsPassenger.

TomDrivesBetty -> TomIsDriver & BettyIsPassenger.

TomDrivesBetty | BettyDrivesTom.
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Decreasoner on CPW with Domain Rules
python ubdecreasonerP.py examples/ShapiroCSE563/cpwPropRules.e

...

model 1:

BettyDrivesTom.

BettyIsDriver.

TomIsPassenger.

!BettyIsPassenger.

!TomDrivesBetty.

!TomIsDriver.

---

model 2:

BettyIsPassenger.

TomDrivesBetty.

TomIsDriver.

!BettyDrivesTom.

!BettyIsDriver.

!TomIsPassenger.
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The KRR Enterprise

(Propositional Logic Version)

Given a domain you are interested in reasoning about:

1. List the set of propositions (expressed in English) that captures

the basic information of interest in the domain.

2. Formalize the domain by creating one atomic wfp for each

proposition listed in step (1). List the atomic wfps, and, for each,

show the English proposition as its intensional semantics.
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The KRR Enterprise, Part 2

3. Using the atomic wfps, determine a set of domain rules so that

all, but only, the situations of the domain that make sense satisfy

them. Strive for a set of domain rules that is small and

independent.

4. Optionally, formulate an additional set of situation-specific wfps

that further restrict the domain to the set of situations you are

interested in. We will call this restricted domain the “subdomain”.

5. Letting Γ be the set of domain rules plus situation-specific wfps,

and A be any proposition you are interested in, A is True in the

subdomain if Γ |= A, is false in the subdomain if Γ |= ¬A, and

otherwise is True in some more specific situations of the

subdomain, and False in others.
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Computational Methods for Determining

Entailment and Validity

Version 1

(defun entails (KB Q)

"Returns t if the knowledge base KB entails the query Q;

else returns nil."

(loop for model in (models KB)

unless (denotation Q model)

do (return-from entails nil))

t)

Two problems:

1. models does not really return all the satisfying models;

2. entails does extra work.
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Tableau Methods

Model-Finding Refutation

To Show A1, . . . , An |= P :

• Try to find a model that satisfies A1, . . . , An but falsifies P .

• If you succeed, A1, . . . , An 6|= P .

• If you fail, A1, . . . , An |= P .

All refutation model-finding methods are commonly called “tableau

methods”.

Semantic Tableaux and Wang’s Algorithm are two tableau methods

that are decision procedures for logical entailment in

Propositional Logic.
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Semantic Tableauxa

A Model-Finding Refutation Procedure

The semantic tableau refutation procedure is the same as the

tableau model-finding procedure we saw earlier, except it uses

model finding refutation to show A1, . . . , An |= P .

The goal is that all branches be closed.
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aEvert W. Beth, The Foundations of Mathematics, (Amsterdam: North Hol-

land), 1959.



A Semantic Tableau to Prove

TD, TD ⇒ BP,BP ⇒ ¬BD |= ¬BD

T : TD

T : TD ⇒ BP

T : BP ⇒ ¬BD

F : ¬BD
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A Semantic Tableau to Prove

TD, TD ⇒ BP,BP ⇒ ¬BD |= ¬BD

T : BD

T : TD

T : TD ⇒ BP

T : BP ⇒ ¬BD

F : ¬BD ←
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A Semantic Tableau to Prove

TD, TD ⇒ BP,BP ⇒ ¬BD |= ¬BD

F : TD

×

T : BP

������
XXXXXX

T : BD

T : TD

T : TD ⇒ BP ←

T : BP ⇒ ¬BD

F : ¬BD
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A Semantic Tableau To Prove

TD, TD ⇒ BP,BP ⇒ ¬BD |= ¬BD

F : TD

×

F : BP

×

T : ¬BD

×

������
XXXXXX

T : BP

((((((((((((
XXXXXX

T : BD

T : TD

T : TD ⇒ BP

T : BP ⇒ ¬BD ←

F : ¬BD
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A Semantic Tableau to Prove

TD ⇒ BP,BP ⇒ ¬BD 6|= ¬BD

T : TD ⇒ BP

T : BP ⇒ ¬BD

F : ¬BD
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A Semantic Tableau to Prove

TD ⇒ BP,BP ⇒ ¬BD 6|= ¬BD

T : BD

T : TD ⇒ BP

T : BP ⇒ ¬BD

F : ¬BD ←
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A Semantic Tableau to Prove

TD ⇒ BP,BP ⇒ ¬BD 6|= ¬BD

F : TD T : BP

����
PPPP

T : BD

T : TD ⇒ BP ←

T : BP ⇒ ¬BD

F : ¬BD
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A Semantic Tableau to Prove

TD ⇒ BP,BP ⇒ ¬BD 6|= ¬BD

F : BP

√
T : ¬BD

×

����
aaaa

F : TD
T : BP

!!!!
hhhhhhhh

T : BD

T : TD ⇒ BP

T : BP ⇒ ¬BD ←

F : ¬BD

Can stop as soon as one satisfying model has been found.
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Wang’s Algorithma

A Model-Finding Refutation Procedure
wang(Twfps, Fwfps) {

/*

* Twfps and Fwfps are sets of wfps.

* Returns True if there is no model

* that satisfies Twfps and falsifies Fwfps;

* Otherwise, returns False.

*/

Note: is a version of models, but returns the opposite value.
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aHao Wang, Toward Mechanical Mathematics. IBM Journal of Research and

Development 4, (1960), 2-22. Reprinted in K. M. Sayre and F. J. Crosson (Eds.)

The Modeling of Mind: Computers and Intelligence. Simon and Schuster, New

York, 1963.



Wang Algorithm

if Twfps and Fwfps intersect, return True;

if every A ∈ Twfps ∪ Fwfps is atomic, return False;

if (P = (not A)) ∈ Twfps,

return wang(Twfps \ {P}, Fwfps ∪ {A});
if (P = (not A)) ∈ Fwfps,

return wang(Twfps ∪ {A}, Fwfps \ {P});
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Wang Algorithm

if (P = (and A B)) ∈ Twfps,

return wang((Twfps \ {P}) ∪ {A,B}, Fwfps);

if (P = (and A B)) ∈ Fwfps,

return wang(Twfps, (Fwfps \ {P}) ∪ {A})
and wang(Twfps, (Fwfps \ {P}) ∪ {B});

if (P = (or A B)) ∈ Twfps,

return wang((Twfps \ {P}) ∪ {A}, Fwfps);

and wang((Twfps \ {P}) ∪ {B}, Fwfps);

if (P = (or A B)) ∈ Fwfps,

return wang(Twfps, (Fwfps \ {P}) ∪ {A,B})
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Wang Algorithm

if (P = (if A B)) ∈ Twfps,

return wang(Twfps \ {P}, Fwfps ∪ {A})
and wang((Twfps \ {P}) ∪ {B}, Fwfps);

if (P = (if A B)) ∈ Fwfps,

return wang(Twfps ∪ {A}, (Fwfps \ {P}) ∪ {B});

if (P = (iff A B)) ∈ Twfps,

return wang((Twfps \ {P}) ∪ {A,B}, Fwfps)

and wang(Twfps \ {P}, Fwfps ∪ {A,B});
if (P = (iff A B)) ∈ Fwfps,

return wang(Twfps ∪ {A}, (Fwfps \ {P}) ∪ {B})
and wang(Twfps ∪ {B}, (Fwfps \ {P}) ∪ {A});
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Implemented Wang Function

(wang ’(A1, . . . , An) ’(P))

Returns t if A1, . . . , An |= P ;

nil otherwise.
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Alternative View of Wang Function

(wang KB (Query))

Returns t if the Query follows from the KB

nil otherwise.

Front end:

(entails KB Query)

Returns t if the Query follows from the KB

nil otherwise.
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Using Wang’s Algorithm

on a Tautology

(entails ’() ’(if A (if B A)))

0[2]: (wang nil ((if A (if B A))))

1[2]: (wang (A) ((if B A)))

2[2]: (wang (B A) (A))

2[2]: returned t

1[2]: returned t

0[2]: returned t

t
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Using Wang’s Algorithm

on a Non-Tautology

(entails ’() ’(if A (and A B)))

0[2]: (wang nil ((if A (and A B))))

1[2]: (wang (A) ((and A B)))

2[2]: (wang (A) (A))

2[2]: returned t

2[2]: (wang (A) (B))

2[2]: returned nil

1[2]: returned nil

0[2]: returned nil

nil
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Using Wang’s Algorithm

to see if

TD, TD ⇒ BP,BP ⇒ ¬BD |= ¬BD

(entails ’(TD (if TD BP) (if BP (not BD))) ’(not BD))

0[2]: (wang (TD (if TD BP) (if BP (not BD))) ((not BD)))

1[2]: (wang (TD (if BP (not BD))) (TD (not BD)))

1[2]: returned t

1[2]: (wang (BP TD (if BP (not BD))) ((not BD)))

2[2]: (wang (BP TD) (BP (not BD)))

2[2]: returned t

2[2]: (wang ((not BD) BP TD) ((not BD)))

2[2]: returned t

1[2]: returned t

0[2]: returned t

t
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Properties of Wang’s Algorithm

1. Wang’s Algorithm is sound:

If (wang A ’(B)) = t then A |= B

2. Wang’s Algorithm is complete:

If A |= B then (wang A ’(B)) = t

3. Wang’s Algorithm is a decision procedure:

For any valid inputs A, B,

(wang A ’(B)) terminates

and returns t iff A |= B
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Example: Tom’s Evening Domaina

If there is a good movie on TV and Tom doesn’t have an early

appointment the next morning, then he stays home and watches a

late movie. If Tom needs to work and doesn’t have an early

appointment the next morning, then he works late. If Tom works

and needs his reference materials, then he works at his office. If

Tom works late at his office, then he returns to his office. If Tom

watches a late movie or works late, then he stays up late.

Assume: Tom needs to work, doesn’t have an early appointment,

and needs his reference materials.

Prove: Tom returns to his office and stays up late.
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2.3.3 Proof Theory of the Standard Propositional Logic

• Specifies when a given wfp can be derived correctly from a set

of (other) wfps.

A1, . . . , An ` P

• Determines what wfps are theorems of the logic.

` P

• Depends on the notion of proof.
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Hilbert-Style Syntactic Inference

• Set of Axioms.

• Small set of Rules of Inference.
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Hilbert-Style Proof

• A proof of a theorem P is

– An ordered list of wfps ending with P

– Each wfp on the list is

∗ Either an axiom

∗ or follows from previous wfps in the list by one of the

rules of inference.
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Hilbert-Style Derivation

• A derivation of P from A1, . . . , An is

– A list of wfps ending with P

– Each wfp on the list is

∗ Either an axiom

∗ or some Ai

∗ or follows from previous wfps in the list by one of the

rules of inference.
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Example Hilbert-Style Axiomsa

All instances of:

(A1). (A ⇒ (B ⇒ A))

(A2). ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

(A3). ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))
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Hilbert-Style Rule of Inference

Modus Ponens

A,A ⇒ B

B
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Example Hilbert-Style Proof

that ` A⇒ A

(1) (A⇒ ((A⇒ A)⇒ A))

⇒ ((A⇒ (A⇒ A))⇒ (A⇒ A)) Instance of A2

(2) A⇒ ((A⇒ A)⇒ A) Instance of A1

(3) (A⇒ (A⇒ A))⇒ (A⇒ A) From 1, 2 by MP

(4) A⇒ (A⇒ A) Instance of A1

(5) A⇒ A From 3, 4 by MP
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Example Hilbert-Style Derivation

that

Tom is the driver

Tom is the driver ⇒ Betty is the passenger ,

Betty is the passenger ⇒ ¬Betty is the driver ,

` ¬Betty is the driver

(1) Tom is the driver Assumption

(2) Tom is the driver ⇒ Betty is the passenger Assumption

(3) Betty is the passenger From 1, 2 by MP

(4) Betty is the passenger ⇒ ¬Betty is the driver Assumption

(5) ¬Betty is the driver From 3, 4 by MP
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Some AI Connections

AI Logic

domain knowledge assumptions

or domain rules or non-logical axioms

inference engine procedures rules of inference

knowledge base proof
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Natural Deduction

(Style of Syntactic Inference)

• No Axioms.

• Large set of Rules of Inference.

– A few structural rules of inference.

– An introduction rule and an elimination rule for each

connective.

• A method of subproofs.a
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aFrancis Jeffry Pelletier, A History of Natural Deduction and Elementary

Logic Textbooks, in J. Woods, B. Brown (eds) Logical Consequence: Rival Ap-
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Fitch-Style Proofa

• A proof of a theorem P is

– An ordered list of wfps and subproofs ending with P

– Each wfp or subproof on the list must be justified by a rule

of inference.

• ` P is read “P is a theorem.”
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aBased on Frederic B. Fitch, Symbolic Logic: An Introduction, (New York:
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Fitch-Style Derivation

• A derivation of a wfp P from an assumption A is a

hypothetical subproof whose hypothesis is A and which

contains

– An ordered list of wfps and inner subproofs ending with P

– Each wfp or inner subproof on the list must be justified by a

rule of inference.

• A ` P is read “P can be derived from A.”

• A Meta-theorem: A1 ∧ . . . ∧An ` P iff A1, . . . , An ` P
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Format of Proof/Derivation

.

.

.

.

.

.

lineNumber Wfp RuleOfInference, lineNumber(s)

.

.

.

.

.

.
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Structural Rules of Inference

i A1

...

i+ n− 1 An Hyp

i A

...

j A Rep, i

i A

...

.

.

.

...

j A Reit, i
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Rules for ⇒

i A1

...

i+ n− 1 An Hyp

...

j B

k (A1 ∧ . . . ∧An)⇒ B ⇒I, i–j

i A

...

j A⇒ B

k B ⇒E, i, j
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Example Fitch-Style Proof

that ` A⇒ A

1. A Hyp

2. A Rep, 1

3. A⇒ A ⇒ I, 1–2
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Fitch-Style Proof of Axiom A1

1. A Hyp

2. B Hyp

3. A Reit, 1

4. B ⇒ A ⇒ I, 2–3

5. A⇒ (B ⇒ A) ⇒ I, 1–4
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Example Fitch-Style Derivation

that

Tom is the driver

Tom is the driver ⇒ Betty is the passenger ,

Betty is the passenger ⇒ ¬Betty is the driver ,

` ¬Betty is the driver

1. Tom is the driver

2. Tom is the driver⇒ Betty is the passenger

3. Betty is the passenger⇒ ¬Betty is the driver Hyp

4. Betty is the passenger ⇒ E, 1, 2

5. ¬Betty is the driver ⇒ E, 4, 3
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Rules for ¬

i. A1

...

i+ n− 1 An Hyp

...

j. B

j + 1. ¬B

j + 2. ¬(A1 ∧ . . . ∧An) ¬I, i–(j + 1)

i. ¬¬A

j. A ¬E, i
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Fitch-Style Proof of Axiom A3

1. ¬B ⇒ ¬A Hyp

2. ¬B ⇒ A Hyp

3. ¬B Hyp

4. ¬B ⇒ ¬A Reit, 1

5. ¬B ⇒ A Reit, 2

6. A ⇒ E, 3, 5

7. ¬A ⇒ E, 3, 4

8. ¬¬B ¬I, 3–7

9. B ¬E, 8

10. (¬B ⇒ A)⇒ B ⇒ I, 2–9

11. (¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B) ⇒ I, 1–10
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Rules for ∧

i1. A1

...

in. An

j. A1 ∧ · · · ∧An ∧I, i1, . . . , in

i. A1 ∧ · · · ∧An
...

j. Ak ∧E, i
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Proof that

` (A ∧B ⇒ C)⇒ (A⇒ (B ⇒ C))

1. A ∧ B ⇒ C Hyp

2. A Hyp

3. B Hyp

4. A Reit, 2

5. A ∧ B ∧I, 4, 3

6. A ∧ B ⇒ C Reit, 1

7. C ⇒ E, 5, 6

8. B ⇒ C ⇒ I, 3–7

9. A⇒ (B ⇒ C) ⇒ I, 2–8

10. (A ∧ B ⇒ C)⇒ (A⇒ (B ⇒ C)) ⇒ I, 1–9
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Proof that

` (A⇒ (B ⇒ C))⇒ (A ∧B ⇒ C)

1. A⇒ (B ⇒ C) Hyp

2. A ∧B Hyp

3. A ∧E, 2

4. B ∧E, 2

5. A⇒ (B ⇒ C) Reit, 1

6. B ⇒ C ⇒ E, 3, 5

7. C ⇒ E, 4, 6

8. A ∧B ⇒ C ⇒ I, 2–7

9. (A⇒ (B ⇒ C))⇒ (A ∧B ⇒ C) ⇒ I, 1–8
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Rules for ∨
i. Ai

j. A1 ∨ · · · ∨Ai ∨ · · · ∨An ∨I, i

i. A1 ∨ · · · ∨An
...

j1. A1 ⇒ B

...

jn. An ⇒ B

k. B ∨E, i, j1, . . . , jn
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Proof that

` (A⇒ B)⇒ (¬A ∨B)
1. A ⇒ B Hyp

2. ¬(¬A ∨ B) Hyp

3. ¬A Hyp

4. ¬A ∨ B ∨I, 3

5. ¬(¬A ∨ B) Reit, 2

6. ¬¬A ¬I, 3–5

7. A ¬E, 6

8. A ⇒ B Reit, 1

9. B ⇒ E, 7, 8

10. ¬A ∨ B ∨I, 9

11. ¬(¬A ∨ B) Rep, 2

12. ¬¬(¬A ∨ B) ¬I, 2–11

13. ¬A ∨ B ¬E, 12

14. (A ⇒ B) ⇒ (¬A ∨ B) ⇒ I, 1–14
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Proof that ` (A ∨B) ∧ ¬A⇒ B

1. (A ∨ B) ∧ ¬A Hyp

2. ¬A ∧E, 1

3. A ∨ B ∧E, 1

4. A Hyp

5. ¬B Hyp

6. A Reit, 4

7. ¬A Reit, 2

8. ¬¬B ¬I, 5–7

9. B ¬E, 8

10. A ⇒ B ⇒ I, 4–9

11. B Hyp

12. B Rep, 11

13. B ⇒ B ⇒ I, 11–12

14. B ∨E, 3, 10, 13

15. (A ∨ B) ∧ ¬A ⇒ B ⇒ I, 1–14
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Rules for ⇔

i. A⇒ B

...

j. B ⇒ A

k. A⇔ B ⇔ I, i, j

i. A

...

j. A⇔ B

k. B ⇔E, i, j

i. B

...

j. A⇔ B

k. A ⇔E, i, j
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Proof that

` (A⇒ (B ⇒ C))⇔ (A ∧B ⇒ C)

Proof from p. 120

9. (A⇒ (B ⇒ C))⇒ (A ∧B ⇒ C) ⇒ I

Proof from p. 119

18. (A ∧B ⇒ C)⇒ (A⇒ (B ⇒ C)) ⇒ I

19. (A⇒ (B ⇒ C))⇔ (A ∧B ⇒ C) ⇔ I, 9, 18
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CarPool World Derivation

1. Tom is the driver ⇔ ¬Tom is the passenger

2. Tom is the passenger ⇔ Betty is the driver

3. Betty is the driver ⇔ ¬Betty is the passenger

4. Tom is the driver Hyp

5. ¬Tom is the passenger ⇔ E, 4, 1

6. ¬Betty is the passenger Hyp

7. Betty is the driver ⇔ ¬Betty is the passenger Reit, 3

8. Betty is the driver ⇔ E, 6, 7

9. Tom is the passenger ⇔ Betty is the driver Reit, 2

10. Tom is the passenger ⇔ E, 8, 9

11. ¬Tom is the passenger Reit, 5

12. ¬¬Betty is the passenger ¬I, 6–11

13. Betty is the passenger ¬E, 12
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Implementing Natural Deduction

Heuristics:

If trying to prove/derive a non-atomic wfp,

try the introduction rule for the major connective.

If trying to prove/derive a wfp,

and that wfp is a component of a wfp,

try the relevant elimination rule.
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Using SNePS 3

cl-user(2): :ld /projects/snwiz/Sneps3/sneps3

...

"Change package to snuser."

cl-user(3): :pa snuser

snuser(4): (showproofs)

nil

snuser(5): (askif ’(if A A))

Let me assume that A

Since A can be derived after assuming A

I infer wft1!: (if A A) by Implication Introduction.

wft1!: (if A A)
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Derivation by SNePS 3
snuser(12): (clearkb)

nil

snuser(13): (assert ’TomIsTheDriver)

TomIsTheDriver!

snuser(14): (assert ’(if TomIsTheDriver BettyIsThePassenger))

wft1!: (if TomIsTheDriver! BettyIsThePassenger)

snuser(15): (assert ’(if BettyIsThePassenger (not BettyIsTheDriver)))

wft3!: (if BettyIsThePassenger (not BettyIsTheDriver))

snuser(16): (askif ’(not BettyIsTheDriver))

Since wft1!: (if TomIsTheDriver! BettyIsThePassenger)

and TomIsTheDriver!

I infer BettyIsThePassenger! by Implication Elimination.

Since wft3!: (if BettyIsThePassenger! (not BettyIsTheDriver))

and BettyIsThePassenger!

I infer wft2!: (not BettyIsTheDriver) by Implication Elimination.

wft2!: (not BettyIsTheDriver)

snuser(17): (askif ’BettyIsThePassenger) ; Lemma

BettyIsThePassenger!
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SNePS 3 Proves Axiom A1

snuser(9): (clearkb)

nil

snuser(10): (askif ’(if A (if B A)))

Let me assume that A

Let me assume that B

Since A can be derived after assuming B

I infer wft1?: (if B A) by Implication Introduction.

Since wft1?: (if B A) can be derived after assuming A

I infer wft2!: (if A (if B A)) by Implication Introduction.

wft2!: (if A (if B A))
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Another Derivation by SNePS 3
snuser(24): (clearkb)

nil

snuser(25): (assert ’(iff TomIsTheDriver (not TomIsThePassenger)))

wft2!: (iff TomIsTheDriver (not TomIsThePassenger))

snuser(26): (assert ’(iff TomIsThePassenger BettyIsTheDriver))

wft3!: (iff TomIsThePassenger BettyIsTheDriver)

snuser(27): (assert ’(iff BettyIsTheDriver (not BettyIsThePassenger)))

wft5!: (iff (not BettyIsThePassenger) BettyIsTheDriver)

snuser(28): (assert ’TomIsTheDriver)

TomIsTheDriver!

snuser(29): (askif ’BettyIsThePassenger)

Since wft2!: (iff TomIsTheDriver! (not TomIsThePassenger))

and TomIsTheDriver!

I infer wft1!: (not TomIsThePassenger) by Equivalence Elimination.

Since wft3!: (iff TomIsThePassenger BettyIsTheDriver)

and wft1!: (not TomIsThePassenger)

I infer wft7!: (not BettyIsTheDriver) by Equivalence Elimination.

Since wft5!: (iff (not BettyIsThePassenger) BettyIsTheDriver)

and wft7!: (not BettyIsTheDriver)

I infer BettyIsThePassenger! by Equivalence Elimination.

BettyIsThePassenger!
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More Connections

• Deduction Theorem: A ` P if and only if ` A⇒ P .

• So proving theorems and deriving conclusions from

assumptions are equivalent.

• But no atomic proposition is a theorem.

• So theorem proving makes more use of Introduction Rules than

most AI reasoning systems.
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2.4 Important Properties of Logical Systems

Soundness: ` P implies |= P

Consistency: not both ` P and ` ¬P

Completeness: |= P implies ` P
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More Connections

• If at most 1 of |= P and |= ¬P
then soundness implies consistency.

• Soundness is the essence of “correct reasoning.”

• Completeness less important for running systems since a proof

may take too long to wait for.

• The Propositional Logics we have been looking at are complete.

• Gödel’s Incompleteness Theorem: A logic strong enough to

formalize arithmetic is either inconsistent or incomplete.
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More Connections

A1, . . . , An ` P ⇔ ` A1 ∧ . . . ∧An ⇒ P

soundness ⇓⇑ completeness soundness ⇓⇑ completeness

A1, . . . , An |= P ⇔ |= A1 ∧ . . . ∧An ⇒ P

Page 135



2.5 Clause Form Propositional Logic

2.5.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.5.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

2.5.3 Proof Theory: Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

2.5.4 Resolution Refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2.5.5 Translating Standard Wfps into Clause Form . . . . . . . . . . . . . 159
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2.5.1 Clause Form Syntax

Syntax of Atoms and Literals

Atomic Propositions:

• Any letter of the alphabet

• Any letter with a numerical subscript

• Any alphanumeric string.

Literals:

If P is an atomic proposition, P and ¬P are literals.

P is called a positive literal

¬P is called a negative literal.
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Clause Form Syntax

Syntax of Clauses and Sets of Clauses

Clauses: If L1, . . . , Ln are literals

then the set {L1, . . . , Ln} is a clause.

Sets of Clauses: If C1, . . . , Cn are clauses

then the set {C1, . . . , Cn} is a set of clauses.
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2.5.2 Clause Form Semantics

Atomic Propositions

Intensional: [P ] is some proposition in the domain.

Extensional: [[P ]] is either True or False.

Page 139



Clause Form Semantics: Literals

Positive Literals: The meaning of P as a literal is the same as it

is as an atomic proposition.

Negative Literals:

Intensional:

[¬P ] means that it is not the case that [P ].

Extensional: [[¬P ]] is True if [[P ]] is False;

Otherwise, it is False.
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Clause Form Semantics: Clauses

Intensional:

[{L1 , . . . ,Ln}] = [L1 ] and/or . . . and/or [Ln ].

Extensional:

[[{L1 , . . . ,Ln}]] is True

if at least one of [[L1 ]], . . . , [[Ln ]] is True;

Otherwise, it is False.
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Clause Form Semantics: Sets of Clauses

Intensional:

[{C1 , . . . ,Cn}] = [C1 ] and . . . and [Cn ].

Extensional:

[[{C1 , . . . ,Cn}]] is True if [[C1 ]] and . . . and [[Cn ]] are all True;

Otherwise, it is False.
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2.5.3 Clause Form Proof Theory: Resolution

Notion of Proof: None!

Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of

assumption clauses A1, . . . , An.

Rule of Inference: A clause may be added to a set of clauses if

justified by resolution.

Derived Clause: If clause Q has been added to a set of clauses

initialized with the set of assumption clauses A1, . . . , An by one

or more applications of resolution,

then A1, . . . , An ` Q.
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Resolution

{P,L1, . . . , Ln}, {¬P,Ln+1, . . . , Lm}

{L1, . . . , Ln, Ln+1, . . . , Lm}

Resolution is sound, but not complete!
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Example Derivation

1. {¬TomIsTheDriver, ¬TomIsThePassenger} Assumption

2. {TomIsThePassenger, BettyIsThePassenger} Assumption

3. {TomIsTheDriver} Assumption

4. {¬TomIsThePassenger} R,1,3

5. {BettyIsThePassenger} R,2,4
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Example of Incompleteness

{P} |= {P,Q}

but

{P} 6` {P,Q}

because resolution does not apply to {{P}}.
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2.5.4 Resolution Refutation

• Notice that {{P}, {¬P}} is contradictory.

• Notice that resolution applies to {P} and {¬P}
producing {}, the empty clause.

• If a set of clauses is contradictory, repeated application of

resolution is guaranteed to produce {}.
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Implications

• Set of clauses {A1, . . . , An, Q} is contradictory

• means (A1 ∧ . . . ∧An ∧Q) is False in all models

• means whenever (A1 ∧ . . . ∧An) is True, Q is False

• means whenever (A1 ∧ . . . ∧An) is True ¬Q is True

• means A1, . . . , An |= ¬Q.

Page 148



Negation and Clauses

• ¬{L1, . . . , Ln} = {{¬L1}, . . . , {¬Ln}}.

• ¬L =

 ¬A if L = A

A if L = ¬A
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Resolution Refutation

To decide if A1, . . . , An |= Q:

1. Let S = {A1, . . . , An} ∪ ¬Q (Note: ¬Q is a set of clauses.)

2. Repeatedly apply resolution to clauses in S.

(Determine if {A1, . . . , An} ∪ ¬Q ` {})

3. If generate {}, A1, . . . , An |= Q.

(If {A1, . . . , An} ∪ ¬Q ` {} then A1, . . . , An |= Q)

4. If reach point where no new clause can be generated,

but {} has not appeared, A1, . . . , An 6|= Q.

(If {A1, . . . , An} ∪ ¬Q 6` {} then A1, . . . , An 6|= Q)
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Example 1

To decide if {P} |= {P,Q}

S = {{P}, {¬P}, {¬Q}}

1. {P} Assumption

2. {¬P} From query clause

3. {} R, 1, 2
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Example 2
To decide if

{¬TomIsTheDriver ,¬TomIsThePassenger},
{TomIsThePassenger ,BettyIsThePassenger},
{TomIsTheDriver} |= {BettyIsThePassenger}

1. {¬TomIsTheDriver ,¬TomIsThePassenger} Assumption

2. {TomIsThePassenger ,BettyIsThePassenger} Assumption

3. {TomIsTheDriver} Assumption

4. {¬BettyIsThePassenger} From query clause

5. {TomIsThePassenger} R, 2, 4

6. {¬TomIsTheDriver} R, 1, 5

7. {} R, 3, 6
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Resolution Efficiency Rules

Tautology Elimination: If clause C contains literals L and ¬L,

delete C from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause C contains a literal A (¬A)

and no clause contains a literal ¬A (A), delete C from the set

of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses

C1 and C2 such that C1 ⊆ C2, delete C2 from the set of

clauses. (Check throughout.)

These rules delete unhelpful clauses.
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Resolution Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Set of Support: One clause in each pair being resolved must

descend from the query.

Many others

These are heuristics for finding {} faster.
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Example 1 Using prover

cl-user(2): :ld /projects/shapiro/AIclass/prover

; Fast loading /projects/shapiro/AIclass/prover.fasl

cl-user(3): :pa prover

prover(4): (prove ’(P) ’(or P Q))

1 (P) Assumption

2 ((not P)) From Query

3 ((not Q)) From Query

Deleting 3 ((not Q))

because Q is not used positively in any clause.

4 nil R,2,1,{}

QED

Page 155



Example 2 Using prover

prover(19): (prove ’((or (not TomIsTheDriver) (not TomIsThePassenger))

(or TomIsThePassenger BettyIsThePassenger)

TomIsTheDriver)

’BettyIsThePassenger)

1 (TomIsTheDriver) Assumption

2 ((not TomIsTheDriver) (not TomIsThePassenger)) Assumption

3 (TomIsThePassenger BettyIsThePassenger) Assumption

4 ((not BettyIsThePassenger)) From Query

5 (TomIsThePassenger) R,4,3,{}

Deleting 3 (TomIsThePassenger BettyIsThePassenger)

because it’s subsumed by 5 (TomIsThePassenger)

6 ((not TomIsTheDriver)) R,5,2,{}

Deleting 2 ((not TomIsTheDriver) (not TomIsThePassenger))

because it’s subsumed by 6 ((not TomIsTheDriver))

7 nil R,6,1,{}
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Example 1 Using SNARK
cl-user(5): :ld /projects/shapiro/CSE563/snark

; Loading /projects/shapiro/CSE563/snark.cl

...

cl-user(6): :pa snark-user

snark-user(7): (initialize)

...

snark-user(8): (assert ’P)

nil

snark-user(9): (prove ’(or P Q))

(Refutation

(Row 1

P

assertion)

(Row 2

false

(rewrite ~conclusion 1))

)

:proof-found
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Properties of Resolution Refutation

Resolution Refutation is sound, complete, and a decision procedure

for Clause Form Propositional Logic.

It remains so when Tautology Elimination, Pure-Literal

Elimination, Subsumption Elimination and the Unit-Preference

Strategy are included.

It remains so when Set of Support is used as long as the

assumptions are not contradictory.
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2.5.5 Equivalence of Standard Propositional Logic and

Clause FormLogic

Every set of clauses,

{{L1,1, . . . , L1,n1}, . . . , {Lm,1, . . . , Lm,nm}}

has the same semantics as the standard wfp

((L1,1 ∨ · · · ∨ L1,n1
) ∧ · · · ∧ (Lm,1 ∨ · · · ∨ Lm,nm

))

That is, there is a translation from any set of clauses into a

well-formed proposition of standard propositional logic.

Question: Is there a translation from any well-formed proposition

of standard propositional logic into a set of clauses?

Answer: Yes!
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Translating Standard Wfps

into Clause Form

Conjunctive Normal Form (CNF)

A standard wfp is in CNF if it is a conjunction of disjunctions of

literals.

((L1,1 ∨ · · · ∨ L1,n1) ∧ · · · ∧ (Lm,1 ∨ · · · ∨ Lm,nm))

Translation technique:

1. Turn any arbitrary wfp into CNF.

2. Translate the CNF wfp into a set of clauses.
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Translating Standard Wfps

into Clause Form

Useful Meta-Theorem:

The Subformula Property

If A is (an occurrence of) a subformula of B,

and |= A⇔ C,

then |= B ⇔ B{C/A}
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Translating Standard Wfps

into Clause Form

Step 1

Eliminate occurrences of ⇔ using

|= (A⇔ B)⇔ ((A⇒ B) ∧ (B ⇒ A))

From: (LivingThing ⇔ (Animal ∨Vegetable))

To:

((LivingThing ⇒ (Animal ∨Vegetable))

∧((Animal ∨Vegetable)⇒ LivingThing))
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Translation Step 2

Eliminate occurrences of ⇒ using

|= (A⇒ B)⇔ (¬A ∨B)

From:

((LivingThing ⇒ (Animal ∨Vegetable))

∧((Animal ∨Vegetable)⇒ LivingThing))

To:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧(¬(Animal ∨Vegetable) ∨ LivingThing))
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Translation Step 3

Translate to miniscope form using

|= ¬(A ∧B)⇔ (¬A ∨ ¬B)

|= ¬(A ∨B)⇔ (¬A ∧ ¬B)

|= ¬(¬A)⇔ A

From:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧(¬(Animal ∨Vegetable) ∨ LivingThing))

To:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧((¬Animal ∧ ¬Vegetable) ∨ LivingThing))
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Translation Step 4

CNF: Translate into Conjunctive Normal Form, using

|= (A ∨ (B ∧ C))⇔ ((A ∨B) ∧ (A ∨ C))

|= ((B ∧ C) ∨A)⇔ ((B ∨A) ∧ (C ∨A))

From:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧((¬Animal ∧ ¬Vegetable) ∨ LivingThing))

To:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧((¬Animal ∨ LivingThing) ∧ (¬Vegetable ∨ LivingThing)))
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Translation Step 5

Discard extra parentheses using the associativity of ∧ and ∨.

From:

((¬LivingThing ∨ (Animal ∨Vegetable))

∧((¬Animal ∨ LivingThing) ∧ (¬Vegetable ∨ LivingThing)))

To:

((¬LivingThing ∨Animal ∨Vegetable)

∧(¬Animal ∨ LivingThing)

∧(¬Vegetable ∨ LivingThing))
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Translation Step 6

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

((¬LivingThing ∨Animal ∨Vegetable)

∧(¬Animal ∨ LivingThing)

∧(¬Vegetable ∨ LivingThing))

To:

{{¬LivingThing , Animal , Vegetable},
{¬Animal , LivingThing},
{¬Vegetable, LivingThing}}
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Use of Translation

A1, . . . , An |=Standard Q

iff

The translation of A1 ∧ · · · ∧An ∧ ¬Q into a set of clauses

` {}
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prover Example

To prove
(LivingThing ⇔ Animal ∨Vegetable), (LivingThing ∧ ¬Animal) |= Vegetable

prover(20): (prove ’((iff LivingThing (or Animal Vegetable))

(and LivingThing (not Animal)))

’Vegetable)

1 (LivingThing) Assumption

2 ((not Animal)) Assumption

3 ((not Animal) LivingThing) Assumption

4 ((not Vegetable) LivingThing) Assumption

5 ((not LivingThing) Animal Vegetable) Assumption

6 ((not Vegetable)) From Query

Deleting 3 ((not Animal) LivingThing)

because it’s subsumed by 1 (LivingThing)

Deleting 4 ((not Vegetable) LivingThing)

because it’s subsumed by 1 (LivingThing)
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prover Example, continued

1 (LivingThing) Assumption

2 ((not Animal)) Assumption

5 ((not LivingThing) Animal Vegetable) Assumption

6 ((not Vegetable)) From Query

7 ((not LivingThing) Animal) R,6,5,{}

Deleting 5 ((not LivingThing) Animal Vegetable)

because it’s subsumed by 7 ((not LivingThing) Animal)

8 (Animal) R,7,1,{}

9 ((not LivingThing)) R,7,2,{}

10 nil R,9,1,{}

QED

Page 170



Connections
Modus Ponens

A,A⇒ B

B

Resolution

{A}, {¬A,B}

{B}

Modus Tollens

A⇒ B,¬B

¬A

Resolution

{¬A,B}, {¬B}

{¬A}

Disjunctive Syllogism

A ∨ B,¬A

B

Resolution

{A,B}, {¬A}

{B}

Chaining

A⇒ B,B ⇒ C

A⇒ C

Resolution

{¬A,B}, {¬B,C}

{¬A,C}
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More Connections

Clause Rule

{¬A1, . . . ,¬An, C} (A1 ∧ · · · ∧An)⇒ C

Set of Support Back-chaining
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3 Predicate Logic Over Finite Models

3.1 CarPool World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.2 The “Standard” Finite-Model Predicate Logic . . . . . . . . . . . . . . 175

3.3 Clause Form Finite-Model Predicate Logic . . . . . . . . . . . . . . . . . 211
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3.1 CarPool World
Propositional Logic

Tom drives Betty Betty drives Tom

Tom is the driver Betty is the driver

Tom is the passenger Betty is the passenger

related only by the domain rules.

Predicate Logic

Drives(Tom,Betty) Drives(Betty ,Tom)

Driver(Tom) Driver(Betty)

Passenger(Tom) Passenger(Betty)

shows two properties, one relation, and two individuals.
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3.2 The “Standard”

Finite-Model Predicate Logic

1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2. Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

3. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

4. Model Checking in Finite-Model Predicate Logic . . . . . . . . . . . 202
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3.2.1 Syntax of the “Standard”

Finite-Model Predicate Logic

Atomic Symbols

Individual Constants:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript,

• any character string not containing blanks nor other

punctuation marks.

For example: a, B12, T om, Tom’s mother-in-law.
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Atomic Symbols, Part 2

Variables:

• Any letter of the alphabet (preferably late),

• any (such) letter with a numeric subscript.

For example: u, v6.
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Atomic Symbols, Part 3

Predicate Symbols:

• Any letter of the alphabet (preferably late middle),

• any (such) letter with a numeric subscript,

• any character string not containing blanks.

For example: P,Q4,Drives.

Each Predicate Symbol must have a particular arity.

Use superscript for explicit arity.

For example: P1 ,Drives2 ,Q3
2
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Atomic Symbols, Part 4

In any specific predicate logic language

Individual Constants,

Variables,

Predicate Symbols

must be disjoint.

Set of individual constants and of predicate symbols must be finite.
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Terms

• Every individual constant and variable is a term.

• Nothing else is a term.
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Atomic Formulas

If Pn is a predicate symbol of arity n,

and t1, . . . , tn are terms,

then Pn(t1, . . . , tn) is an atomic formula.

E.g.: Passenger1 (Tom),Drives2 (Betty , y)

(The superscript may be omitted if no confusion results.)
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Well-Formed Formulas (wffs):

Every atomic formula is a wff.

If P is a wff, then so is (¬P ).

If P and Q are wffs, then so are

(P ∧Q) (P ∨Q)

(P ⇒ Q) (P ⇔ Q)

If P is a wff and x is a variable,

then ∀x(P ) and ∃x(P ) are wffs.

Parentheses may be omitted or replaced by square brackets if no

confusion results.

We will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn).

∀x(∀y(P )) may be abbreviated as ∀x, y(P ).

∃x(∃y(P )) may be abbreviated as ∃x, y(P ).
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Quantifiers:

In ∀xP and ∃xP

∀ called the universal quantifier.

∃ called the existential quantifier.

P is called the scope of quantification.
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Free and Bound Variables

Every occurrence of x in P, not in the scope of some other

occurrence of ∀x or ∃x, is said to be free in P and bound in ∀xP
and ∃xP.

Every occurrence of every variable other than x that is free in P is

also free in ∀xP and ∃xP.

∀x[P (x, y)⇔ [(∃x∃zQ(x, y, z))⇒ R(x, y)]]
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Open, Closed, and Ground

A wff with a free variable is called open.

A wff with no free variables is called closed,

An expression with no variables is called ground.
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CarPool World Domain Rules
PropositionalLogic

Betty is the driver ⇔ ¬Betty is the passenger

Tom is the driver ⇔ ¬Tom is the passenger

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

Tom drives Betty ∨ Betty drives Tom

PredicateLogic

∀x (Driver(x )⇔ ¬Passenger(x ))

∀x , y(Drives(x , y)⇒ (Driver(x ) ∧ Passenger(y)))

Drives(Tom,Betty) ∨Drives(Betty ,Tom)
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3.2.2 Substitutions

Syntax

Pairs: t/v (Read : “t for v”)

• t is any term

• v is any variable

Substitutions: {t1/v1, . . . , tn/vn}
• i 6= j ⇒ vi 6= vj
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Terminology

σ = {t1/v1, . . . , tn/vn}

ti is a term in σ

vi is a variable of σ

Say ti/vi ∈ σ and vi ∈ σ,

but not ti ∈ σ

Note: x is not a variable of {x/y},
i.e. x/y ∈ {x/y}, y ∈ {x/y}, x 6∈ {x/y}
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Substitution Application

For expression A and substitution σ = {t1/v1, . . . , tn/vn}

Aσ: replace every free occurrence of each vi in A by ti

E.g.:

P (x, y){x/y, y/x} = P (y, x)

∀x[P (x, y)⇔ [(∃x∃zQ(x, y, z))⇒ R(x, y, z)]]{a/x, b/y, c/z}
= ∀x[P (x, b)⇔ [(∃x∃zQ(x, b, z))⇒ R(x, b, c)]]
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3.2.3 Semantics of

Finite-Model Predicate Logic

Assumes a Finite Domain, D, of

• individuals,

• sets of individuals,

• relations over individuals

Let I be the set of all individuals in D.
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Semantics of Individual Constants

[a] = [[a]] = some particular individual in I.

There is no anonymous individual.

I.e. for every individual, i in I, there is an individual constant c

such that [c] = [[c]] = i.
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Semantics of Predicate Symbols

Predicate Symbols:

• [P1 ] is some category/property of individuals of I.

• [Pn ] is some n-ary relation over I.

• [[P1 ]] is some particular subset of I.

• [[Pn ]] is some particular subset of the relation

I × · · · × I︸ ︷︷ ︸
n times

.
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Intensional Semantics

of Ground Atomic Formulas

• If P 1 is some unary predicate symbol,

and t is some individual constant,

then [P1 (t)] is the proposition that [t ] is an instance of the

category [P1 ] (or has the property [P1 ]).

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are individual constants,

then [Pn(t1 , . . . , tn)] is the proposition that the relation [Pn ]

holds among individuals [t1 ], and . . . , and [tn ].
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Extensional Semantics

of Ground Atomic Formulas

• If P 1 is some unary predicate symbol,

and t is some individual constant,

then [[P1 (t)]] is True if [[t ]] ∈ [[P1 ]],

and False otherwise.

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are individual constants,

then [[Pn(t1 , . . . , tn)]] is True

if 〈[[t1 ]], . . . , [[tn ]]〉 ∈ [[Pn ]],

and False otherwise.
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Semantics of WFFs, Part 1

[¬P ], [P ∧Q ], [P ∨Q ], [P ⇒ Q ], [P ⇔ Q ]

[[¬P ]], [[P ∧Q ]], [[P ∨Q ]], [[P ⇒ Q ]], and [[P ⇔ Q ]]

are as they are in Propositional Logic.
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Semantics of WFFs, Part 2

• [∀xP ] is the proposition that every individual i in I, with

“name” ti, satisfies [P{ti/x}].

• [∃xP ] is the proposition that some individual i in I, with

“name” ti, satisfies [P{ti/x}].

• [[∀xP ]] is True if [[P{t/x}]] is True for every individual constant,

t. Otherwise, it is False.

• [[∃xP ]] is True if there is some individual constant, t such that

[[P{t/x}]] is True. Otherwise, it is False.
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Intensional Semantics

of Individual Constants

In CarPool World

[Tom] = Someone named Tom.

[Betty ] = Someone named Betty.
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Intensional Semantics

of Individual Constants

In 4-Person CarPool World

(Call it 4pCarPool World)

[Tom] = Someone named Tom.

[Betty ] = Someone named Betty.

[John] = Someone named John.

[Mary ] = Someone named Mary.
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Intensional Semantics

of Ground Atomic Wffs

In Both CarPool Worlds

Predicate Symbols:

[Driver1 (x )] = [x ] is the driver of the/a car.

[Passenger1 (x )] = [x ] is the passenger of the/a car.

[Drives2 (x , y)] = [x ] drives [y ] to work.
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Extensional Semantics of

One CarPool World Situation

[[Tom]] = Tom.

[[Betty ]] = Betty.

[[Driver ]] = {Betty}.
[[Passenger ]] = {Tom}.
[[Drives]] = {〈 Betty, Tom〉}.
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Extensional Semantics of

One 4pCarPool World Situation

[[Tom]] = Tom.

[[Betty ]] = Betty.

[[John]] = John.

[[Mary ]] = Mary.

[[Driver ]] = {Betty, John}.
[[Passenger ]] = {Mary, Tom}.
[[Drives]] = {〈 Betty, Tom〉, 〈 John, Mary〉}.
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3.2.4 Model Checking

in Finite-Model Predicate Logic

• n Individual Constants.

• Predicate P j yields nj ground atomic propositions.

• kj predicates of arity j yields
∑
j(kj × nj) ground atomic

propositions.

• So 2
∑

j(kj×n
j) situations (columns of truth table).

• CarPool World has 2(2×2
1+1×22) = 28 = 256 situations.

• 4pCarPool World has 2(2×4
1+1×42) = 224 = 16, 777, 216

situations.
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Some CarPool World Situations
Driver(Tom) T T F

Driver(Betty) T F T

Passenger(Tom) T F T

Passenger(Betty) T T F

Drives(Tom,Tom) T F F

Drives(Tom,Betty) T T F

Drives(Betty ,Tom) T F T

Drives(Betty ,Betty) T F F

∀x (Driver(x )⇔ ¬Passenger(x )) F T T

∀x∀y(Drives(x , y)⇒ (Driver(x )⇔ Passenger(y))) T T T
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Turning

Predicate Logic Over Finite Domains

Into Ground Predicate Logic

If c1, . . . , cn are the individual constants,

• Turn ∀xP (x) into P (c1) ∧ · · · ∧ P (cn)

• and ∃xP (x) into P (c1) ∨ · · · ∨ P (cn)

• E.g.:

∀x∃y(Drives(x , y))

⇔ ∃yDrives(Tom, y) ∧ ∃yDrives(Betty , y)

⇔(Drives(Tom,Tom) ∨Drives(Tom,Betty))

∧(Drives(Betty ,Tom) ∨Drives(Betty ,Betty))
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Sorted Logic: A Digression

Introduce a hierarchy of sorts, s1, . . . , sn.

(A sort in logic is similar to a data type in programming.)

Assign each individual constant a sort.

Assign each variable a sort.

Declare the sort of each argument position of each predicate

symbol.

An atomic formula, Pn(t1, . . . , tn) is only syntactically valid if the

sort of ti, for each i, is the sort, or a subsort of the sort, declared

for the ith argument position of Pn.
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Predicate 2-Car CarPool World

in Decreasoner

sort commuter

commuter Tom, Betty

sort car

car TomsCar, BettysCar

;;; [DrivesIn(x,y,c)] = [x] drives [y] to work in car [c].

predicate DrivesIn(commuter,commuter,car)

;;; [DriverOf(x,c)] = [x] is the driver of car [c].

predicate DriverOf(commuter,car)

;;; [PassengerIn(x,c)] = [x] is a passenger in car [c].

predicate PassengerIn(commuter,car)
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Number of Ground Atomic Propositions

Unsorted vs. Sorted

Atomic Proposition Unsorted Sorted

DrivesIn(commuter,commuter,car) 43 = 64 23 = 8

DriverOf(commuter,car) 42 = 16 22 = 4

PassengerIn(commuter,car) 42 = 16 22 = 4

Total 96 16
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Domain Rules of 2-Car CarPool World
/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/4cCPWPRedRules.e

;;; If someone’s a driver of one car, they’re not a passenger in any car.

;;; (And if someone’s a passenger in one car, they’re not driver of any car.)

[commuter][car1][car2](DriverOf(commuter,car1) -> !PassengerIn(commuter,car2)).

;;; If A drives B in car C, then A is the driver of and B is a passenger in C.

[commuter1][commuter2][car](DrivesIn(commuter1,commuter2,car)

-> DriverOf(commuter1,car)

& PassengerIn(commuter2,car)).

;;; Either Tom drives Betty in Tom’s car or Betty drives Tom in Betty’s car.

DrivesIn(Tom,Betty,TomsCar) | DrivesIn(Betty,Tom,BettysCar).

;;; Tom doesn’t drive Betty’s car, and Betty doesn’t drive Tom’s car.

!DriverOf(Tom,BettysCar) & !DriverOf(Betty,TomsCar).

;;; Neither Tom nor Betty is a passenger in their own car.

!PassengerIn(Tom,TomsCar) & !PassengerIn(Betty,BettysCar).
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Decreasoner Produces Two Models

The True propositions:

model 1: model 2:

DriverOf(Betty, BettysCar). DriverOf(Tom, TomsCar).

DrivesIn(Betty, Tom, BettysCar). DrivesIn(Tom, Betty, TomsCar).

PassengerIn(Tom, BettysCar). PassengerIn(Betty, TomsCar).
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Use of Predicate-Wang

cl-user(12): (wang:predicate-entails

’( (forall (x y)

(if (Drives x y)

(and (Driver x) (Passenger y))))

(Drives Betty Tom))

’(and (Driver Betty) (Passenger Tom))

’(Betty Tom))

t
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3.3 Clause Form

Finite-Model Predicate Logic

1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

3. Model Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
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3.3.1 Syntax of Clause Form

Finite-Model Predicate Logic

Individual constants, predicate symbols, terms, and ground atomic

formulas as in standard finite-model predicate logic.

(Variables are not needed.)

Literals, clauses and sets of clauses as in propositional clause form

logic.

Page 212



3.3.2 Semantics of Clause Form

Finite-Model Predicate Logic

• Individual constants, predicate symbols, terms, and ground

atomic formulas as in standard finite-model predicate logic.

• Ground literals, ground clauses, and sets of ground clauses as

in propositional clause form logic.
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Translation of Standard Form

to Clause Form

Finite-Model Predicate Calculus

1. Eliminate quantifiers as when using model checking.

2. Translate into clause form as for propositional logic.
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3.3.3 Model Finding: GSAT
procedure GSAT(C, tries, flips)

input: a set of clauses C, and positive integers tries and flips

output: a model satisfying C, or failure

for i := 1 to tries do

M := a randomly generated truth assignment

for j := 1 to flips do

if M |= C then returnM
p := an atom such that a change in its truth

assignment gives the largest increase in the total

number of clauses in C that are satisfied by M
M := M with the truth assignment of p reversed

end for end for

return “no satisfying interpretation found”

[Brachman & Levesque, p. 82–83, based on Bart Selman, Hector J. Levesque and David Mitchell,

A New Method for Solving Hard Satisfiability Problems, AAAI-92.]
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A Pedagogical Implementation of GSAT

/projects/shapiro/CSE563/gsat.cl

Uses wang:expand to eliminate quantifiers,

and prover:clauseForm to translate to clause form.
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Example GSAT Run

cl-user(1): :ld /projects/shapiro/CSE563/gsat

...

cl-user(2): :pa gsat

gsat(3): (gsat ’((forall x (iff (Driver x) (not (Passenger x))))

(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))

(or (Drives Tom Betty) (Drives Betty Tom))

(Driver Betty))

30 6)

A satisfying model (found on try 17) is

(((Driver Tom) nil) ((Passenger Tom) t)

((Drives Betty Betty) nil) ((Drives Tom Tom) nil)

((Drives Betty Tom) t) ((Drives Tom Betty) nil)

((Driver Betty) t) ((Passenger Betty) nil))

#<equal hash-table with 8 entries @ #x4a64dca>
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Using GSAT to Find

The Value of a Wff in a KB
gsat(19): (ask ’(and (Drives Betty Tom) (Passenger Tom))

’((forall x (iff (Driver x) (not (Passenger x))))

(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))

(or (Drives Tom Betty) (Drives Betty Tom))

(Driver Betty))

30 6)

A satisfying model (found on try 19) is

(((Drives Tom Tom) nil) ((Drives Betty Tom) t)

((Driver Betty) t) ((Passenger Tom) t)

((Drives Tom Betty) nil) ((Driver Tom) nil)

((Drives Betty Betty) nil) ((Passenger Betty) nil))

(and (Drives Betty Tom) (Passenger Tom)) is True in a model of the KB.

nil
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Model Finding: Walksat

A More Efficient Version of GSAT

DIMACS FORMAT:

Code each atomic formula as a positive integer:

c 1 Drives(Tom, Betty) Tom drives Betty to work.

c 2 Drives(Betty, Tom) Betty drives Tom to work.

c 3 Driver(Tom) Tom is the driver of the car.

c 4 Driver(Betty) Betty is the driver of the car.

c 5 Passenger(Tom) Tom is the passenger of the car.

c 6 Passenger(Betty) Betty is the passenger of the car.
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DIMACS cont’d

Code each clause as a set ± integers, terminated by 0:

c ((~ (Driver Tom)) (~ (Passenger Tom)))

-3 -5 0

c ((~ (Driver Betty)) (~ (Passenger Betty)))

-4 -6 0

c ((Passenger Tom) (Driver Tom))

5 3 0

c ((Passenger Betty) (Driver Betty))

6 4 0

c ((~ (Drives Tom Betty)) (Driver Tom))

-1 3 0

c ((~ (Drives Betty Tom)) (Driver Betty))

-2 4 0

c ((~ (Drives Tom Betty)) (Passenger Betty))

-1 6 0

c ((~ (Drives Betty Tom)) (Passenger Tom))

-2 5 0

c ((Drives Tom Betty) (Drives Betty Tom))

1 2 0

c ((Driver Betty))

4 0
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Running Walksat

% /projects/shapiro/CSE563/WalkSAT/Walksat_v46/walksat -solcnf

< /projects/shapiro/CSE563/WalkSAT/cpw.cnf

...

ASSIGNMENT FOUND

v -1

v 2

v -3

v 4

v 5

v -6
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Model Finding: Decreasoner

Decreasoner translates sorted finite-model predicate logic wffs

into DIMACS clause form.

Decreasoner gives set of clauses to Relsat.

Relsat systematically searches all models. It either:

reports that there are no satisfying models;

returns up to MAXMODELS (currently 100) satisfying models;

or gives up.

If Relsat gives up, Decreasoner gives set of clauses to Walksat.

It either:

returns some satisfying models;

or returns some “near misses”;

or gives up.
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Decreasoner, Walksat, and “Near Misses”

“Let’s say that an ”N-near miss model of a SAT problem” is a truth

assignment that satisfies all but N clauses of the problem. Walksat provides the

command-line option:

-target N = succeed if N or fewer clauses unsatisfied

If relsat produces no models, the Discrete Event Calculus Reasoner invokes

walksat with -target 1. If this fails, it invokes walksat with -target 2. If this

fails, it gives up. One or two unsatisfied clauses may be helpful for debugging.

In my experience, three or more unsatisfied clauses are less useful.

If you get a near miss model, it’s often useful to rerun the Discrete Event

Calculus Reasoner. Because walksat is stochastic, you may get back a different

near miss model, and that near miss model may be more informative than the

previous one.”

[Erik Mueller, email to scs, 1/12/2007]

Page 223



4 Full First-Order Predicate Logic (FOL)

4.1 CarPool World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.2 The “Standard” First-Order Predicate Logic . . . . . . . . . . . . . . . 227

4.3 Clause-Form First-Order Predicate Logic . . . . . . . . . . . . . . . . . . . 260

4.4 Translating Standard Wffs into Clause Form . . . . . . . . . . . . . . . 306

4.5 Asking Wh Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
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4.1 CarPool World

We’ll add Tom and Betty’s mothers:

motherOf (Tom) and motherOf (Betty)
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CarPool World Domain Rules

(Partial)

∀x (Driver(x )⇒ ¬Passenger(x ))

∀x , y(Drives(x , y)⇒ (Driver(x ) ∧ Passenger(y)))
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4.2 The “Standard” First-Order

Predicate Logic

1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

3. Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

4. Hilbert-Style Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

5. Fitch-Style Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
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4.2.1 Syntax of the “Standard”

First-Order Predicate Logic

Atomic Symbols

Individual Constants:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript,

• any character string not containing blanks nor other

punctuation marks.

For example: a, B12, T om, Tom’s mother-in-law.
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Atomic Symbols, Part 2

Arbitrary Individuals:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript.

Indefinite Individuals:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript.
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Atomic Symbols, Part 3

Variables:

• Any letter of the alphabet (preferably late),

• any (such) letter with a numeric subscript.

For example: x, y6.
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Atomic Symbols, Part 4

Function Symbols:

• Any letter of the alphabet (preferably early middle)

• any (such) letter with a numeric subscript

• any character string not containing blanks.

For example: f , g2 ,motherOf , familyOf .
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Atomic Symbols, Part 5

Predicate Symbols:

• Any letter of the alphabet (preferably late middle),

• any (such) letter with a numeric subscript,

• any character string not containing blanks.

For example: P ,Q4 ,Passenger ,Drives.
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Atomic Symbols, Part 6

Each Function Symbol and Predicate Symbol must have a

particular arity.

Use superscript for explicit arity.

For example: motherOf 1 ,Drives2 , familyOf 2 , g3
2
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Atomic Symbols, Part 7

In any specific predicate logic language

Individual Constants,

Arbitrary Individuals,

Indefinite Individuals,

Variables,

Function Symbols,

Predicate Symbols

must be disjoint.
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Terms

• Every individual constant, every arbitrary individual, every

indefinite individual, and every variable is a term.

• If fn is a function symbol of arity n, and t1, . . . , tn are terms,

then fn(t1, . . . , tn) is a term.

(The superscript may be omitted if no confusion results.)

For example: familyOf 2 (Tom,motherOf 1 (Betty))

• Nothing else is a term.
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Atomic Formulas

If Pn is a predicate symbol of arity n,

and t1, . . . , tn are terms,

then Pn(t1, . . . , tn) is an atomic formula.

E.g.: ChildIn2 (Betty , familyOf 2 (Tom,motherOf 1 (Betty)))

(The superscript may be omitted if no confusion results.)
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Well-Formed Formulas (wffs):

• Every atomic formula is a wff.

• If P is a wff, then so is ¬(P ).

• If P and Q are wffs, then so are

(P ∧Q) (P ∨Q)

(P ⇒ Q) (P ⇔ Q)

• If P is a wff and x is a variable, then ∀x(P ) and ∃x(P ) are wffs.

Parentheses may be omitted or replaced by square brackets if

no confusion results.

We will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn).

∀x(∀y(P )) may be abbreviated as ∀x, y(P ).

∃x(∃y(P )) may be abbreviated as ∃x, y(P ).
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Open, Closed, Ground, and Free For

A wff with a free variable is called open.

A wff with no free variables is called closed,

An expression with no variables is called ground.

Note: expressions now include functional terms.

A term t is free for a variable x in the wff A(x) if

no free occurrence of x in A(x) is in the scope

of any quantifier ∀y or ∃y whose variable y is in t.

E.g., f(a, y, b) is free for x in ∀u∃v(A(x, u) ∨B(x, v))

but f(a, y, b) is not free for x in ∀u∃y(A(x, u) ∨B(x, y)).

Remedy: rename y in A(x). E.g., ∀u∃v(A(x, u) ∨B(x, v))
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Substitutions with Functional Terms

Notice, terms may now include functional terms.

E.g.:

P (x, f(y), z){a/x, g(b)/y, f(a)/z} = P (a, f(g(b)), f(a))
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4.2.2 Semantics of the “Standard”

First-Order Predicate Logic

Assumes a Domain, D, of

• individuals,

• functions on individuals,

• sets of individuals,

• relations on individuals

Let I be set of all individuals in D.
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Semantics of Constants

Individual Constant:

[a] = [[a]] = some particular individual in I.

Arbitrary Individual:

[a] = [[a]] = a representative of all individuals in I. Everything

True about all of them, is True of it.

Indefinite Individual:

[s] = [[s]] = a representative of some individual in I, but it’s

unspecified which one.

There is no anonymous individual.

I.e. for every individual, i in I, there is a ground term t such that

[[t ]] = i. (But not necessarily an individual constant.)

Page 241



Intensional Semantics of Functional

Terms

Function Symbols: [f n ] is some n-ary function in D,

Functional Terms:

If fn is some function symbol and t1, . . . , tn are ground terms,

then [f n(t1 , . . . , tn)] is a description of the individual in I that

is the value of [f n ] on [t1 ], and . . . , and [tn ].
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Extensional Semantics of Functional

Terms

Function Symbols: [[f n ]] is some function in D,

[[f n ]]: I × · · · × I︸ ︷︷ ︸
n times

→ I

Functional Terms:

If fn is some function symbol and t1, . . . , tn are ground terms,

then [[f n(t1 , . . . , tn)]] = [[f n ]]([[t1 ]], . . . , [[tn ]]).
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Semantics of Predicate Symbols

Predicate Symbols:

• [P1 ] is some category/property of individuals of I
• [Pn ] is some n-ary relation in D.

• [[P1 ]] is some particular subset of I.

• [[Pn ]] is some particular subset of the relation

I × · · · × I︸ ︷︷ ︸
n times

.
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Intensional Semantics

of Ground Atomic Formulas

• If P 1 is some unary predicate symbol,

and t is some ground term,

then [P1 (t)] is the proposition that [t ] is an instance of the

category [P1 ] (or has the property [P1 ]).

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are ground terms,

then [Pn(t1 , . . . , tn)] is the proposition that the relation [Pn ]

holds among individuals [t1 ], and . . . , and [tn ].
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Extensional Semantics

of Ground Atomic Formulas

Atomic Formulas:

• If P 1 is some unary predicate symbol,

and t is some ground term,

then [[P1 (t)]] is True if [[t ]] ∈ [[P1 ]],

and False otherwise.

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are ground terms,

then [[Pn(t1 , . . . , tn)]] is True

if 〈[[t1 ]], . . . , [[tn ]]〉 ∈ [[Pn ]],

and False otherwise.
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Semantics of WFFs, Part 1

[¬P ], [P ∧Q ], [P ∨Q ], [P ⇒ Q ], [P ⇔ Q ]

[[¬P ]], [[P ∧Q ]], [[P ∨Q ]], [[P ⇒ Q ]], and [[P ⇔ Q ]]

are as they are in Propositional Logic.
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Semantics of WFFs, Part 2

• [∀xP ] is the proposition that every individual i in I, with name

or description ti, satisfies [P{ti/x}].

• [∃xP ] is the proposition that some individual i in I, with name

or description ti, satisfies [P{ti/x}].

• [[∀xP ]] is True if [[P{t/x}]] is True for every ground term, t.

Otherwise, it is False.

• [[∃xP ]] is True if there is some ground term, t such that

[[P{t/x}]] is True. Otherwise, it is False.
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Intensional Semantics

of a 2-Car CarPool World 1

Individual Constants:

[Tom] = The individual named Tom.

[Betty ] = The individual named Betty.

Functions:

[motherOf (x )] = The mother of [x ].

Page 249



Intensional Semantics

of a 2-Car CarPool World 2

Predicates:

[Driver1 (x )] = [x ] is the driver of a car.

[Passenger1 (x )] = [x ] is the passenger in a car.

[Drives2 (x , y)] = [x ] drives [y ] in a car.
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Extensional Semantics of

a 2-Car CarPool World Situation

[[Tom]] = the individual named Tom.

[[Betty ]] = the individual named Betty.

[[motherOf ]] = {〈 [[Betty ]], [[motherOf (Betty)]] 〉,
〈 [[Tom]], [[motherOf (Tom)]]〉}.

[[Driver ]] = {[[motherOf (Betty)]], [[motherOf (Tom)]]}.
[[Passenger ]] = {[[Betty ]], [[Tom]]}.
[[Drives]] = {〈 [[motherOf (Betty)]], [[Betty ]] 〉,

〈 [[motherOf (Tom)]], [[Tom]] 〉}.
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4.2.3 Model Checking in Full FOL

n Individual Constants.

At least one function yields ∞ terms.∗Decreasoner.

E.g., motherOf (Tom),motherOf (motherOf (Tom)),

motherOf (motherOf (motherOf (Tom))) . . ..

So ∞ ground atomic propositions.

So ∞ situations (columns of truth table).

So can’t create entire truth table.

Can’t do model checking

by expanding quantified expressions

into Boolean combination of ground wffs.

There still could be a finite domain if at least one individual in I
has an ∞ number of terms describing it, but we’ll assume not.
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4.2.4 Hilbert-Style Proof Theory

for First-Order Predicate Logic

(A1). (A ⇒ (B ⇒ A))

(A2). ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C)))

(A3). ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B))

(A4). ∀xA ⇒ A{t/x}
where t is any term free for x in A(x).

(A5). (∀x(A ⇒ B))⇒ (A ⇒ ∀xB)

if A is a wff containing no free occurrences of x.
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Hilbert-Style Rules of Inference for

“Standard” First-Order Predicate Logic

A,A ⇒ B

B

A

∀xA

Note: ∃xA is just an abbreviation of ¬∀x¬A.
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4.2.5 Fitch-Style Proof Theory

for First-Order Predicate Logic

Additional Rules of Inference for ∀

i a Arb I

...

j P (a)

j + 1 ∀xP{x/a} ∀I, i–j

i ∀xP (x)

i+ 1 P{t/x} ∀E, i

Where a is an arbitrary individual not otherwise used in the proof,

and t is any term, whether or not used elsewhere in the proof,

that is free for x in P (x).
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Example of ∀ Rules

To prove ∀x(P (x)⇒ Q(x))⇒ (∀xP (x)⇒ ∀xQ(x))

1 ∀x(P (x)⇒ Q(x)) Hyp

2 ∀xP (x) Hyp

3 a Arb I

4 ∀xP (x) Reit, 2

5 P (a) ∀E, 4

6 ∀x(P (x)⇒ Q(x)) Reit, 1

7 P (a)⇒ Q(a) ∀E, 6

8 Q(a) ⇒E, 5,7

9 ∀xQ(x) ∀I, 3–8

10 ∀xP (x)⇒ ∀xQ(x) ⇒I, 2–9

11 ∀x(P (x)⇒ Q(x))⇒ (∀xP (x)⇒ ∀xQ(x)) ⇒I, 1–10
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Additional Rules of Inference for ∃

i P (t)

i+ 1 ∃xP (x) ∃I, i

i ∃xP (x)

...

j P{a/x} Indef I, i

...

k Q

k + 1 Q ∃E, j–k

Where P (x) is the result of replacing some or all occurrences of t in P (t) by x,

t is free for x in P (x);

a is an indefinite individual not otherwise used in the proof,

P (a/x) is the result of replacing all occurrences of x in P (x) by a,

and there is no occurrence of a in Q. (Compare ∃E to ∨E.)
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Example of ∃ Rules

To prove ∃x(P (x) ∧Q(x))⇒ (∃xP (x) ∧ ∃xQ(x))

1 ∃x(P (x) ∧Q(x)) Hyp

2 P (a) ∧Q(a) Indef I, 1

3 P (a) ∧E, 2

4 ∃xP (x) ∃I, 3

5 ∃xP (x) ∃E, 2–4

6 P (b) ∧Q(b) Indef I, 1

7 Q(b) ∧E, 5

8 ∃xQ(x) ∃I, 6

9 ∃xQ(x) ∃E, 5–7

10 ∃xP (x) ∧ ∃xQ(x) ∧I, 5,9

11 ∃x(P (x) ∧Q(x))⇒ (∃xP (x) ∧ ∃xQ(x)) ⇒I, 1–10
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CarPool Situation Derivation

1 ∀x(Driver(x)⇒ ¬Passenger(x))

2 ∀x∀y(Drives(x , y)⇒ (Driver(x) ∧ Passenger(y)))

3 ∀xDrives(motherOf (x), x) Hyp

4 Drives(motherOf (Tom),Tom) ∀E, 3

5 ∀y(Drives(motherOf (Tom), y)

⇒ (Driver(motherOf (Tom)) ∧ Passenger(y))) ∀E, 2

6 Drives(motherOf (Tom),Tom)

⇒ (Driver(motherOf (Tom)) ∧ Passenger(Tom)) ∀E, 5

7 Driver(motherOf (Tom)) ∧ Passenger(Tom) ⇒ E, 4, 6

8 Driver(motherOf (Tom)) ∧E, 7

9 ∃xDriver(motherOf (x)) ∃I, 8
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4.3 Clause-Form First-Order Predicate

Logic

1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

3. Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

4. Resolution Refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
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4.3.1 Syntax of Clause-Form First-Order

Predicate Logic

Atomic Symbols

Individual Constants:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript,

• any character string not containing blanks nor other

punctuation marks.

For example: a, B12, T om, Tom’s mother-in-law.

Skolem Constants: Look like individual constants.
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Atomic Symbols, Part 2

Variables:

• Any letter of the alphabet (preferably late),

• any (such) letter with a numeric subscript.

For example: u, v6.
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Atomic Symbols, Part 3

Function Symbols:

• Any letter of the alphabet (preferably early middle)

• any (such) letter with a numeric subscript

• any character string not containing blanks.

For example: f, g2.

Use superscript for explicit arity.

Skolem Function Symbols: Look like function symbols.
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Atomic Symbols, Part 4

Predicate Symbols:

• Any letter of the alphabet (preferably late middle),

• any (such) letter with a numeric subscript,

• any character string not containing blanks.

For example: P,Q4, odd .

Use superscript for explicit arity.
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Terms

• Every individual constant, every Skolem constant, and every

variable is a term.

• If fn is a function symbol or Skolem function symbol of arity n,

and t1, . . . , tn are terms,

then fn(t1, . . . , tn) is a term.

(The superscript may be omitted if no confusion results.)

• Nothing else is a term.
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Atomic Formulas

If Pn is a predicate symbol of arity n,

and t1, . . . , tn are terms,

then Pn(t1, . . . , tn) is an atomic formula.

(The superscript may be omitted if no confusion results.)
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Literals and Clauses

Literals: If P is an atomic formula,

then P and ¬P are literals.

Clauses: If L1, . . . , Ln are literals,

then the set {L1, . . . , Ln} is a clause.

Sets of Clauses: If C1, . . . , Cn are clauses,

then the set {C1, . . . , Cn} is a set of clauses.
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4.3.2 Semantics of Clause-Form

First-Order Predicate Logic

• Individual Constants, Function Symbols, Predicate Symbols,

Ground Terms, and Ground Atomic Formulas as for Standard

FOL.

• Skolem Constants are like indefinite individuals.

• Skolem Function Symbols are like indefinite function symbols.

• Ground Literals, Ground Clauses, and Sets of Clauses as for

Clause-Form Propositional Logic.
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Semantics of Open Clauses

If clause C contains variables v1, . . . , vn,

then C{t1/v1, . . . , tn/vn} is a ground instance of C if it contains

no more variables.

If C is an open clause,

[[C ]] is True if every ground instance of C is True.

Otherwise, it is False.

That is, variables take on universal interpretation,

with scope being the clause.
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4.3.3 Proof Theory of Clause-Form FOL

Notion of Proof: None!

Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of

assumption clauses A1, . . . , An.

Rule of Inference: A clause may be added to a set of clauses if

justified by a rule of inference.

Derived Clause: If clause Q has been added to a set of clauses

initialized with the set of assumption clauses A1, . . . , An by one

or more applications of resolution,

then A1, . . . , An ` Q.
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Clause-Form FOL Rules of Inference

Version 1

Resolution:
{P,L1, . . . , Ln}, {¬P,Ln+1, . . . , Lm}

{L1, . . . , Ln, Ln+1, . . . , Lm}

Universal Instantion (temporary):
C

Cσ
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Example Derivation

1. {¬Drives(x , y),Driver(x )} Assumption

2. {¬Driver(z ),¬Passenger(z )} Assumption

3. {Drives(motherOf (Tom),Tom)} Assumption

4. {¬Drives(motherOf (Tom),Tom),

Driver(motherOf (Tom))} UI , 1 , {motherOf (Tom)/x ,Tom/y}

5. {Driver(motherOf (Tom))} R, 3 , 4

6. {¬Driver(motherOf (Tom)),

¬Passenger(motherOf (Tom))} UI , 2 , {motherOf (Tom)/z}

7. { ¬Passenger(motherOf (Tom))} R, 5 , 6
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Motivation for a Shortcut

{P (x), L1(x), . . . , Ln(x)} {¬P (y), Ln+1(y), . . . , Lm(y)}

↓ {a/x, a/y} ↓ {a/x, a/y}

{P (a), L1(a), . . . , Ln(a)} {¬P (a), Ln+1(a), . . . , Lm(a)}

{L1(a), . . . , Ln(a), Ln+1(a), . . . , Lm(a)}
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Most General Unifier

A most general unifier (mgu), of atomic formulas A and B

is a substitution, µ,

such that Aµ = Bµ = a common instance of A and B

and such that every other common instance of A and B is an

instance of it.

I.e., Aµ = Bµ = a most general common instance of A and B.

Example:

Unifier of P (a, x, y) and P (u, b, v) is {a/u, b/x, c/y, c/v}
giving P (a, b, c)

But more general is {a/u, b/x, y/v} giving P (a, b, y)

Page 274



Clause-Form FOL Rules of Inference

Version 2

Resolution:

{A,L1, . . . , Ln}, {¬B,Ln+1, . . . , Lm}

{L1µ, . . . , Lnµ,Ln+1µ, . . . , Lmµ}

where µ is an mgu of A and B.

Assume two parent clauses have no variables in common.
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Example Derivation Revisited

1. {¬Drives(x , y),Driver(x )} Assumption

2. {¬Driver(z ),¬Passenger(z )} Assumption

3. {Drives(motherOf (Tom),Tom)} Assumption

4. {Driver(motherOf (Tom))} R, 1 , 3 , {motherOf (Tom)/x ,Tom/y}

5. { ¬Passenger(motherOf (Tom))} R, 2 , 4 , {motherOf (Tom)/z , }
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Unification

To find the mgu of A and B.

Some Examples:

A B mgu mgci

P (a, b) P (a, b) {} P (a, b)

P (a) P (b) FAIL

P (a, x) P (y, b) {a/y, b/x} P (a, b)

P (a, x) P (y, g(y)) {a/y, g(a)/x} P (a, g(a))

P (x, f(x)) P (y, y) FAIL (occurs check)
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Substitution Composition

Pστ = ((Pσ)τ) = P (σ ◦ τ)

Let σ = {t1/v1, . . . , tn/vn}

σ ◦ τ = {t1τ/v1, . . . , tnτ/vn} ] τ

σ ] τ = σ ∪ {t/v | (t/v ∈ τ) ∧ v 6∈ σ}

E.g.: {x/y, y/z} ◦ {u/y, v/w} = {x/y, u/z, v/w}
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)

µ = {(f u)/x}◦{(g (f u))/v} = {(f u)/x, (g (f u))/v}
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)

µ = {(f u)/x}◦{(g (f u))/v} = {(f u)/x, (g (f u))/v}

... (g (f a)) ) ... v )
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)

µ = {(f u)/x}◦{(g (f u))/v} = {(f u)/x, (g (f u))/v}

... (g (f a)) ) ... v )

... (g (f a)) ) ... (g (f u)) )
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Manual Unification Algorithm

(P x (g x) (g (f a))) (P (f u) v v)

µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)

µ = {(f u)/x}◦{(g (f u))/v} = {(f u)/x, (g (f u))/v}

... (g (f a)) ) ... v )

... (g (f a)) ) ... (g (f u)) )

... a ))) ... u )) )
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Manual Unification Algorithm
(P x (g x) (g (f a))) (P (f u) v v)
µ = {}

... x (g x) (g (f a))) ... (f u) v v)

µ = {}◦{(f u)/x}={(f u)/x}

... (g x) (g (f a))) ... v v)

... (g (f u)) (g (f a))) ... v v)

µ = {(f u)/x}◦{(g (f u))/v} = {(f u)/x, (g (f u))/v}

... (g (f a)) ) ... v )

... (g (f a)) ) ... (g (f u)) )

... a ))) ... u )) )

µ = {(f u)/x, (g (f u))/v}◦{a/u} = {(f a)/x, (g (f a))/v, a/u}

(P x (g x) (g (f a)))µ = (P (f u) v v)µ = (P (f a) (g (f a)) (g (f a)))
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Unification Algorithm

(defun unify (A B &optional mu)

(cond ((eql mu ’FAIL) ’FAIL)

((eql A B) mu)

((variablep A) (unifyVar A B mu))

((variablep B) (unifyVar B A mu))

((or (atom A) (atom B)) ’FAIL)

((/= (length A) (length B)) ’FAIL)

(t (unify (rest A)

(rest B)

(unify (first A) (first B) mu)))))

Note: a more efficient version is implemented in prover.cl
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UnifyVar

(defun unifyVar (var term subst)

(if (var-in-substp var subst)

(unify (term-of-var-in-subst var subst) term subst)

(let ((newterm (apply-sub subst term)))

(cond ((eql var newterm) subst)

((occursIn var newterm) ’FAIL)

(t (compose subst

(list (pair newterm var))))))))
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Program Assertion

If original A and B have no variables in common,

then throughout the above program

no substitution will have one of its variables occurring in one of its

terms.

Therefore, for any expression E and any substitution σ formed in

the above program, Eσσ = Eσ.
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4.3.4 Resolution Refutation

Example
To decide if

{¬Drives(x , y),Driver(x )}, {¬Driver(x ),¬Passenger(x )},
{Drives(motherOf (Tom),Betty)}
|= {¬Passenger(motherOf (Tom))}

1. {¬Drives(x1 , y1 ),Driver(x1 )} Assumption

2. {¬Driver(x2 ),¬Passenger(x2 )} Assumption

3. {Drives(motherOf (Tom),Betty)} Assumption

5. {Passenger(motherOf(Tom))} From query

6. {¬Driver(motherOf (Tom))} R, 2, 5, {motherOf(Tom)/x2}

7. {¬Drives(motherOf (Tom), y7 )} R, 1, 6, {motherOf(Tom)/x1}

8. {} R, 3, 7, {Betty/y7}
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Example Using prover

prover(21): (prove ’((or (not (Drives ?x ?y)) (Driver ?x))

(or (not (Driver ?x)) (not (Passenger ?x)))

(Drives (motherOf Tom) Betty))

’(not (Passenger (motherOf Tom))))

1 ((Drives (motherOf Tom) Betty)) Assumption

2 ((not (Drives ?3 ?5)) (Driver ?3)) Assumption

3 ((not (Driver ?9)) (not (Passenger ?9))) Assumption

4 ((Passenger (motherOf Tom))) From Query

5 ((not (Driver (motherOf Tom)))) R,4,3,{(motherOf Tom)/?9}

6 ((not (Drives (motherOf Tom) ?86))) R,5,2,{(motherOf Tom)/?3}

7 nil R,6,1,{Betty/?86}

QED
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Example Using snark

snark-user(84): (initialize)

snark-user(85): (assert ’(or (not (Drives ?x ?y)) (Driver ?x)))

snark-user(86): (assert ’(or (not (Driver ?x))

(not (Passenger ?x))))

snark-user(87): (assert ’(Drives (motherOf Tom) Betty))

snark-user(88): (prove ’(not (Passenger (motherOf Tom))))

(Refutation

(Row 1 (or (not (Drives ?x ?y)) (Driver ?x)) assertion)

(Row 2 (or (not (Driver ?x)) (not (Passenger ?x))) assertion)

(Row 3 (Drives (motherOf Tom) Betty) assertion)

(Row 4 (Passenger (motherOf Tom)) ~conclusion)

(Row 5 (not (Driver (motherOf Tom))) (resolve 2 4))

(Row 6 (not (Drives (motherOf Tom) ?x)) (resolve 5 1))

(Row 7 false (resolve 6 3))

)

:proof-found
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Resolution Refutation is Incomplete

for FOL

1. {P (u), P (v)}

2. {¬P (x),¬P (y)}

3. {P (w),¬P (z)} R, 1, 2, {u/x,w/v, z/y}
...
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Clause-Form FOL Rules of Inference

Version 3 (Last)

Resolution:
{A,L1, . . . , Ln}, {¬B,Ln+1, . . . , Lm}

{L1µ, . . . , Lnµ,Ln+1µ, . . . , Lmµ}

where µ is an mgu of A and B.

Factoring:
{A,B,L1, . . . , Ln}

{Aµ,L1µ, . . . , Lnµ}

where µ is an mgu of A and B.

(Note: Special case of UI.)
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Resolution Refutation with Factoring

is Complete

If A1, . . . , An |= Q, then A1, . . . , An,¬Q `R+F {}.

For example,

1. {P (u), P (v)}

2. {¬P (x),¬P (y)}

3. {P (w)} F, 1, {w/u,w/v}

4. {¬P (z)} F, 2, {z/x, z/y}

5. {} R, 3, 4, {w/z}

However, resolution refutation with factoring is still not a decision

procedure—it is a semi-decision procedure.
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Factoring (Condensing) by snark
snark-user(30): (initialize)

; Running SNARK from ...

nil

snark-user(31): (assert ’(or (P ?u) (P ?v)))

nil

snark-user(32): (prove ’(and (P ?x) (P ?y)))

(Refutation

(Row 1

(or (P ?x) (P ?y))

assertion)

(Row 2

(P ?x)

(condense 1))

(Row 3

(or (not (P ?x)) (not (P ?y)))

negated_conjecture)

(Row 4

false

(rewrite 3 2))

)

:proof-found

SNARK has both factoring and condensing, which is factoring combined with immediate

subsumption elimination when the factored clause subsumes the original clause. The clause ’(or (p

a ?x) (p ?y b)) gets factored, but not condensed. [Mark Stickel, personal communication, March,

2008]
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Efficiency Rules

Tautology Elimination: If clause C contains literals L and ¬L,

delete C from the set of clauses. (Check throughout.)

Pure-Literal Elimination: If clause C contains a literal A (¬A)

and no clause contains a literal ¬B (B) such that A and B are

unifiable, delete C from the set of clauses. (Check throughout.)

Subsumption Elimination: If the set of clauses contains clauses

C1 and C2 such that there is a substitution σ for which

C1σ ⊆ C2, delete C2 from the set of clauses. (Check

throughout.)

These rules delete unhelpful clauses.

Subsumption may be required to cut infinite loops.

Page 298



Subsumption Cutting a Loop

prover(22): (prove ’((if (and (ancestor ?x ?y)

(ancestor ?y ?z))

(ancestor ?x ?z)))

’(ancestor ?x stu))

1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))

(ancestor ?0 ?2)) Assumption

2 ((not (ancestor ?3 stu))) From Query
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Initial Resolution Steps

1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))

(ancestor ?0 ?2)) Assumption

2 ((not (ancestor ?3 stu))) From Query

3 ((not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))

R,2,1,{stu/?2, ?0/?3}

4 ((not (ancestor ?6 stu)) (not (ancestor ?7 ?8))

(not (ancestor ?8 ?6))) R,3,1,{?2/?5, ?0/?4}

5 ((not (ancestor ?9 ?10)) (not (ancestor ?10 ?11))

(not (ancestor ?11 stu))) R,3,1,{stu/?2, ?0/?5}

.

.

.
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Subsumption Cuts the Loop

1 ((not (ancestor ?0 ?1)) (not (ancestor ?1 ?2))

(ancestor ?0 ?2)) Assumption

2 ((not (ancestor ?3 stu))) From Query

3 (not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))

R,2,1,{stu/?2, ?0/?3}

4 ((not (ancestor stu stu))) F,3,{stu/?5, stu/?4}

Deleting 4 ((not (ancestor stu stu)))

because it’s subsumed by 2 ((not (ancestor ?3 stu)))

Deleting 3 ((not (ancestor ?4 ?5)) (not (ancestor ?5 stu)))

because it’s subsumed by 2 ((not (ancestor ?3 stu)))

nil
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Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Least Symbol Count Version: Count symbols, not literals.

Set of Support: One clause in each pair being resolved must

descend from the query.

Many others

These are heuristics for finding {} faster.
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Least Symbol Count Version

of Unit Preference

Instead of counting literals,

count symbols

ignoring negation operator.

Equivalent to standard unit preference for Propositional Logic.
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Problem with

Literal-Counting Unit Preference
1(1/2) ((walkslikeduck daffy)) Assumption

2(1/2) ((talkslikeduck daffy)) Assumption

3(2/5) ((not (duck (motherof ?1))) (duck ?1)) Assumption

4(3/6) ((not (walkslikeduck ?3)) (not (talkslikeduck ?3)) (duck ?3)) Assumption

5(1/2) ((not (duck daffy))) From Query

6(1/3) ((not (duck (motherof daffy)))) R,5,3,{daffy/?1}

7(1/4) ((not (duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/?1}

8(1/5) ((not (duck

(motherof

(motherof

(motherof daffy)))))) R,7,3,{(motherof (motherof daffy))/?1}

9(1/6) ((not (duck

(motherof

(motherof

(motherof

(motherof

daffy))))))) R,8,3,{(motherof (motherof (motherof daffy)))/?1}
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Solution with

Least Symbol Count Version

1(1/2) ((walkslikeduck daffy)) Assumption

2(1/2) ((talkslikeduck daffy)) Assumption

3(2/5) ((not (duck (motherof ?5))) (duck ?5)) Assumption

4(3/6) ((not (walkslikeduck ?13)) (not (talkslikeduck ?13)) (duck ?13)) Assumption

5(1/2) ((not (duck daffy))) From Query

6(1/3) ((not (duck (motherof daffy)))) R,5,3,{daffy/?1}

7(1/4) ((not (duck (motherof (motherof daffy))))) R,6,3,{(motherof daffy)/?1}

8(2/4) ((not (walkslikeduck daffy)) (not (talkslikeduck daffy))) R,5,4,{daffy/?3}

9(1/2) ((not (talkslikeduck daffy))) R,8,1,{}

10(0/0) nil R,9,2,{}

QED
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4.4 Translating Standard FOL Wffs into

FOL Clause Form

Useful Meta-Theorems

• If A is (an occurrence of) a subformula of B,

and |= A⇔ C,

then |= B ⇔ B{C/A}

• ∀x1(· · · ∀xn(· · · ∃yA(x1, . . . , xn, y) · · · ) · · · ) is consistent

if and only if

∀x1(· · · ∀xn(· · ·A(x1, . . . , xn, f
n(x1, . . . , xn)) · · · ) · · · )

is consistent,

where fn is a new Skolem function.

Note: use a new Skolem constant instead of f0().
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Translating Standard FOL Wffs into FOL

Clause Form

Step 1

Eliminate occurrences of ⇔ using

|= (A⇔ B)⇔ ((A⇒ B) ∧ (B ⇒ A))

From:

∀x[Parent(x)⇔ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x)))]

To:

∀x[(Parent(x)⇒ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x)))⇒ Parent(x))]
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Translation Step 2

Eliminate occurrences of ⇒ using

|= (A⇒ B)⇔ (¬A ∨B)

From:

∀x[(Parent(x)⇒ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x)))⇒ Parent(x))]

To:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧(¬(Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))) ∨ Parent(x))]
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Translation Step 3

Translate to miniscope form using

|= ¬¬A⇔ A

|= ¬(A ∧B)⇔ (¬A ∨ ¬B) |= ¬(A ∨B)⇔ (¬A ∧ ¬B)

|= ¬∀xA(x)⇔ ∃x¬A(x) |= ¬∃xA(x)⇔ ∀x¬A(x)

From:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧(¬(Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))) ∨ Parent(x))]

To:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ ∀y(¬Person(y) ∨ ¬childOf(y, x))) ∨ Parent(x))]
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Translation Step 4

Rename apart: If any two quantifiers bind the same

variable, rename all occurrences of one of them.

From:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ ∀y(¬Person(y) ∨ ¬childOf(y, x))) ∨ Parent(x))]

To:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ ∀z(¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]
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Optional Translation Step 4.5

Translate into Prenex Normal Form using:

|= (A ∧ ∀xB(x))⇔ ∀x(A ∧B(x)) |= (A ∧ ∃xB(x))⇔ ∃x(A ∧B(x))

|= (A ∨ ∀xB(x))⇔ ∀x(A ∨B(x)) |= (A ∨ ∃xB(x))⇔ ∃x(A ∨B(x))

as long as x does not occur free in A.

From:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ ∀z(¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

∀x∃y∀z[(¬Parent(x) ∨ (Person(x) ∧ (Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]
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Translation Step 5

Skolemize

From:

∀x[(¬Parent(x) ∨ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ ∀z(¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

∀x[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ ∀z(¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

or

From:

∀x∃y∀z[(¬Parent(x) ∨ (Person(x) ∧ (Person(y) ∧ childOf(y, x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

∀x∀z[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]
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Translation Step 6

Discard all occurrences of “∀x” for any variable x.

From:

∀x[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ ∀z(¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

Or from:

∀x∀z[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]
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Translation Step 7

CNF: Translate into Conjunctive Normal Form, using

|= (A ∨ (B ∧ C))⇔ ((A ∨B) ∧ (A ∨ C))

|= ((B ∧ C) ∨A)⇔ ((B ∨A) ∧ (C ∨A))

From:

[(¬Parent(x) ∨ (Person(x) ∧ (Person(f(x)) ∧ childOf(f(x), x))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

[((¬Parent(x) ∨ Person(x))

∧((¬Parent(x) ∨ Person(f(x)))

∧(¬Parent(x) ∨ childOf(f(x), x)))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]
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Translation Step 8

Discard extra parentheses using the associativity of ∧ and ∨.

From:

[((¬Parent(x) ∨ Person(x))

∧((¬Parent(x) ∨ Person(f(x)))

∧(¬Parent(x) ∨ childOf(f(x), x)))))

∧((¬Person(x) ∨ (¬Person(z) ∨ ¬childOf(z, x))) ∨ Parent(x))]

To:

[(¬Parent(x) ∨ Person(x))

∧(¬Parent(x) ∨ Person(f(x)))

∧(¬Parent(x) ∨ childOf(f(x), x))

∧(¬Person(x) ∨ ¬Person(z) ∨ ¬childOf(z, x) ∨ Parent(x))]
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Translation Step 9

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

[(¬Parent(x) ∨ Person(x))

∧(¬Parent(x) ∨ Person(f(x)))

∧(¬Parent(x) ∨ childOf(f(x), x))

∧(¬Person(x) ∨ ¬Person(z) ∨ ¬childOf(z, x) ∨ Parent(x))]

To:

{{¬Parent(x), P erson(x)},
{¬Parent(x), P erson(f(x))},
{¬Parent(x), childOf(f(x), x)},
{¬Person(x),¬Person(z),¬childOf(z, x), Parent(x)}}
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Translation Step 10

Rename the clauses apart

so that no variable occurs in more than one clause.

From:

{{¬Parent(x), P erson(x)},
{¬Parent(x), P erson(f(x))},
{¬Parent(x), childOf(f(x), x)},
{¬Person(x),¬Person(z),¬childOf(z, x), Parent(x)}}

To:

{{¬Parent(x1), P erson(x1)},
{¬Parent(x2), P erson(f(x2))},
{¬Parent(x3), childOf(f(x3), x3)},
{¬Person(x4),¬Person(z4),¬childOf(z4, x4), Parent(x4)}}
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Use of Translation

A1, . . . , An |= B

iff

The translation of A1 ∧ · · · ∧An ∧ ¬B into a set of clauses is

contradictory.

Page 318



Example with ubprover
(prove

’((forall x (iff (Parent x)

(and (Person x)

(exists y (and (Person y) (childOf y x))))))

(Person Tom) (Person Betty) (childOf Tom Betty))

’(Parent Betty))

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((childOf Tom Betty)) Assumption

4 ((not (Parent ?4)) (Person ?4)) Assumption

5 ((not (Parent ?5)) (Person (S3 ?5))) Assumption

6 ((not (Parent ?6)) (childOf (S3 ?6) ?6)) Assumption

7 ((not (Person ?7)) (not (Person ?8))

(not (childOf ?8 ?7)) (Parent ?7)) Assumption

8 ((not (Parent Betty))) From Query
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Resolution Steps

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((childOf Tom Betty)) Assumption

7 ((not (Person ?7)) (not (Person ?8))

(not (childOf ?8 ?7)) (Parent ?7)) Assumption

8 ((not (Parent Betty))) From Query

9 ((not (Person Betty)) (not (Person ?9))

(not (childOf ?9 Betty))) R,8,7,{Betty/?7}

13 ((not (Person Betty))

(not (childOf Tom Betty))) R,9,1,{Tom/?9}

14 ((not (childOf Tom Betty))) R,13,2,{}

15 nil R,14,3,{}

QED
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Example with SNARK
snark-user(42): (initialize)

; Running SNARK from ...

nil

snark-user(43): (assert

’(forall (x)

(iff (Parent x)

(and (Person x)

(exists (y)

(and (Person y) (childOf y x)))))))

nil

snark-user(44): (assert ’(Person Tom))

nil

snark-user(45): (assert ’(Person Betty))

nil

snark-user(46): (assert ’(childOf Tom Betty))

nil

snark-user(47): (prove ’(Parent Betty))
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Initial Set of Clauses

(Row 1 (or (not (Parent ?x)) (Person ?x)) assertion)

(Row 2 (or (not (Parent ?x)) (Person (skolembiry1 ?x))) assertion)

(Row 3 (or (not (Parent ?x)) (childOf (skolembiry1 ?x) ?x)) assertion)

(Row 4 (or (Parent ?x) (not (Person ?x)) (not (Person ?y)) (not (childOf ?y ?x)))

assertion)

(Row 5 (Person Tom) assertion)

(Row 6 (Person Betty) assertion)

(Row 7 (childOf Tom Betty) assertion)

(Row 8 (not (Parent Betty)) negated_conjecture)

(Row 9 (or (not (Person ?x)) (not (childOf ?x Betty))) (rewrite (resolve 8 4) 6))

(Row 10 false (rewrite (resolve 9 7) 5))
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Refutation

(Refutation

(Row 4 (or (Parent ?x) (not (Person ?x)) (not (Person ?y)) (not (childOf ?y ?x)))

assertion)

(Row 5 (Person Tom) assertion)

(Row 6 (Person Betty) assertion)

(Row 7 (childOf Tom Betty) assertion)

(Row 8 (not (Parent Betty)) negated_conjecture)

(Row 9 (or (not (Person ?x)) (not (childOf ?x Betty))) (rewrite (resolve 8 4) 6))

(Row 10 false (rewrite (resolve 9 7) 5))

)

:proof-found
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A ubprover Example

Using the Skolem Function

prover(72): (prove

’((forall x (iff (Parent x)

(and (Person x)

(exists y (and (Person y) (childOf y x))))))

(Person Tom) (Person Betty) (Parent Betty))

’(exists x (childOf x Betty)))

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((Parent Betty)) Assumption

4 ((not (Parent ?4)) (Person ?4)) Assumption

5 ((not (Parent ?5)) (Person (S3 ?5))) Assumption

6 ((not (Parent ?6)) (childOf (S3 ?6) ?6)) Assumption

7 ((not (Person ?7)) (not (Person ?8))

(not (childOf ?8 ?7)) (Parent ?7)) Assumption

8 ((not (childOf ?10 Betty))) From Query

9 ((not (Parent Betty))) R,8,6,{Betty/?6, (S3 Betty)/?10}

10 nil R,9,3,{}

QED
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4.5 Asking Wh Questions

Given

∀x[Parent(x)⇔ (Person(x) ∧ ∃y(Person(y) ∧ childOf(y, x)))]

Person(Tom)

Person(Betty)

childOf(Tom,Betty)

Ask: “Who is a parent?”

Answer via constructive proof of ∃x Parent(x).
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Try to Answer Wh Question

(prove

’((forall x (iff (Parent x)

(and (Person x)

(exists y (and (Person y) (childOf y x))))))

(Person Tom) (Person Betty) (childOf Tom Betty))

’(exists x (Parent x)))

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((Parent Betty)) Assumption

4 ((not (Parent ?4)) (Person ?4)) Assumption

5 ((not (Parent ?5)) (Person (S3 ?5))) Assumption

6 ((not (Parent ?6)) (childOf (S3 ?6) ?6)) Assumption

7 ((not (Person ?7)) (not (Person ?8))

(not (childOf ?8 ?7)) (Parent ?7)) Assumption

8 ((not (childOf ?10 Betty))) From Query
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Resolution Steps

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((childOf Tom Betty)) Assumption

7 ((not (Person ?7)) (not (Person ?8))

(not (childOf ?8 ?7)) (Parent ?7)) Assumption

8 ((not (Parent ?10))) From Query

9 ((not (Person ?11)) (not (Person ?12))

(not (childOf ?12 ?11))) R,8,7,{?7/?10}

15 ((not (Person ?16)) (not (childOf Tom ?16))) R,9,1,{Tom/?12}

16 ((not (childOf Tom Tom))) R,15,1,{Tom/?16}

17 ((not (childOf Tom Betty))) R,15,2,{Betty/?16}

18 nil R,17,3,{}

QED
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The Answer Predicate

Instead of query ∃x1 · · · ∃xnP (x1, . . . , xn),

and resolution refutation with {¬P (x1, . . . , xn)}

until {},

use ∀x1 · · · ∀xn(P (x1, . . . , xn)⇒ Answer(P (x1, . . . , xn)))

and do direct resolution with

{¬P (x1, . . . , xn), Answer(P (x1, . . . , xn))}

until {(Answer . . .) · · · (Answer . . .)}.
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General Procedure for

Inserting The Answer Predicate

Let:

Q be either ∀ or ∃;

Q be either ∃ or ∀, respectively;

Prenex Normal form of query be Q1x1 · · ·QnxnP (x1, . . . , xn).

Do direct resolution with clause form of

Q1x1 · · ·Qnxn(P (x1, . . . , xn)⇒ Answer(P (x1, . . . , xn)))

until generate {(Answer . . .) · · · (Answer . . .)}.
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Using the Answer Predicate
(setf *UseAnswer* t)

(prove

’((forall x (iff (Parent x)

(and (Person x)

(exists y (and (Person y) (childOf y x))))))

(Person Tom) (Person Betty) (childOf Tom Betty))

’(exists x (Parent x)))

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((childOf Tom Betty)) Assumption

4 ((not (Parent ?3)) (Person ?3)) Assumption

5 ((not (Parent ?4)) (Person (S2 ?4))) Assumption

6 ((not (Parent ?5)) (childOf (S2 ?5) ?5)) Assumption

7 ((not (Person ?6)) (not (Person ?7))

(not (childOf ?7 ?6)) (Parent ?6)) Assumption

8 ((not (Parent ?9)) (Answer (Parent ?9))) From Query
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Resolution Steps

1 ((Person Tom)) Assumption

2 ((Person Betty)) Assumption

3 ((childOf Tom Betty)) Assumption

7 ((not (Person ?6)) (not (Person ?7))

(not (childOf ?7 ?6)) (Parent ?6)) Assumption

8 ((not (Parent ?9)) (Answer (Parent ?9))) From Query

9 ((Answer (Parent ?10)) (not (Person ?10))

(not (Person ?11)) (not (childOf ?11 ?10))) R,8,7,{?6/?9}

15 ((Answer (Parent Betty))

(not (Person Betty)) (not (Person Tom))) R,9,3,{Betty/?10,

Tom/?11}

26 ((Answer (Parent Betty)) (not (Person Tom))) R,15,2,{}

29 ((Answer (Parent Betty))) R,26,1,{}

QED
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Answer Predicate in snark

snark-user(11): (assert ’(forall x (iff (Parent x)

(exists y (and (Person y)

(childOf y x))))))

nil

snark-user(12): (assert ’(Person Tom))

nil

snark-user(13): (assert ’(Person Betty))

nil

snark-user(14): (assert ’(childOf Tom Betty))

nil

snark-user(15): (prove ’(exists x (Parent x))

:answer ’(Parent x))
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snark Refutation

(Refutation

(Row 3

(or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))

assertion)

(Row 4 (Person Tom) assertion)

(Row 6 (childOf Tom Betty) assertion)

(Row 7 (not (Parent ?x)) negated_conjecture

Answer (Parent ?x))

(Row 8 (or (not (Person ?x)) (not (childOf ?x ?y))) (resolve 7 3)

Answer (Parent ?y))

(Row 9 false (rewrite (resolve 8 6) 4)

Answer (Parent Betty))

)

:proof-found
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Answer Predicate with ask

From same SNARK KB:

snark-user(18): (ask ’(exists x (Parent x)) :answer ’(Parent x))

(Parent Betty)
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Using :printProof

snark-user(19): (ask ’(Parent ?x) :answer ’(Parent ?x)

:printProof t)

(Refutation

(Row 3 (or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))

assertion)

(Row 4 (Person Tom) assertion)

(Row 6 (childOf Tom Betty) assertion)

(Row 13 (not (Parent ?x)) negated_conjecture

Answer (Parent ?x))

(Row 14 (or (not (Person ?x)) (not (childOf ?x ?y)))

(resolve 13 3)

Answer (Parent ?y))

(Row 15 false (rewrite (resolve 14 6) 4)

Answer (Parent Betty))

)

(Parent Betty)
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Answer Predicate with query

From same SNARK KB:

snark-user(9): (query "Who is a parent?"

’(exists x (Parent x))

:answer ’(Parent x))

Who is a parent?

(ask ’(exists x (Parent x))) = (Parent Betty)
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query with :answer and :printProof
snark-user(10): (query "Who is a parent?"

’(exists x (Parent x)) :answer ’(Parent x) :printProof t)

Who is a parent?

(Refutation

(Row 3

(or (Parent ?x) (not (Person ?y)) (not (childOf ?y ?x)))

assertion)

(Row 4

(Person Tom)

assertion)

(Row 6

(childOf Tom Betty)

assertion)

(Row 19

(not (Parent ?x))

negated_conjecture

Answer (Parent ?x))

(Row 20

(or (not (Person ?x)) (not (childOf ?x ?y)))

(resolve 19 3)

Answer (Parent ?y))

(Row 21

false

(rewrite (resolve 20 6) 4)

Answer (Parent Betty))

)

(ask ’(exists x (Parent x))) = (Parent Betty)
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Disjunctive Answers

(prove ’((On a b)(On b c)

(Red a) (Green c)

(or (Red b) (Green b)))

’(exists (x y)

(and (Red x) (Green y) (On x y))))

1 ((On a b)) Assumption

2 ((On b c)) Assumption

3 ((Red a)) Assumption

4 ((Green c)) Assumption

5 ((Red b) (Green b)) Assumption

6 ((not (Red ?28)) (not (Green ?30))

(not (On ?28 ?30))

(Answer (and (Red ?28) (Green ?30) (On ?28 ?30)))) From Query
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Resolution Steps

9 ((Answer (and (Red a) (Green ?107) (On a ?107)))

(not (On a ?107)) (not (Green ?107))) R,6,3,{a/?28}

10 ((Answer (and (Red ?112) (Green c) (On ?112 c)))

(not (On ?112 c)) (not (Red ?112))) R,6,4,{c/?30}

11 ((Answer (and (Red b) (Green ?117) (On b ?117)))

(not (On b ?117)) (not (Green ?117)) (Green b)) R,6,5,{b/?28}

13 ((not (Red b))

(Answer (and (Red b) (Green c) (On b c)))) R,10,2,{b/?112}
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Resolution Finished

16 ((Answer (and (Red b) (Green c) (On b c)))

(Green b)) R,13,5,{}

20 ((not (On a b))

(Answer (and (Red a) (Green b) (On a b)))

(Answer (and (Red b) (Green c) (On b c)))) R,9,16,{b/?107}

22 ((Answer (and (Red b) (Green c) (On b c)))

(Answer (and (Red a) (Green b) (On a b)))) R,20,1,{}

QED
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Multiple Clauses From Query

(prove ’((On a b)(On b c)

(Red a) (Green c)

(or (Red b) (Green b)))

’(exists x (or (Red x) (Green x))))

1 ((On a b)) Assumption

2 ((On b c)) Assumption

3 ((Red a)) Assumption

4 ((Green c)) Assumption

5 ((Red b) (Green b)) Assumption

6 ((not (Red ?25))

(Answer (or (Red ?25) (Green ?25)))) From Query

7 ((not (Green ?27))

(Answer (or (Red ?27) (Green ?27)))) From Query

8 ((Answer (or (Red a) (Green a)))) R,6,3,{a/?25}

QED
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Resolution Produces Only 1 Answer

snark-user(20): (initialize)

; Running SNARK from ...

nil

snark-user(21): (assert ’(Man Socrates))

nil

snark-user(22): (assert ’(Man Turing))

nil

snark-user(23): (ask ’(Man ?x) :answer ’(One man is ?x))

(One man is Turing)
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Generic and Hypothetical Answers

Every clause that descends from a query clause (that contains an

Answer predicate) is an answer of some sort.a
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Resolution Refutation, Journal of Applied Logic 5, 1 (March 2007), 70–91 .
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Example of

Generic and Hypothetical Answers

Question
(prove ’((forall (x y z) (if (and (Member x FBS) (Sport y)

(Athlete z) (PlaysWell z y))

(ProvidesScholarshipFor x z)))

(forall x (if (Sport x) (Activity x)))

(forall x (if (Activity x) (or (Sport x) (Game x))))

(forall x (if (or (Member x MAC) (Member x Big10) (Member Pac10 x))

(Member x FBS)))

(Member Buffalo MAC) (Member KentSt MAC)

(Member Wisconsin Big10) (Member Indiana Big10)

(Member Stanford Pac10) (Member Berkeley Pac10)

(Activity Frisbee))

’(exists x (ProvidesScholarshipFor Buffalo x)))
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Initial Clauses

1 ((Member Buffalo MAC)) Assumption

2 ((Member KentSt MAC)) Assumption

3 ((Member Wisconsin Big10)) Assumption

4 ((Member Indiana Big10)) Assumption

5 ((Member Stanford Pac10)) Assumption

6 ((Member Berkeley Pac10)) Assumption

7 ((Activity Frisbee)) Assumption

8 ((not (Sport ?7)) (Activity ?7)) Assumption

9 ((not (Member ?11 MAC)) (Member ?11 FBS)) Assumption

10 ((not (Member ?12 Big10)) (Member ?12 FBS)) Assumption

11 ((not (Member Pac10 ?13)) (Member ?13 FBS)) Assumption

12 ((not (Activity ?9)) (Sport ?9) (Game ?9)) Assumption

13 ((not (Member ?3 FBS)) (not (Sport ?4)) (not (Athlete ?5))

(not (PlaysWell ?5 ?4)) (ProvidesScholarshipFor ?3 ?5)) Assumption

14 ((not (ProvidesScholarshipFor Buffalo ?15))

(Answer (ProvidesScholarshipFor Buffalo ?15))) From Query
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Resolvents
15 ((Answer (ProvidesScholarshipFor Buffalo ?16)) (not (Member Buffalo FBS)) (not (Sport ?17))

(not (Athlete ?16)) (not (PlaysWell ?16 ?17))) R,14,13,{?5/?15, Buffalo/?3}

16 ((not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo ?18)) (not (Sport ?19))

(not (Athlete ?18)) (not (PlaysWell ?18 ?19))) R,15,9,{Buffalo/?11}

17 ((not (Member Buffalo Big10)) (Answer (ProvidesScholarshipFor Buffalo ?20)) (not (Sport ?21))

(not (Athlete ?20)) (not (PlaysWell ?20 ?21))) R,15,10,{Buffalo/?12}

18 ((not (Member Pac10 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo ?22)) (not (Sport ?23))

(not (Athlete ?22)) (not (PlaysWell ?22 ?23))) R,15,11,{Buffalo/?13}

19 ((Game ?24) (not (Activity ?24)) (Answer (ProvidesScholarshipFor Buffalo ?25))

(not (Member Buffalo FBS)) (not (Athlete ?25)) (not (PlaysWell ?25 ?24))) R,15,12,{?9/?17}

20 ((Game ?26) (not (Activity ?26)) (not (Member Pac10 Buffalo)) (Answer (ProvidesScholarshipFor Buffalo ?27))

(not (Athlete ?27)) (not (PlaysWell ?27 ?26))) R,18,12,{?9/?23}

21 ((Game ?28) (not (Activity ?28)) (not (Member Buffalo Big10)) (Answer (ProvidesScholarshipFor Buffalo ?29))

(not (Athlete ?29)) (not (PlaysWell ?29 ?28))) R,17,12,{?9/?21}

22 ((Answer (ProvidesScholarshipFor Buffalo ?30)) (not (Sport ?31)) (not (Athlete ?30))

(not (PlaysWell ?30 ?31))) R,16,1,{}

23 ((Game ?32) (not (Activity ?32)) (not (Member Buffalo MAC)) (Answer (ProvidesScholarshipFor Buffalo ?33))

(not (Athlete ?33)) (not (PlaysWell ?33 ?32))) R,16,12,{?9/?19}

24 ((Game ?34) (not (Activity ?34)) (Answer (ProvidesScholarshipFor Buffalo ?35)) (not (Athlete ?35))

(not (PlaysWell ?35 ?34))) R,22,12,{?9/?31}

25 ((Game Frisbee) (Answer (ProvidesScholarshipFor Buffalo ?36)) (not (Athlete ?36))

(not (PlaysWell ?36 Frisbee))) R,24,7,{Frisbee/?34}

26 ((not (Sport ?37)) (Game ?37) (Answer (ProvidesScholarshipFor Buffalo ?38)) (not (Athlete ?38))

(not (PlaysWell ?38 ?37))) R,24,8,{?7/?34}

nil
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Non-Subsumed Resolvents

22 ((Answer (ProvidesScholarshipFor Buffalo ?30))

(not (Sport ?31)) (not (Athlete ?30))

(not (PlaysWell ?30 ?31)))

24 ((Game ?34) (not (Activity ?34))

(Answer (ProvidesScholarshipFor Buffalo ?35))

(not (Athlete ?35)) (not (PlaysWell ?35 ?34)))

25 ((Game Frisbee)

(Answer (ProvidesScholarshipFor Buffalo ?36))

(not (Athlete ?36)) (not (PlaysWell ?36 Frisbee)))
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Interpretation of Clauses

As Generic Answers

22 ((Answer (ProvidesScholarshipFor Buffalo ?30))

(not (Sport ?31)) (not (Athlete ?30))

(not (PlaysWell ?30 ?31)))

∀xy [Athlete(x ) ∧ Sport(y) ∧ PlaysWell(x , y)

⇒ ProvidesScholarshipFor(Buffalo, x )]

24 ((Game ?34) (not (Activity ?34))

(Answer (ProvidesScholarshipFor Buffalo ?35))

(not (Athlete ?35)) (not (PlaysWell ?35 ?34)))

∀xy [Athlete(x ) ∧Activity(y) ∧ ¬Game(y) ∧ PlaysWell(x , y)

⇒ ProvidesScholarshipFor(Buffalo, x )]
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Interpretation of Clause

As Hypothetical Answer

25 ((Game Frisbee)

(Answer (ProvidesScholarshipFor Buffalo ?36))

(not (Athlete ?36)) (not (PlaysWell ?36 Frisbee)))

¬Game(Frisbee)⇒ ∀xy [Athlete(x ) ∧ PlaysWell(x ,Frisbee)

⇒ ProvidesScholarshipFor(Buffalo, x )]
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Rule-Based Systems

Every FOL KB

can be expressed as a set of rules of the form

∀x(C1(x) ∨ · · · ∨ Cm(x))

or

∀x(A1(x) ∧ · · · ∧An(x)⇒ C1(x) ∨ · · · ∨ Cm(x))

or

∀x(A1(x) ∧ · · · ∧An(x)⇒ C(x))

where Ai(x) and Cj(x) are literals.
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Wh Questions in Rule-Based Systems

Given rule ∀x(A(x)⇒ C(x))

Ask C(y)?

Backchain to subgoal A(x)µ, where µ is an mgu of C(x)) and C(y))

Moral: Unification is generally needed in backward chaining

systems.

Unification is correct pattern matching when both structures have

variables.
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Forward Chaining & Unification

Forward chaining generally matches a ground fact with rule

antecedents.

Forward chaining does not generally require unification.
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Common Formalizing Difficulties

Every raven is black: ∀x(Raven(x)⇒ Black(x))

Some raven is black: ∃x(Raven(x) ∧Black(x))

Note the satisfying models of the incorrect

∃x(Raven(x)⇒ Black(x))
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Another Formalizing Difficulty

Note where a Skolem function appears in

∀x (Parent(x )⇔ ∃ychildOf (y , x ))

⇔ ∀x ((Parent(x )⇒ ∃ychildOf (y , x ))

∧((∃ychildOf (y , x ))⇒ Parent(x )))

⇔ ∀x ((¬Parent(x ) ∨ ∃ychildOf (y , x ))

∧(¬(∃ychildOf (y , x )) ∨ Parent(x )))

⇔ ∀x ((¬Parent(x ) ∨ ∃ychildOf (y , x ))

∧(∀y(¬childOf (y , x )) ∨ Parent(x )))

⇔ ∀x (Parent(x )⇒ childOf (f (x ), x ))

∧∀x∀y(childOf (y , x )⇒ Parent(x ))
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What’s “First-Order” About FOL?

In a first-order logic:

Predicate and function symbols cannot be arguments of predicates

or functions;

Variables cannot be in predicate or function position.

E.G. ∀r [Transitive(r)⇔ ∀xyz [r(x , y) ∧ r(y , z )⇒ r(x , z )]]

is not a first-order sentence.

“The adjective ’first-order’ is used to distinguish the languages we shall

study here from those in which there are predicates having other

predicates or functions as arguments or in which predicate quantifiers or

function quantifiers are permitted, or both.” [Elliott Mendelson,

Introduction to Mathematical Logic, Fifth Edition, CRC Press, Boca

Raton, FL, 2010, p. 48.]
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Russell’s Theory of Types

Designed to solve paradox: ∃s∀c[s(c)⇔ ¬c(c)]

has instance S(S)⇔ ¬S(S)
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N th-Order Logic

Assign type 0 to individuals and to terms denoting individuals.

Assign type i+ 1 to any set and to any function or predicate

symbol that denotes a set, possibly of tuples, such that the

maximum type of any of its elements is i.

Also assign type i+ 1 to any variable that range over type i objects.

Note that the type of a functional term is the type of its range—the

nth element of the n-tuples of the set which the function denotes.

Syntactically, if the maximum type of the arguments of a ground

atomic wff is i, then the type of the predicate is i+ 1.

No predicate of type i may take a ground argument of type i or

higher.
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First-Order Logic Defined

First-order logic has a language that obeys Russell’s Theory of

Types, and whose highest type symbol is of type 1.

nth-order logic has a language that obeys Russell’s Theory of

Types, and whose highest type symbol is of type n.

Ω-ordered logic has no limit, but must still follow the rules.

E.g., ∀r [Transitive(r)⇔ ∀xyz [r(x , y) ∧ r(y , z )⇒ r(x , z )]]

is a formula of Second-Order Logic:

Type 0 objects: individuals in the domain

Type 1 symbols: x, y, z because they range over type 0 objects

Type 1 objects: binary relations over type 0 objects

Type 2 symbols: r because it ranges over type 1 objects,

Transitive because it denotes a set of type 1 objects
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Nested Beliefs

Can a proposition be an argument of a proposition?

Consider:

∀p(Believes(Solomon, p)⇒ p)

Believes(Solomon,Round(Earth))⇒ Round(Earth)

Believes(Solomon,Round(Earth))

|= Round(Earth)

If Round(Earth) is an atomic wff, it’s not a term, and only terms

may be arguments of functions and predicates.

Even if it could:

[[Round(Earth)]] = True if [[Earth]] ∈ [[Round ]], else False.

So [[Believes(Solomon,Round(Earth))]] = True

iff 〈 [[Solomon]],True-or-False〉 ∈ [[Believes]]
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Reifying Propositions

and the Holds Predicate

So how can we represent in FOL

“Everything that Solomon believes is true”?

• Reify (some) propositions.

Make them objects in the domain.

Represent them using individual constants or functional terms.

• Use Holds(P) to mean

“P holds (is true) in the given situation”.

• Examples:

∀p(Believes(Solomon, p)⇒ Holds(p))

Believes(Solomon,Round(Earth))⇒ Holds(Round(Earth))
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Semantics of the Holds Predicate

∀p(Believes(Solomon, p)⇒ Holds(p)) ∧ Believes(Solomon,Round(Earth))

⇒ Holds(Round(Earth))

Type 0 individuals and terms:

[Solomon] = [[Solomon]] = A person named Solomon

[Earth] = [[Earth]] = The planet Earth

[Round(Earth)] = [[Round(Earth)]] = The proposition that the Earth is round

Type 1 objects and symbols:

p: A variable ranging over type 0 propositions

[[Round]] = A function from type 0 physical objects to type 0 propositions.

[[Holds]] = A set of type 0 propositions.

[[Believes]] = A set of pairs, type 0 People × type 0 propositions

Type 1 atomic formulas:

[Holds(x)] = The type 1 proposition that [x ] is True.

[[Holds(x)]] = True if [[x ]] ∈ [[Holds]]; False otherwise

[Believes(x , y)] = The type 1 proposition that [x ] believes [y]

[[Believes(x , y)]] = True if 〈 [[x ]], [[y]] 〉 ∈ [[Believes]]; False otherwise
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5 Summary of Part I

Artificial Intelligence (AI): A field of computer science and

engineering concerned with the computational understanding of

what is commonly called intelligent behavior, and with the

creation of artifacts that exhibit such behavior.

Knowledge Representation and Reasoning (KR or KRR):

A subarea of Artificial Intelligence concerned with

understanding, designing, and implementing ways of

representing information in computers, and using that

information to derive new information based on it.

KR is more concerned with belief than “knowledge”. Given

that an agent (human or computer) has certain beliefs, what

else is reasonable for it to believe, and how is it reasonable for it

to act, regardless of whether those beliefs are true and justified.
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What is Logic?

Logic is the study of correct reasoning.

There are many systems of logic (logics). Each is specified by

specifying:

• Syntax: Specifying what counts as a well-formed expression

• Semantics: Specifying the meaning of well-formed expressions

– Intensional Semantics: Meaning relative to a Domain

– Extensional Semantics: Meaning relative to a Situation

• Proof Theory: Defining proof/derivation, and how it can be

extended.

Page 363



Relevance of Logic

Any system that consists of

• a collection of symbol structures,

well-formed relative to some syntax;

• a set of procedures for adding new structures to that collection

based on what’s already in there.

is a logic.

But:

Do the symbol structures have a consistent semantics?

Are the procedures sound relative to that semantics?

Soundness is the essence of “correct reasoning.”
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KR and Logic

Given that a Knowledge Base is represented in a language with a

well-defined syntax, a well-defined semantics, and that reasoning

over it is a well-defined procedure, a KR system is a logic.

KR research can be seen as a search for the best logic to capture

human-level reasoning.
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Relations Among Inference Problems

Syntax Derivation Theoremhood

A1, . . . , An ` Q ⇔ ` A1 ∧ . . . ∧An ⇒ Q

⇓⇑ ⇓⇑

A1, . . . , An |= Q ⇔ |= A1 ∧ . . . ∧An ⇒ Q

Semantics Logical Entailment Validity

(⇓ Soundness) (⇑ Completeness)
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Inference/Reasoning Methods

Given a KB/set of assumptions A and a query Q:

• Model Finding

– Direct: Find satisfying models of A,

see if Q is True in all of them.

– Refutation: Find if A ∪ {¬Q} is unsatisfiable.

• Natural Deduction

– Direct: Find if A ` Q.

• Resolution

– Direct: Find if A ` Q (incomplete).

– Refutation: Find if
∧
A ∧ ¬Q is inconsistent.
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Classes of Logics

• Propositional Logic

– Finite number of atomic propositions and models.

– Model finding and resolution are decision procedures.

• Finite-Model Predicate Logic

– Finite number of terms, atomic formulae, and models.

– Reducible to propositional logic.

– Model finding and resolution are decision procedures.

• First-Order Logic

– Infinite number of terms, atomic formulae, and models.

– Not reducible to propositional logic.

– There are no decision procedures.

– Resolution plus factoring is refutation complete.
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Logics We Studied

1. Standard Propositional Logic

2. Clause Form Propositional Logic

3. Standard Finite-Model Predicate Logic

4. Clause Form Finite-Model Predicate Logic

5. Standard First-Order Predicate Logic

6. Clause Form First-Order Predicate Logic
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Proof Procedures We Studied

1. Direct model finding: truth tables, decreasoner,

relsat (complete search) walksat, gsat (stochastic search)

2. Semantic tableaux (model-finding refutation)

3. Wang algorithm (model-finding refutation), wang

4. Hilbert-style axiomatic (direct), brief

5. Fitch-style natural deduction (direct)

6. Resolution (refutation), prover, SNARK
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Utility Notions and Techniques

1. Material implication

2. Possible properties of connectives

commutative, associative, idempotent

3. Possible properties of well-formed expressions

free, bound variables

open, closed, ground expressions

4. Possible semantic properties of wffs

contradictory, satisfiable, contingent, valid

5. Possible properties of proof procedures

sound, consistent, complete,

decision procedure, semi-decision procedure
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More Utility Notions and Techniques

5. Substitutions

application, composition

6. Unification

most general common instance (mgci),

most general unifier (mgu)

7. Translation from standard form to clause form

Conjunctive Normal Form (CNF),

Skolem functions/constants

8. Resolution Strategies

subsumption, unit preference, set of support

9. The Answer Literal

Page 372



Unification

• Unification is a least-commitment method of choosing a

substitution for Universal Instantiation (∀E).

• Unification is correct pattern matching when both

structures have variables.

• Unification is generally needed in backward chaining

systems.
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AI-Logic Connections

AI Logic

rules non-atomic assumptions

or domain rules or non-logical axioms

inference engine procedures rules of inference

knowledge base derivation

Page 374



6 Prolog

6.1 Horn Clauses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

6.2 Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
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6.1 Horn Clauses

A Horn Clause is a clause with at most one positive literal.

Either {¬Q1(x), . . . ,¬Qn(x)} (negative Horn clause)

or {C(x)} (fact or positive or definite Horn clause)

or {¬A1(x), . . . ,¬An(x), C(x)} (positive or definite Horn clause)

which is the same as

A1(x) ∧ · · · ∧An(x)⇒ C(x)

where Ai(x), C(x), and Q(x) are atoms.
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SLD Resolution

Selected literals, Linear pattern, over Definite clauses

SLD derivation of clause c from set of clauses S is

c1, . . . , cn = c

s.t. c1 ∈ S
and ci+1 is resolvent of ci and a clause in S. [B&L, p. 87]

If S is a set of Horn clauses,

then there is a resolution derivation of {} from S

iff there is an SLD derivation of {} from S.
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SLDSolve
procedure SLDSolve(KB,query) returns true or false {

/* KB = {rule1 , . . . , rulen}
* rulei = {hi ,¬bi1 , . . . ,¬biki }
* query = {¬q1, . . . ,¬qm} */

if (m = 0) return true;

for i := 1 to n {
if((µ := Unify(q1, hi)) 6= FAIL

and SLDSolve(KB, {¬bi1µ, . . . ,¬biki
µ,¬q2µ, . . . ,¬qmµ})) {

return true;

}
}
return false;

}

Where hi, bij, and qi are atomic formulae.

See B&L, p. 92
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6.2 Prolog

Example Prolog Interaction

<timberlake:~/.xemacs:1:35> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- consult(user).

% consulting user...

| driver(X) :- drives(X,_).

| passenger(Y) :- drives(_,Y).

| drives(betty,tom).

|

% consulted user in module user, 0 msec 1200 bytes

yes

| ?- driver(X), passenger(Y).

X = betty,

Y = tom ?

yes

| ?- halt.
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Variables are Capitalized
SICStus 4.0.5 (x86-linux-glibc2.3): Thu Feb 12 09:47:39 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- [user].

% compiling user...

| canary(Tweety).

* [Tweety] - singleton variables

|

% compiled user in module user, 10 msec 152 bytes

yes

| ?- canary(Tweety).

true ?

yes

| ?- canary(oscar).

yes

| ?-
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Prolog Program with Two Answers

% From Rich & Knight, 2nd Edition (1991) p. 192.

likesToEat(X,Y) :- cat(X), fish(Y).

cat(X) :- calico(X).

fish(X) :- tuna(X).

tuna(charlie).

tuna(herb).

calico(puss).
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Listing the Fish Program
| ?- listing.

calico(puss).

cat(A) :-

calico(A).

fish(A) :-

tuna(A).

likesToEat(A, B) :-

cat(A),

fish(B).

tuna(charlie).

tuna(herb).

yes

Note: consult(File) loads the File in interpreted mode, whereas [File] loads the

File in compiled mode. listing is only possible in interpreted mode.
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Running the Fish Program

<timberlake:CSE563:1:39> sicstus

SICStus 4.0.5 (x86_64-linux-glibc2.3): Thu Feb 12 09:48:30 CET 2009

Licensed to SP4cse.buffalo.edu

| ?- [’fish.prolog’].

% compiling /projects/shapiro/CSE563/fish.prolog...

% compiled /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1808 bytes

yes

| ?- likesToEat(puss,X).

X = charlie ? ;

X = herb ? ;

no

| ?- halt.

<timberlake:CSE563:1:40>
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Tracing the Fish Program

| ?- [’fish.prolog’].

% consulting /projects/shapiro/CSE563/fish.prolog...

% consulted /projects/shapiro/CSE563/fish.prolog in module user, 0 msec 1352 bytes

yes

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace
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Tracing First Answer

| ?- likesToEat(puss,X).

1 1 Call: likesToEat(puss,_442) ?

2 2 Call: cat(puss) ?

3 3 Call: calico(puss) ?

3 3 Exit: calico(puss) ?

2 2 Exit: cat(puss) ?

4 2 Call: fish(_442) ?

5 3 Call: tuna(_442) ?

? 5 3 Exit: tuna(charlie) ?

? 4 2 Exit: fish(charlie) ?

? 1 1 Exit: likesToEat(puss,charlie) ?

X = charlie ? ;
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Tracing the Second Answer

X = charlie ? ;

1 1 Redo: likesToEat(puss,charlie) ?

4 2 Redo: fish(charlie) ?

5 3 Redo: tuna(charlie) ?

5 3 Exit: tuna(herb) ?

4 2 Exit: fish(herb) ?

1 1 Exit: likesToEat(puss,herb) ?

X = herb ? ;

no

% trace

| ?- notrace.

% The debugger is switched off

yes
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Backtracking Example
Program:

bird(tweety).

bird(oscar).

bird(X) :- feathered(X).

feathered(maggie).

large(oscar).

ostrich(X) :- bird(X), large(X).

Run (No backtracking needed):

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes
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Backtracking Used

| ?- ostrich(X).

1 1 Call: ostrich(_368) ?

2 2 Call: bird(_368) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

? 2 2 Exit: bird(oscar) ?

4 2 Call: large(oscar) ?

4 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

X = oscar ?

yes
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Backtracking: Effect of Query
/projects/shapiro/CSE563/Examples/Prolog/backtrack.prolog:

supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

Backtracking not needed:

| ?- supervisorOf(smith,X).

1 1 Call: supervisorOf(smith,_380) ?

2 2 Call: managerOf(smith,_772) ?

2 2 Exit: managerOf(smith,itDepartment) ?

3 2 Call: departmentOf(_380,itDepartment) ?

3 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = brown ?

yes
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Backtracking Example, part 2
supervisorOf(X,Y) :- managerOf(X,Z), departmentOf(Y,Z).

managerOf(jones,accountingDepartment).

managerOf(smith,itDepartment).

departmentOf(kelly,accountingDepartment).

departmentOf(brown,itDepartment).

| ?- supervisorOf(X,brown).

1 1 Call: supervisorOf(_368,brown) ?

2 2 Call: managerOf(_368,_772) ?

? 2 2 Exit: managerOf(jones,accountingDepartment) ?

3 2 Call: departmentOf(brown,accountingDepartment) ?

3 2 Fail: departmentOf(brown,accountingDepartment) ?

2 2 Redo: managerOf(jones,accountingDepartment) ?

2 2 Exit: managerOf(smith,itDepartment) ?

4 2 Call: departmentOf(brown,itDepartment) ?

4 2 Exit: departmentOf(brown,itDepartment) ?

1 1 Exit: supervisorOf(smith,brown) ?

X = smith ?

yes
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Negation by Failure

& The Closed World Assumption
| ?- [user].

% consulting user...

| manager(jones, itSection).

| manager(smith, accountingSection).

|

% consulted user in module user, 0 msec 416 bytes

yes

| ?- manager(smith, itSection).

no

| ?- manager(kelly, accountingSection).

no

Negation by failure: “no” means didn’t succeed.

CWA: If it’s not in the KB, it’s not true.
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Cut: Preventing Backtracking

KB Without Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), large(X).

|

% consulted user in module user, 0 msec 1120 bytes

yes
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No Backtracking Needed

| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace

| ?- ostrich(oscar).

1 1 Call: ostrich(oscar) ?

2 2 Call: bird(oscar) ?

? 2 2 Exit: bird(oscar) ?

3 2 Call: large(oscar) ?

3 2 Exit: large(oscar) ?

? 1 1 Exit: ostrich(oscar) ?

yes

% trace
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Unwanted Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

2 2 Redo: bird(tweety) ?

4 3 Call: feathered(tweety) ?

4 3 Fail: feathered(tweety) ?

2 2 Fail: bird(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

No need to try to solve bird(tweety) another way.
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KB With Cut

| ?- consult(user).

% consulting user...

| bird(oscar).

| bird(tweety).

| bird(X) :- feathered(X).

| feathered(maggie).

| large(oscar).

| ostrich(X) :- bird(X), !, large(X).

|

% consulted user in module user, 0 msec -40 bytes

yes

% trace
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No Extra Backtracking

| ?- ostrich(tweety).

1 1 Call: ostrich(tweety) ?

2 2 Call: bird(tweety) ?

? 2 2 Exit: bird(tweety) ?

3 2 Call: large(tweety) ?

3 2 Fail: large(tweety) ?

1 1 Fail: ostrich(tweety) ?

no

% trace
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Cut Fails the Head Instance: Program
| ?- [user].

% compiling user...

| yellow(bigbird).

| bird(tweety).

| canary(X) :- bird(X), !, yellow(X).

| canary(X).

* [X] - singleton variables

|

% compiled user in module user, 0 msec 600 bytes

yes

| ?- canary(fred).

yes

| ?- canary(bigbird).

yes

| ?- canary(tweety).

no

| ?-
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fail: Forcing Failure
If something is a canary, it is not a penguin.

| ?- consult(user).

% consulting user...

| penguin(X) :- canary(X), !, fail.

| canary(tweety).

|

% consulted user in module user, 0 msec 416 bytes

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

% trace
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Cut Fails the Head Instance: Program

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

canary(tweety).

bird(willy).

swims(willy).
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Cut Fails the Head Instance: Run
| ?- penguin(willy).

1 1 Call: penguin(willy) ?

2 2 Call: canary(willy) ?

2 2 Fail: canary(willy) ?

3 2 Call: bird(willy) ?

3 2 Exit: bird(willy) ?

4 2 Call: swims(willy) ?

4 2 Exit: swims(willy) ?

1 1 Exit: penguin(willy) ?

yes

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no

Page 400



Cut Fails Head Alternatives

| ?- penguin(X).

1 1 Call: penguin(_368) ?

2 2 Call: canary(_368) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(_368) ?

no

Moral:

Use cut when seeing if a ground atom is satisfied (T/F question),

but not when generating satisfying instances (wh questions).
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Bad Rule Order

penguin(X) :- bird(X), swims(X).

penguin(X) :- canary(X), !, fail.

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: bird(tweety) ?

3 3 Call: canary(tweety) ?

3 3 Exit: canary(tweety) ?

2 2 Exit: bird(tweety) ?

4 2 Call: swims(tweety) ?

4 2 Fail: swims(tweety) ?

5 2 Call: canary(tweety) ?

5 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no
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Good Rule Order

penguin(X) :- canary(X), !, fail.

penguin(X) :- bird(X), swims(X).

bird(X) :- canary(X).

canary(tweety).

% trace

| ?- penguin(tweety).

1 1 Call: penguin(tweety) ?

2 2 Call: canary(tweety) ?

2 2 Exit: canary(tweety) ?

1 1 Fail: penguin(tweety) ?

no
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SICSTUS Allows “or” In Body.

bird(willy).

swims(willy).

canary(tweety).

penguin(X) :-

canary(X), !, fail;

bird(X), swims(X).

bird(X) :- canary(X).

| ?- [’twoRuleCutOr.prolog’].

% compiling /projects/shapiro/CSE563/twoRuleCutOr.prolog...

* clauses for user:bird/1 are not together

* Approximate lines: 8-10, file: ’/projects/shapiro/CSE563/twoRuleCutOr.prolog’

% compiled /projects/shapiro/CSE563/twoRuleCutOr.prolog in module user, 0 msec 928 bytes

yes

| ?- penguin(willy).

yes

| ?- penguin(tweety).

no
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not: “Negated” Antecedents
A bird that is not a canary is a penguin.

| penguin(X) :- bird(X), !, \+canary(X).

| bird(opus).

| canary(tweety).

% compiled user in module user, 0 msec 512 bytes

| ?- penguin(opus).

1 1 Call: penguin(opus) ?

2 2 Call: bird(opus) ?

2 2 Exit: bird(opus) ?

3 2 Call: canary(opus) ?

3 2 Fail: canary(opus) ?

1 1 Exit: penguin(opus) ?

yes

\+ is SICStus Prolog’s version of not.

It is negation by failure, not logical negation.
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Can Use Functions

driver(X) :- drives(X,_).

drives(mother(X),X) :- schoolchild(X).

schoolchild(betty).

schoolchild(tom).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

no
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Infinitely Growing Terms

driver(X) :- drives(X,_).

drives(mother(X),X) :- commuter(X).

commuter(betty).

commuter(tom).

commuter(mother(X)) :- commuter(X).

| ?- driver(X).

X = mother(betty) ? ;

X = mother(tom) ? ;

X = mother(mother(betty)) ? ;

X = mother(mother(tom)) ? ;

X = mother(mother(mother(betty))) ? ;

X = mother(mother(mother(tom))) ?

yes
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Prolog Does Not Do the Occurs Check

<pollux:CSE563:2:31> sicstus

...

| ?- [user].

% consulting user...

| mother(motherOf(X), X).

|

% consulted user in module user, 0 msec 248 bytes

yes

| ?- mother(Y, Y).

Y = motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(

motherOf(motherOf(motherOf(motherOf(...)))))))))) ?

yes

| ?-
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“=” and “is”
| ?- p(X, b, f(c,Y)) = p(a, U, f(V,U)).

U = b,

V = c,

X = a,

Y = b ?

yes

| ?- X is 2*(3+6).

X = 18 ?

yes

| ?- X = 2*(3+6).

X = 2*(3+6) ?

yes

| ?- X is 2*(3+6), Y is X/3.

X = 18,

Y = 6.0 ?

yes

| ?- Y is X/3, X is 2*(3+6).

! Instantiation error in argument 2 of is/2

! goal: _76 is _73/3
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Avoid Left Recursive Rules

To define ancestor as the transitive closure of parent.

The base case: ancestor(X,Y) :- parent(X,Y).

Three possible recursive cases:

1. ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

2. ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y).

3. ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

Versions (2) and (3) will cause infinite loops.
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7 A Potpourri of Subdomains

7.1 Taxonomies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

7.2 Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418

7.3 Things vs. Substances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425

Page 411



Taxonomies: Categories as Intensional

Sets

In mathematics, a set is defined by its members.

This is an extensional set.

Plato: Man is a featherless biped.

An intensional set is defined by properties.

Aristotle: Man is a rational animal.

A category (type, class) is an intensional set.
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Taxonomies: Need for Two Relations

With sets, there’s a difference between

set membership, ∈ 5 ∈ {1, 3, 5, 7, 9}

and subset, ⊂,⊆ {1, 3, 5, 7, 9} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9}

One difference is that subset is transitive:

{1, 3, 5} ⊂ {1, 3, 5, 7, 9} and {1, 3, 5, 7, 9} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9}
and {1, 3, 5} ⊂ {1, 2, 3, 4, 5, 6, 7, 8, 9}

membership is not:

5 ∈ {1, 3, 5, 7, 9} and {1, 3, 5, 7, 9} ∈ {{1, 3, 5, 7, 9}, {2, 4, 6, 8}}
but 5 6∈ {{1, 3, 5, 7, 9}, {2, 4, 6, 8}}

Similarly, we need both the instance relation and the subcategory

relation.
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Taxonomies:

Categories as Unary Predicates

One way to represent taxonomies:

Canary(Tweety)

∀x [(Canary(x )⇒ Bird(x )]

∀x [(Bird(x )⇒ Vertebrate(x )]

∀x [(Vertebrate(x )⇒ Chordate(x )]

∀x [(Chordate(x )⇒ Animal(x )]
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Taxonomies: Reifying

To reify: to make a thing of.

Allows discussion of “predicates” in FOL.

Membership: Member or Instance or Isa

Isa(Tweety ,Canary)

Subcategory: Subclass or Ako (sometimes, even, Isa)

Ako(Canary ,Bird)

Ako(Bird ,Vertebrate)

Ako(Vertebrate,Chordate)

Ako(Chordate,Animal)

Axioms:

∀x∀c1∀c2 [Isa(x , c1 ) ∧Ako(c1 , c2 )⇒ Isa(x , c2 )]

∀c1∀c2∀c3 [Ako(c1 , c2 ) ∧Ako(c2 , c3 )⇒ Ako(c1 , c3 )]
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Discussing Categories

Isa(Canary ,Species)

Isa(Bird ,Class)

Isa(Chordate,Phylum)

Isa(Animal ,Kingdom)

Extinct(Dinosaur)

Note: That’s Isa, not Ako.

If categories are predicates, requires second-order logic.

Other relationships: exhaustive subcategories, disjoint categories,

partitions.

DAG (directed acyclic graph), rather than just a tree.

E.g., human: man vs. woman; child vs. adult vs. senior.
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Transitive Closure

It’s sometimes useful (especially in Prolog)

to have a second relation, R2

be the transitive closure of a relation, R1.

∀R1, R2[transitiveClosureOf(R2, R1)

⇔ [∀x, y(R1(x, y)⇒ R2(x, y))

∧∀x, y, z[R1(x, y) ∧R2(y, z)⇒ R2(x, z)]]

E.g. ancestor is the transitive closure of parent :

∀x , y [parent(x , y)⇒ ancestor(x , y)]

∀x , y , z [parent(x , y) ∧ ancestor(y , z )⇒ ancestor(x , z )]
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7.2 Time

How would you represent time?

Discuss
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Subjective vs. Objective: Subjective

Make now an individual in the domain.

Include other times relative to now.

OK if time doesn’t move.
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Subjective vs. Objective: Objective

Make now a meta-logical variable with some time-denoting term as

value.

Relate times to each other, e.g. Before(t1 , t2 ).

Now can move by giving now a new value.
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Points vs. Intervals: Points

Use numbers: integers, rationals, reals?

Computer reals aren’t really dense.

How to assign numbers to times?

Granularity: How big, numerically, is a day, or any other interval of

time?

If an interval is defined as a pair of points, which interval is the

midpoint in, if one interval immediately follows another?
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Points vs. Intervals: Intervals

Use intervals only: no points at all.

More cognitively accurate.

Granularity is not fixed.

A “point” is just an interval with nothing inside it.
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James Allen’s Interval Relations

x x

before(x,y) |---| |---| meets(x,y) |---|---|

y y

x

x |---|

overlaps(x,y) |----| equals(x,y) |---|

|----| y

y

x x

starts(x,y) |---| finishes(x,y) |---|

|-----| |-----|

y y

x

during(x,y) |---|

|-----|

y

[James F. Allen, Maintaining Knowledge About Temporal Intervals, Communications of the ACM 26,

11 (Nov 1983), 832–843.]
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A Smaller Set of Temporal Relations

If fewer distinctions are needed, one may use

before(x , y) for Allen’s before(x , y) ∨meets(x , y)

during(x , y) for Allen’s starts(x , y) ∨ during(x , y) ∨ finishes(x , y)

overlaps(x , y) and equals(x , y)

and appropriate converses.
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7.3 Things vs. Substances

Count Nouns vs. Mass Nouns

A count noun denotes a thing.

Count nouns can be singular or plural.

Things can be counted.

One dog. Two dogs.

A mass noun denotes a substance.

Mass nouns can only be singular.

One can have a quantity of a substance.

A glass of water. A pint of ice cream.
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A Quantity of a Substance

is a Thing

water a substance

a lake = a body of water a thing

lakes a plurality of things

40 acres of lakes a quantity of a substance

Page 426



Nouns with mass and count senses

A noun might have both senses.

a piece of pie vs. A piece of a pie

two pieces of steak vs. two steaks

Any count noun can be “massified”.

Any thing can be put through “the universal grinder”.

I can’t get up; I’ve got cat on my lap.
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8.1 SNePSLOG Semantics

The Intensional Domain

of (Mental) Entities

Frege: The Morning Star is the Evening Star.

different from The Morning Star is the Morning Star.

Russell: George IV wanted to know whether Scott was the author of

Waverly.

not George IV wanted to know whether the author of Waverly was

the author of Waverly.

Jerry Siegel and Joe Shuster: Clark Kent is a mild-mannered

reporter; Superman is the man of steel.
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Intensions vs. Extensions

the Morning Star and the Evening Star

Scott and the author of Waverly

Clark Kent and Superman

are different intensions, or intensional entities, or mental entities, or

just entities,

even though they are coreferential, or extensionally equivalent, or

have the same extensions.
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SNePSLOG Semantics

Intensional Representation

SNePSLOG individual ground terms denote intensions, (mental)

entities.

Mental entities include propositions.

Propositions are first-class members of the domain.

SNePSLOG wffs denote propositions.

Assume that for every entity in the domain there is a term that

denotes it.

Make unique names assumption: no two terms denote the same

entity.
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The Knowledge Base

Think of the SNePS KB as the contents of the mind of an

intelligent agent.

The terms in the KB denote mental entities that the agent has

conceived of (so far).

Some of the wffs are asserted.

These denote propositions that the agent believes.

The rules of inference sanction believing some additional

proposition(s), but drawing that inference is optional.

I.e., the agent is not logically omniscient.
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8.2 SNePSLOG Syntax

Atomic Symbols

Individual Constants, Variables, Function Symbols:

any Lisp symbol, number, or string.

All that matters is the sequence of characters.

I.e. "4", \4, and 4, are the same.

The sets of individual constants, variables, and function symbols

should be distinct, but don’t have to be.
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SNePSLOG Syntax

Terms

An individual constant is a term.

A variable is a term.

If t1, ..., tn are terms, then {t1, ..., tn} is a set of terms.

If f is a function symbol or a variable, then f() is a term.

If t1, ..., tn are terms or sets of terms and f is a function

symbol or variable, then f(t1, ..., tn) is a term.

A function symbol needn’t have a fixed arity, but it might be a

mistake of formalization otherwise.
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SNePSLOG Syntax

Atomic Wffs

If x is a variable, then x is a wff.

If P is a proposition-valued function symbol or variable,

then P() is a wff.

If t1, ..., tn are terms or sets of terms

and P is a proposition-valued function symbol or variable,

then P(t1, ..., tn) is a wff.

A predicate symbol needn’t have a fixed arity, but it might be a

mistake of formalization otherwise.

If P1, . . . , Pn are wffs, then {P1, . . . , Pn} is a set of wffs.

Abbreviation: If P is a wff, then P is an abbreviation of {P}.

Every wff is a proposition-denoting term.
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SNePSLOG Syntax/Semantics

AndOr

If {P1, . . . , Pn} is a set of wffs (proposition-denoting terms),

and i and j are integers such that 0 <= i <= j <= n, then

andor(i, j){P1, . . . , Pn} is a wff (proposition-denoting term).

The proposition that at least i and at most j of P1, . . . , Pn are True.
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SNePSLOG Syntax/Semantics

Abbreviations of AndOr

~P = andor(0,0){P}

and{P1, . . . , Pn} = andor(n, n){P1, . . . , Pn}
or{P1, . . . , Pn} = andor(1, n){P1, . . . , Pn}
nand{P1, . . . , Pn} = andor(0, n− 1){P1, . . . , Pn}
nor{P1, . . . , Pn} = andor(0, 0){P1, . . . , Pn}
xor{P1, . . . , Pn} = andor(1, 1){P1, . . . , Pn}

P1 and ... and Pn = andor(n, n){P1, . . . , Pn}
P1 or ... or Pn = andor(1, n){P1, . . . , Pn}
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SNePSLOG Syntax/Semantics

Thresh

If {P1, . . . , Pn} is a set of wffs (proposition-denoting terms)

and i and j are integers such that 0 <= i <= j <= n, then

thresh(i, j){P1, . . . , Pn} is a wff (proposition-denoting term).

The proposition that

either fewer than i or more than j of P1, . . . , Pn are True.
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SNePSLOG Syntax/Semantics

Abbreviations of Thresh

iff{P1, . . . , Pn}
is an abbreviation of thresh(1, n− 1){P1, . . . , Pn}

P1 <=> · · · <=> Pn

is an abbreviation of thresh(1, n− 1){P1, . . . , Pn}

thresh(i){P1, . . . , Pn}
is an abbreviation of thresh(i, n− 1){P1, . . . , Pn}
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SNePSLOG Syntax/Semantics

Numerical Entailment

If {P1, . . . , Pn} and {Q1, . . . , Qm} are sets of wffs

(proposition-denoting terms), and i is an integer, 1 <= i <= n,

then

{P1, . . . , Pn} i=> {Q1, . . . , Qm} is a wff (proposition-denoting

term).

The proposition that whenever at least i of P1, . . . , Pn are True,

then so is any Qj ∈ {Q1, . . . , Qm}.
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SNePSLOG Syntax/Semantics

Abbreviations of Numerical Entailment

{P1, . . . , Pn} => {Q1, . . . , Qm}
is an abbreviation of {P1, . . . , Pn} 1=> {Q1, . . . , Qm}

{P1, . . . , Pn} v=> {Q1, . . . , Qm}
is also an abbreviation of {P1, . . . , Pn} 1=> {Q1, . . . , Qm}

{P1, . . . , Pn} &=> {Q1, . . . , Qm}
is an abbreviation of {P1, . . . , Pn} n=> {Q1, . . . , Qm}
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SNePSLOG Syntax/Semantics

Universal Quantifier

If P is a wff (proposition-denoting term)

and x1, . . . , xn are variables, then

all(x1, . . . , xn)(P) is a wff (proposition-denoting term).

The proposition that for every sequence of ground terms, t1, . . . , tn,

P{t1/x1, . . . , tn/xn} is True.
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SNePSLOG Syntax/Semantics

Numerical Quantifier

If P and Q are sets of wffs, x1, . . . , xn are variables, and i, j, and k

are integers such that 0 <= i <= j <= k, then

nexists(i, j, k)(x1, . . . , xn)(P: Q) is a wff.

The proposition that there are k sequences of ground terms,

t1, . . . , tn, that satisfy every P ∈ P, and, of them, at least i and at

most j also satisfy every Q ∈ Q.
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SNePSLOG Syntax/Semantics

Abbreviations of Numerical Quantifier

nexists( , j, )(x1, . . . , xn)(P: Q)
is an abbreviation of nexists(0, j,∞)(x1, . . . , xn)(P: Q)

nexists(i, , k)(x1, . . . , xn)(P: Q)
is an abbreviation of nexists(i, k, k)(x1, . . . , xn)(P: Q)
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SNePSLOG Syntax/Semantics

Wffs are Terms

Every wff is a proposition-denoting term.

So, e.g., Believes(Tom, ~Penguin(Tweety))

is a wff, and a well-formed term.

For a more complete, more formal syntax, see

The SNePS 2.7.1 User’s Manual,

http://www.cse.buffalo.edu/sneps/Manuals/manual271.pdf.
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8.3 SNePSLOG Proof Theory

Implemented Rules of Inference

Reduction Inference

Reduction Inference1: If α is a set of terms and β ⊂ α,

P(t1, . . . , α, ...tn) ` P(t1, . . . , β, . . . tn)

Reduction Inference2: If α is a set of terms, and t ∈ α,

P(t1, . . . , α, ...tn) ` P(t1, ..., t, ...tn)

Page 446



Example of Reduction Inference

: clearkb

Knowledge Base Cleared

: Member({Fido, Rover, Lassie}, {dog, pet}).

wff1!: Member({Lassie,Rover,Fido},{pet,dog})

CPU time : 0.00

: Member ({Fido, Lassie}, dog)?

wff2!: Member({Lassie,Fido},dog)

CPU time : 0.00
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SNePSLOG Proof Theory

Implemented Rules of Inference

for AndOr

AndOr I1: P1, ..., Pn ` andor(n, n){P1, ..., Pn}

AndOr I2: ~P1, ..., ~Pn ` andor(0,0){P1, ..., Pn}

AndOr E1: andor(i, j){P1, ..., Pn}, ~P1, ..., ~Pn−i ` Pj

for n− i < j ≤ n

AndOr E2: andor(i, j){P1, ..., Pn}, P1, ..., Pj ` ~Pk,

for j < k ≤ n
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SNePSLOG Proof Theory

Implemented Rules of Inference

for Thresh

Thresh E1: When at least i args are true, and at least n− j − 1

args are false, conclude that any other arg is true.

thresh(i, j){P1, ..., Pn},
P1, ..., Pi, ¬Pi+1, ..., ¬Pi+n−j−1
` Pi+n−j

Thresh E2: When at least i− 1 args are true, and at least n− j
args are false, conclude that any other arg is false.

thresh(i, j){P1, ..., Pn},
P1, ..., Pi−1, ¬Pi+1, ..., ¬Pi+n−j
` ¬Pi
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SNePSLOG Proof Theory

Implemented Rules of Inference

for &=>

&=>I: If A, P1, ..., Pn ` Qi for 1 ≤ i ≤ m
then A ` {P1, ..., Pn} &=> {Q1, ..., Qm}

&=>E: {P1, ..., Pn} &=> {Q1, ..., Qm}, P1, ..., Pn ` Qi,

for 1 ≤ i ≤ m
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SNePSLOG Proof Theory

Implemented Rules of Inference

for v=>

v=>I: If A ` P v=> Q and A ` Q v=> R then A ` P v=> R

v=>E: {P1, ..., Pn} v=> {Q1, ..., Qm}, Pi,` Qj ,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m
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SNePSLOG Proof Theory

Implemented Rules of Inference

for i=>

i=>E: {P1, ..., Pn} i=> {Q1, ..., Qm}, P1, ..., Pi ` Qj ,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m
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SNePSLOG Proof Theory

Implemented Rules of Inference

for all

Universal Elimination for universally quantified versions of

andor, thresh, v=>, &=>, and i=>.
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UVBR & Symmetric Relations

In any substitution {t1/x1, . . . , tn/xn}, if xi 6= xj , then ti 6= tj

: all(u,v,x,y)(childOf({u,v}, {x,y}) => Siblings({u,v})).

: childOf({Tom,Betty,John,Mary}, {Pat,Harry}).

: Siblings({?x,?y})?

wff14!: Siblings({Mary,John})

wff13!: Siblings({John,Betty})

wff12!: Siblings({Betty,Tom})

wff11!: Siblings({Mary,Betty})

wff10!: Siblings({John,Tom})

wff9!: Siblings({Mary,Tom})
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SNePSLOG Proof Theory

Implemented Rules of Inference

for nexists

nexists E1:

nexists(i, j, k)(x)(P(x) : Q(x)),

P(t1), Q(t1), . . . , P(tj), Q(tj),

P(tj+1)

` ¬Q(tj+1)

nexists E2:

nexists(i, j, k)(x)(P(x) : Q(x)),

P(t1),¬Q(t1), . . . , P(tk−i),¬Q(tk−i),

P(tk−i+1)

` Q(tk−i+1)
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8.4 Loading SNePSLOG

cl-user(2): :ld /projects/snwiz/bin/sneps

; Loading /projects/snwiz/bin/sneps.lisp

;;; Installing streamc patch, version 2.

Loading system SNePS...10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SNePS-2.7 [PL:2 2010/09/04 02:35:18] loaded.

Type ‘(sneps)’ or ‘(snepslog)’ to get started.

cl-user(3): (snepslog)

Welcome to SNePSLOG (A logic interface to SNePS)

Copyright (C) 1984--2010 by Research Foundation of

State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!

Type ‘copyright’ for detailed copyright information.

Type ‘demo’ for a list of example applications.
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Running SNePSLOG
cl-user(3): (snepslog)

Welcome to SNePSLOG (A logic interface to SNePS)

Copyright (C) 1984--2010 by Research Foundation of

State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!

Type ‘copyright’ for detailed copyright information.

Type ‘demo’ for a list of example applications.

: clearkb

Knowledge Base Cleared

CPU time : 0.00

: Member({Fido, Rover, Lassie}, {dog, pet}).

wff1!: Member({Lassie,Rover,Fido},{pet,dog})

CPU time : 0.00

: Member ({Fido, Lassie}, dog)?

wff2!: Member({Lassie,Fido},dog)

CPU time : 0.00
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Common SNePSLOG Commands

: clearkb

Knowledge Base Cleared

: all(x)(dog(x) => animal(x)). ; Assert into the KB

wff1!: all(x)(dog(x) => animal(x))

: dog(Fido). ; Assert into the KB

wff2!: dog(Fido)

: dog(Fido)?? ; Query assertion without inference

wff2!: dog(Fido)
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Common SNePSLOG Commands
: animal(Fido)?? ; Query assertion without inference

: animal(Fido)? ; Query assertion with inference

wff3!: animal(Fido)

: dog(Rover)! ; Assert into the KB & do forward inference

wff6!: animal(Rover)

wff5!: dog(Rover)

: list-asserted-wffs ; Print all asserted wffs

wff6!: animal(Rover)

wff5!: dog(Rover)

wff3!: animal(Fido)

wff2!: dog(Fido)

wff1!: all(x)(dog(x) => animal(x))
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Tracing Inference
: trace inference

Tracing inference.

: animal(Fido)?

I wonder if wff3: animal(Fido)

holds within the BS defined by context default-defaultct

I wonder if wff5: dog(Fido)

holds within the BS defined by context default-defaultct

I know wff2!: dog({Rover,Fido})

Since wff1!: all(x)(dog(x) => animal(x))

and wff5!: dog(Fido)

I infer wff3: animal(Fido)

wff3!: animal(Fido)

CPU time : 0.01

: untrace inference

Untracing inference.

CPU time : 0.00

: animal(Rover)?

wff6!: animal(Rover)
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Recursive Rules

Don’t Cause Infinite Loops

: all(x,y)(parentOf(x,y) => ancestorOf(x,y)).

wff1!: all(y,x)(parentOf(x,y) => ancestorOf(x,y))

: all(x,y,z)({ancestorOf(x,y), ancestorOf(y,z)} &=> ancestorOf(x,z)).

wff2!: all(z,y,x)({ancestorOf(y,z),ancestorOf(x,y)} &=> {ancestorOf(x,z)})

: parentOf(Sam,Lou).

wff3!: parentOf(Sam,Lou)

: parentOf(Lou,Stu).

wff4!: parentOf(Lou,Stu)

: ancestorOf(Max,Stu).

wff5!: ancestorOf(Max,Stu)

: ancestorOf(?x,Stu)?

wff8!: ancestorOf(Sam,Stu)

wff6!: ancestorOf(Lou,Stu)

wff5!: ancestorOf(Max,Stu)

CPU time : 0.01
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Infinitely Growing Terms

Get Cut Off
: all(x)(Duck(motherOf(x)) => Duck(x)).

wff1!: all(x)(Duck(motherOf(x)) => Duck(x))

CPU time : 0.00

: Duck(Daffy)?

I wonder if wff2: Duck(Daffy)

holds within the BS defined by context default-defaultct

I wonder if wff5: Duck(motherOf(Daffy))

holds within the BS defined by context default-defaultct

I wonder if wff8: Duck(motherOf(motherOf(Daffy)))

holds within the BS defined by context default-defaultct

...

I wonder if wff32: Duck(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(Daffy)))))))))))

holds within the BS defined by context default-defaultct

SNIP depth cutoff beyond *depthcutoffback* = 10

I wonder if wff35: Duck(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(motherOf(Daffy))))))))))))

holds within the BS defined by context default-defaultct

SNIP depth cutoff beyond *depthcutoffback* = 10

SNIP depth cutoff beyond *depthcutoffback* = 10

CPU time : 0.05
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Eager-Beaver Search
: all(x)(Duck(motherOf(x)) => Duck(x)).

wff1!: all(x)(Duck(motherOf(x)) => Duck(x))

: all(x)({walksLikeaDuck(x), talksLikeaDuck(x)} &=> Duck(x)).

wff2!: all(x)({talksLikeaDuck(x),walksLikeaDuck(x)} &=> {Duck(x)})

: and{talksLikeaDuck(Daffy),walksLikeaDuck(Daffy)}.

wff5!: walksLikeaDuck(Daffy) and talksLikeaDuck(Daffy)

: Duck(Daffy)? (1)

I wonder if wff6: Duck(Daffy)

I wonder if wff9: Duck(motherOf(Daffy))

I wonder if wff3: talksLikeaDuck(Daffy)

I wonder if wff4: walksLikeaDuck(Daffy)

It is the case that wff4: walksLikeaDuck(Daffy)

It is the case that wff3: talksLikeaDuck(Daffy)

Since wff2!: all(x)({talksLikeaDuck(x),walksLikeaDuck(x)} &=> {Duck(x)})

and wff3!: talksLikeaDuck(Daffy)

and wff4!: walksLikeaDuck(Daffy)

I infer wff6: Duck(Daffy)

wff6!: Duck(Daffy)

CPU time : 0.02
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Contradictions

The KB
: clearkb

Knowledge Base Cleared

: all(x)(nand{Mammal(x), Fish(x)}).

wff1!: all(x)(nand{Fish(x),Mammal(x)})

: all(x)(LivesInWater(x) => Fish(x)).

wff2!: all(x)(LivesInWater(x) => Fish(x))

: all(x)(BearsYoungAlive(x) => Mammal(x)).

wff3!: all(x)(BearsYoungAlive(x) => Mammal(x))

: LivesInWater(whale).

wff4!: LivesInWater(whale)

: BearsYoungAlive(whale).

wff5!: BearsYoungAlive(whale)
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Contradictions

The Contradiction
: ?x(whale)?

A contradiction was detected within context default-defaultct.

The contradiction involves the newly derived proposition:

wff6!: Mammal(whale)

and the previously existing proposition:

wff7!: ~Mammal(whale)

You have the following options:

1. [C]ontinue anyway, knowing that a contradiction is derivable;

2. [R]e-start the exact same run in a different context which is

not inconsistent;

3. [D]rop the run altogether.

(please type c, r or d)

=><= d
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SNePSLOG Demonstrations

: demo

Available demonstrations:

1: Socrates - Is he mortal?

2: UVBR - Demonstrating the Unique Variable Binding Rule

3: The Jobs Puzzle - A solution with the Numerical Quantifier

4: Pegasus - Why winged horses lead to contradictions

5: Schubert’s Steamroller

6: Rule Introduction - Various examples

7: Examples of various SNeRE constructs.

8: Enter a demo filename

Your choice (q to quit):
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8.5 Reasoning Heuristics

Logically equivalent SNePSLOG wffs

are interpreted differently by the SNePS Reasoning System.
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v=>-Elimination

Instead of

P()

(P() or Q()) => R()

R()

which would require or-I followed by =>-E

Have

P()

{P(), Q()} v=> R()

R()

which requires only v=>-E
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Example of v=>-E

: P().

wff1!: P()

: {P(), Q()} v=> R().

wff4!: {Q(),P()} v=> {R()}

: trace inference

Tracing inference.

: R()?

I wonder if wff3: R()

holds within the BS defined by context default-defaultct

I wonder if wff2: Q()

holds within the BS defined by context default-defaultct

I know wff1!: P()

Since wff4!: {Q(),P()} v=> {R()}

and wff1!: P()

I infer wff3: R()

wff3!: R()
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Bi-Directional Inference

Backward Inference

: {p(), q()} v=> {r(), s()}.

wff5!: {q(),p()} v=> {s(),r()}

: p().

wff1!: p()

: r()?

I wonder if wff3: r()

holds within the BS defined by context default-defaultct

I wonder if wff2: q()

holds within the BS defined by context default-defaultct

I know wff1!: p()

Since wff5!: {q(),p()} v=> {s(),r()}

and wff1!: p()

I infer wff3: r()

wff3!: r()
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Bi-Directional Inference

Forward Inference

: {p(), q()} v=> {r(), s()}.

wff5!: {q(),p()} v=> {s(),r()}

: p()!

Since wff5!: {q(),p()} v=> {s(),r()}

and wff1!: p()

I infer wff4: s()

Since wff5!: {q(),p()} v=> {s(),r()}

and wff1!: p()

I infer wff3: r()

wff4!: s()

wff3!: r()

wff1!: p()
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Bi-Directional Inference

Forward-in-Backward Inference
: {p(), q()} v=> {r(), s()}.

wff5!: {q(),p()} v=> {s(),r()}

: r()?

I wonder if wff3: r()

holds within the BS defined by context default-defaultct

I wonder if wff2: q()

holds within the BS defined by context default-defaultct

I wonder if wff1: p()

holds within the BS defined by context default-defaultct

: p()!

Since wff5!: {q(),p()} v=> {s(),r()}

and wff1!: p()

I infer wff3: r()

wff3!: r()

wff1!: p()

Active connection graph cleared by clear-infer.
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Bi-Directional Inference

Backward-in-Forward Inference
: p().

wff1!: p()

: p() => (q() => r()).

wff5!: p() => (q() => r())

: q()!

I know wff1!: p()

Since wff5!: p() => (q() => r())

and wff1!: p()

I infer wff4: q() => r()

I know wff2!: q()

Since wff4!: q() => r()

and wff2!: q()

I infer wff3: r()

wff4!: q() => r()

wff3!: r()

wff2!: q()
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Modus Tollens Not Implemented

: all(x)(p(x) => q(x)).

wff1!: all(x)(p(x) => q(x))

: p(a).

wff2!: p(a)

: q(a)?

wff3!: q(a)

: ~q(b).

wff6!: ~q(b)

: p(b)?

:

Page 474



Use Disjunctive Syllogism Instead

: all(x)(or{~p(x), q(x)}).

wff1!: all(x)(q(x) or ~p(x))

: p(a).

wff2!: p(a)

: q(a)?

wff3!: q(a)

: ~q(b).

wff7!: ~q(b)

: p(b)?

wff9!: ~p(b)
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=> Is Not Material Implication

If ⇒ is material implication,

¬(P ⇒ Q)⇔ (P ∧ ¬Q)

and

¬(P ⇒ Q) |= P

But ~(p => q) just means that its not the case that p => q:

: ~(p() => q()).

wff4!: ~(p() => q())

: p()?

:
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Use or

Instead of Material Implication

: ~(~p() or q()).

wff5!: nor{q(),~p()}

: p()?

wff1!: p()
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Ordering of Nested Rules Matters

Optimal Order
: wifeOf(Caren,Stu).

: wifeOf(Ruth,Mike).

: brotherOf(Stu,Judi).

: brotherOf(Mike,Lou).

: parentOf(Judi,Ken).

: parentOf(Lou,Stu).

: all(w,x)(wifeOf(w,x)

=> all(y)(brotherOf(x,y)

=> all(z)(parentOf(y,z)

=> auntOf(w,z)))).

: auntOf(Caren,Ken)?

I wonder if wff8: auntOf(Caren,Ken)

I wonder if p7: wifeOf(Caren,x)

I know wff1!: wifeOf(Caren,Stu)

I wonder if p8: brotherOf(Stu,y)

I know wff3!: brotherOf(Stu,Judi)

I wonder if wff5!: parentOf(Judi,Ken)

I know wff5!: parentOf(Judi,Ken)

wff8!: auntOf(Caren,Ken)

CPU time : 0.03
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Ordering of Nested Rules Matters

Bad Order

all(x,y)(brotherOf(x,y)

=> all(w)(wifeOf(w,x)

=> all(z)(parentOf(y,z)

=> auntOf(w,z)))).

: auntOf(Caren,Ken)?

I wonder if wff8: auntOf(Caren,Ken)

I wonder if p1: brotherOf(x,y)

I know wff3!: brotherOf(Stu,Judi)

I know wff4!: brotherOf(Mike,Lou)

I wonder if wff12: wifeOf(Caren,Mike)

I wonder if wff1!: wifeOf(Caren,Stu)

I know wff1!: wifeOf(Caren,Stu)

I wonder if wff5!: parentOf(Judi,Ken)

I know wff5!: parentOf(Judi,Ken)

wff8!: auntOf(Caren,Ken)

CPU time : 0.04
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Ordering of Nested Rules Matters

Parallel

all(w,x,y,z)({wifeOf(w,x),brotherOf(x,y),parentOf(y,z)}

&=> auntOf(w,z)).

: auntOf(Caren,Ken)?

I wonder if wff8: auntOf(Caren,Ken)

I wonder if p5: parentOf(y,Ken)

I wonder if p2: brotherOf(x,y)

I wonder if p6: wifeOf(Caren,x)

I know wff5!: parentOf(Judi,Ken)

I know wff3!: brotherOf(Stu,Judi)

I know wff4!: brotherOf(Mike,Lou)

I know wff1!: wifeOf(Caren,Stu)

wff8!: auntOf(Caren,Ken)

CPU time : 0.03
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Lemmas (Expertise)

Knowledge Base

: all(r)(transitive(r)

=> all(x,y,z)({r(x,y),r(y,z)} &=> r(x,z))).

: transitive(biggerThan).

: biggerThan(elephant,lion).

: biggerThan(lion,hyena).

: biggerThan(hyena,rat).
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Lemmas: First Task
: biggerThan(?x,rat)?

I wonder if p6: biggerThan(x,rat)

I know wff5!: biggerThan(hyena,rat)

I wonder if wff2!: transitive(biggerThan)

I know wff2!: transitive(biggerThan)

I infer wff6: all(z,y,x)({biggerThan(x,y),biggerThan(y,z)} &=> {biggerThan(x,z)})

I wonder if p8: biggerThan(y,rat)

I wonder if p10: biggerThan(x,y)

I know wff5!: biggerThan(hyena,rat)

I wonder if p12: biggerThan(rat,z)

I know wff3!: biggerThan(elephant,lion)

I know wff4!: biggerThan(lion,hyena)

I infer wff7: biggerThan(lion,rat)

I infer wff8: biggerThan(elephant,rat)

...

wff8!: biggerThan(elephant,rat)

wff7!: biggerThan(lion,rat)

wff5!: biggerThan(hyena,rat)

CPU time : 0.09
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Second Task
: clear-infer

: biggerThan(truck,SUV).

: biggerThan(SUV,sedan).

: biggerThan(sedan,roadster).

: biggerThan(?x,roadster)?

I wonder if p14: biggerThan(x,roadster)

I know wff11!: biggerThan(sedan,roadster)

I wonder if p10: biggerThan(x,y)

I wonder if p16: biggerThan(y,roadster)

I know wff3!: biggerThan(elephant,lion)

I know wff4!: biggerThan(lion,hyena)

I know wff5!: biggerThan(hyena,rat)

I know wff7!: biggerThan(lion,rat)

I know wff8!: biggerThan(elephant,rat)

I know wff9!: biggerThan(truck,SUV)

I know wff10!: biggerThan(SUV,sedan)

I know wff11!: biggerThan(sedan,roadster)

I infer wff12: biggerThan(SUV,roadster)

I infer wff13: biggerThan(truck,roadster)

I wonder if p17: biggerThan(roadster,z)

wff13!: biggerThan(truck,roadster)

wff12!: biggerThan(SUV,roadster)

wff11!: biggerThan(sedan,roadster)

CPU time : 0.04
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Contexts
: demo /projects/shapiro/CSE563/Examples/SNePSLOG/facultyMeeting.snepslog

...

: ;;; Example of Contexts

;;; from

;;; J. P. Martins & S. C. Shapiro, Reasoning in Multiple Belief Spaces IJCAI-83, 370-373.

: all(x)(meeting(x) => xor{time(x,morning), time(x,afternoon)}).

wff1!: all(x)(meeting(x) => (xor{time(x,afternoon),time(x,morning)}))

: all(x,y)({meeting(x),meeting(y)} &=> all(t)(xor{time(x,t),time(y,t)})).

wff2!: all(y,x)({meeting(y),meeting(x)} &=> {all(t)(xor{time(y,t),time(x,t)})})

: meeting(facultyMeeting).

wff3!: meeting(facultyMeeting)

: meeting(seminar).

wff4!: meeting(seminar)

: meeting(tennisGame).

wff5!: meeting(tennisGame)

: time(seminar,morning).

wff6!: time(seminar,morning)

: time(tennisGame,afternoon).

wff7!: time(tennisGame,afternoon)

: set-context stuSchedule {wff1,wff2,wff3,wff4,wff6}

((assertions (wff6 wff4 wff3 wff2 wff1)) (named (stuSchedule)) (kinconsistent nil))

: set-context tonySchedule {wff1,wff2,wff3,wff5,wff7}

((assertions (wff7 wff5 wff3 wff2 wff1)) (named (tonySchedule)) (kinconsistent nil))

: set-context patSchedule {wff1,wff2,wff3,wff4,wff5,wff6,wff7}

((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wff1)) (named (patSchedule default-defaultct)) (kinconsistent nil))
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Stu’s Schedule

: set-default-context stuSchedule

((assertions (wff6 wff4 wff3 wff2 wff1)) (named (stuSchedule))

(kinconsistent nil))

: list-asserted-wffs

wff6!: time(seminar,morning)

wff4!: meeting(seminar)

wff3!: meeting(facultyMeeting)

wff2!: all(y,x)({meeting(y),meeting(x)}

&=> {all(t)(xor{time(y,t),time(x,t)})})

wff1!: all(x)(meeting(x)

=> (xor{time(x,afternoon),time(x,morning)}))

: time(facultyMeeting,?t)?

wff10!: time(facultyMeeting,afternoon)

wff9!: ~time(facultyMeeting,morning)
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Tony’s Schedule

: set-default-context tonySchedule

((assertions (wff7 wff5 wff3 wff2 wff1)) (named (tonySchedule))

(kinconsistent nil))

: list-asserted-wffs

wff12!: xor{time(facultyMeeting,afternoon),time(facultyMeeting,morning)}

wff7!: time(tennisGame,afternoon)

wff5!: meeting(tennisGame)

wff3!: meeting(facultyMeeting)

wff2!: all(y,x)({meeting(y),meeting(x)}

&=> {all(t)(xor{time(y,t),time(x,t)})})

wff1!: all(x)(meeting(x)

=> (xor{time(x,afternoon),time(x,morning)}))

: time(facultyMeeting,?t)?

wff11!: ~time(facultyMeeting,afternoon)

wff8!: time(facultyMeeting,morning)
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Pat’s Schedule

: set-default-context patSchedule

((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wff1))

(named (patSchedule default-defaultct)) (kinconsistent nil))

: time(facultyMeeting,?t)?

A contradiction was detected within context patSchedule.

The contradiction involves the newly derived proposition:

wff8!: time(facultyMeeting,morning)

and the previously existing proposition:

wff9!: ~time(facultyMeeting,morning)

You have the following options:

1. [C]ontinue anyway, knowing that a contradiction is derivable;

2. [R]e-start the exact same run in a different context which is

not inconsistent;

3. [D]rop the run altogether.

(please type c, r or d)

=><= d
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Resulting Contexts

: describe-context stuSchedule

((assertions (wff6 wff4 wff3 wff2 wff1)) (named (stuSchedule))

(kinconsistent nil))

: describe-context tonySchedule

((assertions (wff7 wff5 wff3 wff2 wff1)) (named (tonySchedule))

(kinconsistent nil))

: describe-context patSchedule

((assertions (wff7 wff6 wff5 wff4 wff3 wff2 wff1))

(named (patSchedule default-defaultct)) (kinconsistent t))
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8.6 SNePS as a Network:

Semantic Networks
Animal head

PenguinCanarysing Charlie

Tweety Opus

isa isa

moves-by moves-by has-parthas-part

moves-byisa isa instance

instance instance

swimmingBird flying finwing Fish

has-part

can

Some psychological evidence.

More efficient search than logical inference.

Unclear semantics.
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SNePS as a Network

: clearkb

: Canary(Tweety).

: Penguin(Opus).

: Ako({Canary,Penguin}, Bird).

: Ako(Bird, Animal).

: show

m4!

Bird

a1

Animal

a2

Ako

r

m3!

a2 r

Penguin

a1

Canary

a1

m2!

r

Opus

a1

m1!

r

Tweety

a1
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Defining Case Frames

: set-mode-3

Net reset

In SNePSLOG Mode 3.

Use define-frame <pred> <list-of-arc-labels>.

...

: define-frame Canary(class member) "[member] is a [class]"

Canary(x1) will be represented by {<class, Canary>, <member, x1>}

: define-frame Penguin(class member) "[member] is a [class]"

Penguin(x1) will be represented by {<class, Penguin>, <member, x1>}

: define-frame Ako(nil subclass superclass) "Every [subclass] is a [superclass]"

Ako(x1, x2) will be represented by {<subclass, x1>, <superclass, x2>}
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Entering the KB

: Canary(Tweety).

wff1!: Canary(Tweety)

: Penguin(Opus).

wff2!: Penguin(Opus)

: Ako({Canary, Penguin}, Bird).

wff3!: Ako({Penguin,Canary},Bird)

: Ako(Bird, Animal).

wff4!: Ako(Bird,Animal)
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The Knowledge Base

: list-terms

wff1!: Canary(Tweety)

wff2!: Penguin(Opus)

wff3!: Ako({Penguin,Canary},Bird)

wff4!: Ako(Bird,Animal)

: describe-terms

Tweety is a Canary.

Opus is a Penguin.

Every Penguin and Canary is a Bird.

Every Bird is a Animal.
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The Network

: show

m4!

Bird

subclass

Animal

superclass

m3!

superclass

Penguin

subclass

Canary

subclass

m2!

class

Opus

member

m1!

class

Tweety

member
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Path-Based Inference
m4!

Bird

subclass

Animal

superclass

m3!

superclass

Penguin

subclass

Canary

subclass

m2!

class

Opus

member

m1!

class

Tweety

member

: define-path class (compose class

(kstar (compose subclass- ! superclass)))

class implied by the path (compose class

(kstar

(compose subclass- ! superclass)))

class- implied by the path (compose

(kstar (compose superclass-

! subclass))

class-)
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Using Path-Based Inference
: list-asserted-wffs

wff4!: Ako(Bird,Animal)

wff3!: Ako({Penguin,Canary},Bird)

wff2!: Penguin(Opus)

wff1!: Canary(Tweety)

: define-frame Animal(class member) "[member] is a [class]"

Animal(x1) will be represented by {<class, Animal>, <member, x1>}

: trace inference

Tracing inference.

: Animal(Tweety)?

I wonder if wff5: Animal(Tweety)

holds within the BS defined by context default-defaultct

I know wff1!: Canary(Tweety)

wff5!: Animal(Tweety)
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Rules About Functions in Mode 3
: set-mode-3

: define-frame WestOf(relation domain range)

: define-frame isAbove(relation domain range)

: define-frame Likes(relation liker likee)

: define-frame r(relation domain range)

: define-frame anti-symmetric(nil antisymm)

: all(r)(anti-symmetric(r) => all(x,y)(r(x,y) => ~r(y,x))).

wff1!: all(r)(anti-symmetric(r) => (all(y,x)(r(x,y) => (~r(y,x)))))

: anti-symmetric({WestOf, isAbove, Likes}).

: WestOf(Buffalo,Rochester).

: isAbove(penthouse37,lobby37).

: Likes(Betty,Tom).

: WestOf(?x,?y)?

wff9!: ~WestOf(Rochester,Buffalo)

wff3!: WestOf(Buffalo,Rochester)

: isAbove(?x,?y)?

wff13!: ~isAbove(lobby37,penthouse37)

wff4!: isAbove(penthouse37,lobby37)

: Likes(?x,?y)?

wff5!: Likes(Betty,Tom)
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Procedural Attachment in SNePS
cl-user(3): (snepslog)

: load /projects/snwiz/Libraries/expressions.snepslog

: define-frame Value(nil obj val) "the value of [obj] is [val]"

: define-frame radius(nil radiusof) "the radius of [radiusof]"

: define-frame volume(nil volumeof) "the volume of [volumeof]"

: all(x,r,p)({Value(radius(x), r), Value(pi,p)}

&=> all(v)(is(v,/(*(4.0,*(p,*(r,*(r,r)))),3.0))

=> Value(volume(x),v))).

: Value(pi,3.14159).

: Value(radius(sphere1), 9.0).

: Value(volume(sphere1), ?x)?

wff13!: Value(volume(sphere1),3053.6257)
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8.7 SNeRE: The SNePS Rational Engine

Motivation

Coming to believe something

is different from acting.
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Prolog Searches In Order

The KB

| ?- [user].

% consulting user...

| q(X) :- q1(X), q2(X).

| q1(X) :- p(X), s(X).

| q2(X) :- r(X), s(X).

| s(X) :- t(X).

| p(a).

| r(a).

| t(a).

|

% consulted user in module user, 0 msec 1592 bytes

yes
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Prolog Searches In Order

The Run
| ?- trace.

% The debugger will first creep -- showing everything (trace)

yes

% trace

| ?- q(a).

1 1 Call: q(a) ?

2 2 Call: q1(a) ?

3 3 Call: p(a) ?

3 3 Exit: p(a) ?

4 3 Call: s(a) ?

5 4 Call: t(a) ?

5 4 Exit: t(a) ?

4 3 Exit: s(a) ?

2 2 Exit: q1(a) ?

6 2 Call: q2(a) ?

7 3 Call: r(a) ?

7 3 Exit: r(a) ?

8 3 Call: s(a) ?

9 4 Call: t(a) ?

9 4 Exit: t(a) ?

8 3 Exit: s(a) ?

6 2 Exit: q2(a) ?

1 1 Exit: q(a) ?

yes
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SNePS Avoids Extra Search

The KB

: clearkb

Knowledge Base Cleared

: all(x)({q1(x), q2(x)} &=> q(x)).

: all(x)({p(x), s(x)} &=> q1(x)).

: all(x)({r(x), s(x)} &=> q2(x)).

: all(x)(t(x) => s(x)).

: p(a).

: r(a).

: t(a).
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SNePS Avoids Extra Search

The Search
: trace inference

Tracing inference.

: q(a)?

I wonder if wff8: q(a)

I wonder if wff10: q2(a)

I wonder if wff12: q1(a)

I wonder if wff14: s(a)

I wonder if wff6!: r(a)

I wonder if wff14: s(a)

I wonder if wff5!: p(a)

I know wff6!: r(a)

I know wff5!: p(a)

I wonder if wff7!: t(a)

I know wff7!: t(a)
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SNePS Avoids Extra Search

The Answers

Since wff4!: all(x)(t(x) => s(x))

and wff7!: t(a)

I infer wff14: s(a)

Since wff3!: all(x)({s(x),r(x)} &=> {q2(x)})

and wff14!: s(a)

and wff6!: r(a)

I infer wff10: q2(a)

Since wff2!: all(x)({s(x),p(x)} &=> {q1(x)})

and wff14!: s(a)

and wff5!: p(a)

I infer wff12: q1(a)

Since wff1!: all(x)({q2(x),q1(x)} &=> {q(x)})

and wff10!: q2(a)

and wff12!: q1(a)

I infer wff8: q(a)

wff8!: q(a)
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Primitive Acts

: set-mode-3

Net reset

In SNePSLOG Mode 3.

Use define-frame <pred> <list-of-arc-labels>.

...

: define-frame say(action line)

say(x1) will be represented by {<action, say>, <line, x1>}

: ^^

--> (define-primaction sayaction ((line))

(format sneps:outunit "~A" line))

sayaction

--> (attach-primaction say sayaction)

t

--> ^^

: perform say("Hello world")

Hello world
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Effects: The KB

: set-mode-3

Net reset

In SNePSLOG Mode 3.

Use define-frame <pred> <list-of-arc-labels>.

...

Effect(x1, x2) will be represented by {<act, x1>, <effect, x2>}

...

: define-frame say (action line)

: define-frame said (act agent object)

: define-frame Utterance (class member)

: ^^

--> (define-primaction sayaction ((line))

(format sneps:outunit "~A" line))

sayaction

-->

(attach-primaction say sayaction)

t

--> ^^

: Utterance("Hello world").

: all(x)(Utterance(x) => Effect(say(x), said(I,x))).
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Effects: The Run

: list-asserted-wffs

wff2!: all(x)(Utterance(x) => Effect(say(x),said(I,x)))

wff1!: Utterance(Hello world)

: perform say("Hello world")

Hello world

: list-asserted-wffs

wff5!: Effect(say(Hello world),said(I,Hello world))

wff4!: said(I,Hello world)

wff2!: all(x)(Utterance(x) => Effect(say(x),said(I,x)))

wff1!: Utterance(Hello world)
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Defined Acts

: set-mode-3

...

ActPlan(x1, x2) will be represented by {<act, x1>, <plan, x2>}

...

: define-frame say (action part1 part2)

: define-frame greet (action object)

: define-frame Person (class member)

: ^^

--> (define-primaction sayaction ((part1) (part2))

(format sneps:outunit "~A ~A~%"

part1 part2))

sayaction

-->

(attach-primaction say sayaction)

t

--> ^^

: all(x)(Person(x) => ActPlan(greet(x), say(Hello,x))).

: Person(Mike).

: perform greet(Mike).

Hello Mike
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Other Propositions about Acts

GoalPlan(p, a )

Precondition(a, p )
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Control Acts

achieve(p )

do-all({a1, ..., an })
do-one({a1, ..., an })
snif({if(p1,a1 ), ..., if(pn,an )[, else(da )]})
sniterate({if(p1,a1 ), ..., if(pn,an )[, else(da )]})
snsequence(a1, a2 )

withall(x, p(x), a(x) [, da ])

withsome(x, p(x), a(x) [, da ])

Must use attach-primaction on whichever you want to use.
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Policies

ifdo(p, a )

whendo(p, a )

wheneverdo(p, a )
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Mental Acts

believe(p )

disbelieve(p )

adopt(p )

unadopt(p )
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The Execution Cycle

perform(act):

pre := {p | Precondition(act,p )};
notyet := pre - {p | p ∈ pre & ` p };
if notyet 6= nil

then perform(snsequence(do-all({a | p ∈ notyet

& a = achieve(p )}),
act))

else {effects := {p | Effect(act,p )};
if act is primitive

then apply(primitive-function(act), objects(act));

else perform(do-one({p | ActPlan(act,p )}))
believe(effects)}
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Examples

SNePSLOG demo #7

/projects/robot/Karel/ElevatorWorld/elevator.snepslog

/projects/robot/Karel/DeliveryWorld/DeliveryAgent.snepslog

/projects/robot/Karel/WumpusWorld/WWAgent.snepslog

/projects/robot/Fevahr/Ascii/afevahr.snepslog

/projects/robot/Fevahr/Java/jfevahr.snepslog

/projects/robot/Greenfoot/ElevatorWorld/sneps/elevator.snepslog

/projects/robot/Greenfoot/WumpusWorld/sneps/WWAgent.snepslog
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9 Belief Revision/Truth Maintenance
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9.1 Motivation

Floors Above and Below Ground
: xor{OnFloor(1),OnFloor(2),OnFloor(3),OnFloor(4)}.

: {OnFloor(1), OnFloor(2)} => {Location(belowGround)}.

: {OnFloor(3), OnFloor(4)} => {Location(aboveGround)}.

: perform believe(OnFloor(1))

: list-asserted-wffs

wff13!: ~OnFloor(2)

wff12!: ~OnFloor(3)

wff11!: ~OnFloor(4)

wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

wff6!: Location(belowGround)

wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

wff1!: OnFloor(1)
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Motivation

Disbelieving an Hypothesis

: perform disbelieve(OnFloor(1))

: list-asserted-wffs

wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

Note the absence of Location(belowGround)
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Moral

If retain derived beliefs (lemmas),

need a way to delete them

when their foundations are removed.
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When Needed 1

If the KB contains beliefs about the (some) world,

and the world changes,

and the KB does not have a model of time.

I.e. the beliefs in the KB are of the form,

I believe this is true now.
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What’s needed

Links from hypotheses to propositions derived from them.
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=> vs. when(ever)do: Assertions

: Floor({1,2,3,4}).

: xor{OnFloor(1),OnFloor(2),OnFloor(3),OnFloor(4)}.

: {OnFloor(1), OnFloor(2)} => {Location(belowGround)}.

: {OnFloor(3), OnFloor(4)} => {Location(aboveGround)}.

: perform withall(f, Floor(f),

adopt(wheneverdo(OnFloor(f),

believe(HaveBeenOnFloor(f)))),

noop()).

: perform believe(OnFloor(1))
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=> vs. when(ever)do: The KB
: list-asserted-wffs

wff37!: ~OnFloor(2)

wff36!: ~OnFloor(3)

wff35!: ~OnFloor(4)

wff31!: wheneverdo(OnFloor(4),believe(HaveBeenOnFloor(4)))

wff27!: wheneverdo(OnFloor(3),believe(HaveBeenOnFloor(3)))

wff23!: wheneverdo(OnFloor(2),believe(HaveBeenOnFloor(2)))

wff19!: wheneverdo(OnFloor(1),believe(HaveBeenOnFloor(1)))

wff17!: HaveBeenOnFloor(1)

wff16!: Floor(1)

wff15!: Floor(2)

wff14!: Floor(3)

wff13!: Floor(4)

wff10!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

wff8!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

wff7!: Location(belowGround)

wff6!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

wff2!: OnFloor(1)

wff1!: Floor({4,3,2,1})

Page 522



=> vs. when(ever)do: Move Floors

: perform believe(OnFloor(4))

: list-asserted-wffs

wff39!: ~OnFloor(1)

wff37!: ~OnFloor(2)

wff36!: ~OnFloor(3)

wff31!: wheneverdo(OnFloor(4),believe(HaveBeenOnFloor(4)))

wff29!: HaveBeenOnFloor(4)

wff27!: wheneverdo(OnFloor(3),believe(HaveBeenOnFloor(3)))

wff23!: wheneverdo(OnFloor(2),believe(HaveBeenOnFloor(2)))

wff19!: wheneverdo(OnFloor(1),believe(HaveBeenOnFloor(1)))

wff17!: HaveBeenOnFloor(1)

wff16!: Floor(1)

wff15!: Floor(2)

wff14!: Floor(3)

wff13!: Floor(4)

wff10!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

wff9!: Location(aboveGround)

wff8!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

wff6!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

wff5!: OnFloor(4)

wff1!: Floor({4,3,2,1})

HaveBeenOnFloor(1) remains; OnFloor(1) doesn’t.
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Moral

The consequents of

=>, v=>, &=>, or, nand, xor, iff, andor, thresh, and nexists

are derived and retain a connection to their underlying hypotheses.

Whatever is believe’d is a hypothesis.

Use =>, v=>, &=>, or, nand, xor, iff, andor, thresh, and nexists

for logical implications.

Use whendo(p1,believe(p2) ) or wheneverdo(p1,believe(p2) )

for decisions.
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Contingent Plans

: xor{Location(BellHall), Location(home)}.

: Location(BellHall) => ActPlan(getMail, go(MailRoom)).

: Location(home) => ActPlan(getMail, go(mailBox)).

: perform believe(Location(BellHall))

: ActPlan(getMail, ?how)?

wff5!: ActPlan(getMail,go(MailRoom))

: perform believe(Location(home))

: ActPlan(getMail, ?how)?

wff8!: ActPlan(getMail,go(mailBox))
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Moral

Using this design for contingent plans,

along with retention of lemmas,

depends on belief revision.
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Motivation

Sea Creatures

: all(x)(andor(0,1){Ako(x, mammal), Ako(x, fish)}).

: all(x)(LiveIn(x, water) => Ako(x, fish)).

: all(x)(BearYoung(x, live) => Ako(x, mammal)).

: LiveIn(whales, water).

: LiveIn(sharks, water).

: BearYoung(whales, live).

: BearYoung(dogs, live).
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Motivation

Are Whales Fish or Mammals?

: Ako(whales, ?x)?

A contradiction was detected within context default-defaultct.

The contradiction involves the newly derived proposition:

wff8!: Ako(whales,mammal)

and the previously existing proposition:

wff9!: ~Ako(whales,mammal)
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SNeBR Options

You have the following options:

1. [C]ontinue anyway, knowing that a contradiction is derivable;

2. [R]e-start the exact same run in a different context which is

not inconsistent;

3. [D]rop the run altogether.

(please type c, r or d)

=><= r

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff6 wff4 wff3 wff2 wff1)
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Possible Culprits

In order to make the context consistent you must delete

at least one hypothesis from the set listed below.

An inconsistent set of hypotheses:

1 : wff6!: BearYoung(whales,live)

(2 supported propositions: (wff8 wff6) )

2 : wff4!: LiveIn(whales,water)

(3 supported propositions: (wff10 wff9 wff4) )

3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))

(2 supported propositions: (wff8 wff3) )

4 : wff2!: all(x)(LiveIn(x,water) => Ako(x,fish))

(3 supported propositions: (wff10 wff9 wff2) )

5 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})

(2 supported propositions: (wff9 wff1) )
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Choosing the Culprit

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= d

Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.

=><= 4
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Remaining Possible Culprits
The consistent set of hypotheses:

1 : wff6!: BearYoung(whales,live)

(2 supported propositions: (wff8 wff6) )

2 : wff4!: LiveIn(whales,water)

(1 supported proposition: (wff4) )

3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))

(2 supported propositions: (wff8 wff3) )

4 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})

(1 supported proposition: (wff1) )

Enter the list number of a hypothesis to examine or

[d] to discard some hypothesis from this list,

[a] to see ALL the hypotheses in the full context,

[r] to see what you have already removed,

[q] to quit revising this set, or

[i] for instructions

(please type a number OR d, a, r, q or i)

=><= q
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Other Hypotheses

The following (not known to be inconsistent) set of

hypotheses was also part of the context where the

contradiction was derived:

(wff7 wff5)

Do you want to inspect or discard some of them?

=><= no

Do you want to add a new hypothesis? no

wff11!: ~Ako(whales,fish)

wff8!: Ako(whales,mammal)

CPU time : 0.03
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Resultant KB

: list-asserted-wffs

wff12!: ~(all(x)(LiveIn(x,water) => Ako(x,fish)))

wff11!: ~Ako(whales,fish)

wff8!: Ako(whales,mammal)

wff7!: BearYoung(dogs,live)

wff6!: BearYoung(whales,live)

wff5!: LiveIn(shakes,water)

wff4!: LiveIn(whales,water)

wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))

wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})
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Moral

When Needed 2

If accepting information from multiple sources,

or just one possibly inconsistent source,

need a way to recognize contradictions,

and to find the culprit,

and to delete it,

and its implications.
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What’s Needed

Links between derived propositions

and hypotheses they were derived from.
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9.2 Relevance Logic (R)

Motivation

Paradoxes of Implication 1

Anything Implies a Truth

1 A Hyp

2 B Hyp

3 A Reit, 1

4 B ⇒ A ⇒ I, 2–3

5 A⇒ (B ⇒ A) ⇒ I, 1–4

But it seems that B had nothing to do with deriving A.
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Motivation of R

Paradoxes of Implication 2

A Contradiction Implies Anything

1 A ∧ ¬A Hyp

2 ¬B Hyp

3 A ∧ ¬A Reit, 1

4 A ∧E, 3

5 ¬A ∧E, 3

6 B ¬I, 2–5

7 (A ∧ ¬A)⇒ B ⇒I, 1–6

But it seems that ¬B had nothing to do

with deriving the contradiction.
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What’s Needed

A way to determine when a hypothesis is really used to derive

another wff.

When a hypothesis is relevant to a conclusion.
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9.3 R

Relevance Logic

The Logic of Relevant Implication

Syntax: The same as Standard FOL.

Intensional Semantics: The same as Standard FOL.

Extensional Semantics: The same as Standard FOL for terms.

For wffs: a four-valued logic, using True, False, Neither, and Both.
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KB Interpretations of R’s 4 Truth Values

True true

False false

Neither unknown

Both contradictory, “I’ve been told both.”

or a “true contradiction”

such as Russell’s set both is and isn’t a member of itself.
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9.4 R Proof Theory

Structural Rules of Inference

i. A, {n} Hyp

i. A, α

...

j. A, α Rep, i

i. A, α

...

.

.

.

...

j. A, α Reit, i

where n is a new integer.
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R Rules for ⇒

i. A, {n} Hyp

...

j. B, α, s.t. n ∈ α

k (A⇒ B), α− {n} ⇒I, i–j

i. A, α

...

j. (A⇒ B), β

k. B, α ∪ β ⇒E, i, j
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How the Paradoxes of Implication are

Blocked 1

1. A, {1} Hyp

2. B, {2} Hyp

3. A, {1} Reit , 1

Can’t then apply ⇒ I
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R Rules for ∧

i1. A1, α

...

in. An, α

j. A1 ∧ · · · ∧An, α ∧I, i1, . . . , in

i. A1 ∧ · · · ∧An, α
...

j. Ak, α ∧E, i
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Why ∧I Requires the Same OS

If Not

1 A, {1} Hyp, 2–5

2 B, {2} Hyp, 3–5

3 A, {1} Reit, 1

4 (A ∧B), {1, 2} ∧I?

5 A, {1, 2} ∧E, 4

6 (B ⇒ A), {1} ⇒I, 2–5

7 (A⇒ (B ⇒ A)), {} ⇒I, 1–6

Reconstruct paradox of implication.

Note: Empty os means a theorem.
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Extended Rule for ∧I

i1. A1, α

...

in. An, η

j. A1 ∧ · · · ∧An, (α ∪ · · · ∪ η)∗ ∧I, i1, . . . , in

Can’t apply ∧E to an extended wff.
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R Rules for ¬

i. A, {n} Hyp

.

.

.

j. B, α s.t. n ∈ α

j + 1. ¬B,α

j + 2. ¬A,α− {n} ¬I, i–(j + 1)

i. ¬A, {n} Hyp

.

.

.

j. B, α s.t. n ∈ α

j + 1. ¬B,α

j + 2. A, α− {n} ¬I, i–(j + 1)

i. ¬¬A,α

j. A, α ¬E, i
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Extended R Rule for ¬I

i. A, {n} Hyp

...

j. B, α

j + 1. ¬B, β

j + 2. ¬A, ((α ∪ β)− {n})∗ s.t. n ∈ (α ∪ β) ¬I, i–(j + 1)

i. ¬A, {n} Hyp

...

j. B, α

j + 1. ¬B, β

j + 2. A, ((α ∪ β)− {n})∗ s.t. n ∈ (α ∪ β) ¬I, i–(j + 1)
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How the Paradoxes of Implication are

Blocked 2
1. (A ∧ ¬A), {1} Hyp

2. ¬B, {2} Hyp

3. (A ∧ ¬A), {1} Reit , 1

4. A, {1} ∧E , 3

5. ¬A, {1} ∧E , 3

Can’t then apply ¬I

R is a paraconsistent logic:

a contradiction does not imply anything whatsoever.
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R Rule for ∨I

i. Ai, α

j. A1 ∨ · · · ∨Ai ∨ · · · ∨An, α ∨I, i
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R Rule for ∨E

i1. A1 ∨ · · · ∨An, α
...

i2. A1 ⇒ B, β

...

i3. An ⇒ B, β

j. B, α ∪ β ∨E, i1, i2, i3
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Irrelevance of Disjunctive Syllogism

1 ((A ∨ B) ∧ ¬A), {1} Hyp

2 ¬A, {1} ∧E,1

3 (A ∨ B), {1} ∧E,1

4 A, {2} Hyp

5 ¬B, {3} Hyp

6 A, {2} Reit, 4

7 ¬A, {1} Reit, 2

8 B ¬I, 5–7 Not valid in R

9 A ⇒ B ⇒I, 4–8

10 B, {4} Hyp

11 B, {4} Rep, 10

12 B ⇒ B, {} ⇒I, 10–11

13 B ∨E, 3,9,12

So ∨ is just truth-functional.
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R Rules for Intensional OR (⊕)

i. (¬A⇒ B), α

...

j. (¬B ⇒ A), α

j + 1. (A⊕B), α ⊕I, i, j

i. (A⊕B), α

...

j. ¬A, β

j + 1. B, α ∪ β ⊕E

i. (A⊕B), α

...

j. ¬B, β

j + 1. A, α ∪ β ⊕E
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R Rules for ⇔

i. (A⇒ B), α

...

j. (B ⇒ A), α

j + 1. (A⇔ B), α ⇔ I, i, j

i. A, α

...

j. (A⇔ B), β

j + 1. B, α ∪ β ⇔ E, i, j

i. B, α

...

j. (A⇔ B), β

j + 1. A, α ∪ β ⇔ E, i, j
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R Rules for ∀
i. A(a), {n} Hyp

...

j. B(a), α s.t. n ∈ α

j + 1. ∀x(A(x)⇒ B(x)), α− {n} ∀I, i–j

i. A(t), α

...

j. ∀x(A(x)⇒ B(x)), β

j + 1. B(t), α ∪ β ∀E, i, j

Where a is an arbitrary individual not otherwise used in the proof,

and t is free for x in B(x).

Note ∀ only governs ⇒.
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R Rules for ∃

i A(t), α

i+ 1 ∃xA(x), α ∃I, i

i ∃xA(x), α

...

j A{a/x}, β Indef I, i

...

k B, γ s.t. β ⊂ γ

k + 1 B, γ − β ∃E, j–k

Where A(x) is the result of replacing some or all occurrences of t in A(t) by x,

t is free for x in A(x);

a is an indefinite individual not otherwise used in the proof,

A(a/x) is the result of replacing all occurrences of x in A(x) by a,

and there is no occurrence of a in B.
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Why the Subproof Contours?

1. To keep track of assumptions for each derived wff.

But this is accomplished by os.

2. To differentiate hypotheses from derived wffs.

Introduce support: 〈{hyp | der | ext}, os〉
with origin tag and origin set.
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SNePS KB

The SNePS KB consists of a collection of supported wffs.

A wff may have more than one support if it was derived in multiple

ways.

Every implemented rule of inference specifies how the derived wff is

derived from its parent(s) and how its support is derived from the

support(s) of its parent(s).
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Contexts and Belief Spaces

A context is a set of hypotheses.

A belief space defined by a context c is the set containing every wff

whose os is a subset of c.
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SNePSLOG Example

: expert

...

: xor{OnFloor(1),OnFloor(2),OnFloor(3),OnFloor(4)}.

wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

{<hyp,{wff5}>}

: {OnFloor(1), OnFloor(2)} => {Location(belowGround)}.

wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

{<hyp,{wff7}>}

: {OnFloor(3), OnFloor(4)} => {Location(aboveGround)}.

wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

{<hyp,{wff9}>}
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: perform believe(OnFloor(1))

: describe-context

((assertions (wff9 wff7 wff5 wff1))

(named (default-defaultct)) (kinconsistent nil))
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: list-asserted-wffs

wff13!: ~OnFloor(2) {<der,{wff1,wff5}>}

wff12!: ~OnFloor(3) {<der,{wff1,wff5}>}

wff11!: ~OnFloor(4) {<der,{wff1,wff5}>}

wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

{<hyp,{wff9}>}

wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

{<hyp,{wff7}>}

wff6!: Location(belowGround) {<der,{wff1,wff7}>}

wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

{<hyp,{wff5}>}

wff1!: OnFloor(1) {<hyp,{wff1}>}
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: perform disbelieve(OnFloor(1))

: describe-context

((assertions (wff9 wff7 wff5)) (named (default-defaultct))

(kinconsistent nil))

: list-asserted-wffs

wff9!: {OnFloor(4),OnFloor(3)} v=> {Location(aboveGround)}

{<hyp,{wff9}>}

wff7!: {OnFloor(2),OnFloor(1)} v=> {Location(belowGround)}

{<hyp,{wff7}>}

wff5!: xor{OnFloor(4),OnFloor(3),OnFloor(2),OnFloor(1)}

{<hyp,{wff5}>}
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SNePSLOG Example of ¬I

wff5!: BearYoung(whales,live) {<hyp,{wff5}>}

wff4!: LiveIn(whales,water) {<hyp,{wff4}>}

wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))

{<hyp,{wff3}>}

wff2!: all(x)(LiveIn(x,water) => Ako(x,fish))

{<hyp,{wff2}>}

wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})

{<hyp,{wff1}>}
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: Ako(whales, ?x)?

A contradiction was detected within context default-defaultct.

The contradiction involves the newly derived proposition:

wff8!: Ako(whales,mammal) {<der,{wff3,wff5}>}

and the previously existing proposition:

wff9!: ~Ako(whales,mammal) {<der,{wff1,wff2,wff4}>}

...

In order to make the context consistent you must delete at least

one hypothesis from each of the following sets of hypotheses:

(wff5 wff4 wff3 wff2 wff1)
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The Culprit Set
1 : wff5!: BearYoung(whales,live) {<hyp,{wff5}>}

(2 supported propositions: (wff8 wff5) )

2 : wff4!: LiveIn(whales,water) {<hyp,{wff4}>}

(3 supported propositions: (wff9 wff7 wff4) )

3 : wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal)) {<hyp,{wff3}>}

(2 supported propositions: (wff8 wff3) )

4 : wff2!: all(x)(LiveIn(x,water) => Ako(x,fish)) {<hyp,{wff2}>}

(3 supported propositions: (wff9 wff7 wff2) )

5 : wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})

{<hyp,{wff1}>}

(2 supported propositions: (wff9 wff1) )
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KB after deleting wff2

wff10!: ~(all(x)(LiveIn(x,water) => Ako(x,fish)))

{<ext,{wff1,wff3,wff4,wff5}>}

wff8!: Ako(whales,mammal) {<der,{wff3,wff5}>}

wff7!: ~Ako(whales,fish) {<der,{wff1,wff3,wff5}>}

wff5!: BearYoung(whales,live) {<hyp,{wff5}>}

wff4!: LiveIn(whales,water) {<hyp,{wff4}>}

wff3!: all(x)(BearYoung(x,live) => Ako(x,mammal))

{<hyp,{wff3}>}

wff1!: all(x)(nand{Ako(x,fish),Ako(x,mammal)})

{<hyp,{wff1}>}
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10 The Situation Calculus
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Motivation (McCarthy)

I’m in my study at home. My car is in the garage. I want to get to

the airport. How do I decide that I should walk to the garage and

drive to the airport, rather than vice versa?

A commonsense planning problem.
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Solution Sketch

My study and garage are in my home.

To get from one place to another in my home, I should walk.

My garage and the airport are in the county.

To get from one place to another in the county, I should drive.
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Situations

When an agent acts, some propositions change as a result of acting,

and some are independent of acting.

E.g. the fact that the airport is in the county is independent of my

acting, but whether I’m in my study, in the garage, or at the

airport, changes when I act.

We say that an act takes us from one situation to another.

Propositions that are dependent on situations are called

propositional fluents. E.g. At(study, S0), At(garage, S1)

vs. In(study, home), In (airport, county)
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Situational Fluents

We can view an act as something that’s done in some situation,

and takes us to another situation.

Let do(a, s) be a two-argument functional term.

[[do(a, s)]] = the situation that results from doing the act [[a]] in the

situation [[s]].

So, At(study, S0), At(garage, do(walk(study, garage), S0))
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Planning in the Situational Calculus

Describe the situation S0.

Give domain rules describing the effects of actions.

Find a solution for At(airport, ?s)
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Formalization in SNARK

Non-Fluent Propositions

(assert ’(Walkable home))

(assert ’(Drivable county))

(assert ’(In study home))

(assert ’(In garage home))

(assert ’(In garage county))

(assert ’(In airport county))
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Effect Axioms

(assert ’(all (x y z s)

(=> (and (At x s) (In x z) (In y z)

(Walkable z))

(At y (do (walk x y) s)))))

(assert ’(all (x y z s)

(=> (and (At x s) (In x z) (In y z)

(Drivable z))

(At y (do (drive x y) s)))))

Initial Situation

(assert ’(At study S0))
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SNARK Solves the Problem

(query "How do you go to the airport?"

’(At airport ?s)

:answer ’(By doing ?s))

How do you go to the airport?

(ask ’(At airport ?s))

= (At airport (do (drive garage airport)

(do (walk study garage) S0)))

Page 577



Example 2: BlocksWorld

Domain Axioms

(assert ’(all s (Clear Table s)))

(assert ’(all (x y s) (=> (and (Block y) (On x y s))

(not (Clear y s)))))

(assert ’(all (x s) (=> (Held x s)

(not (Clear x s)))))
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BlocksWorld Effect Axioms

(assert

’(all (x y s) (=> (and (On x y s) (Clear x s))

(and (Held x (do (pickUp x) s))

(Clear y (do (pickUp x) s))))))

(assert

’(all (x y s) (=> (and (Held x s) (Clear y s))

(and (On x y (do (putOn x y) s))

(not (Held x (do (putOn x y) s)))

(Clear x (do (putOn x y) s))))))
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Initial Situation

(assert ’(Block A))

(assert ’(Block B))

(assert ’(Block C))

(assert ’(On A B S0))

(assert ’(On B Table S0))

(assert ’(On C Table S0))

(assert ’(Clear A S0))

(assert ’(Clear C S0))
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Solving A Simple Problem

(query "How do you achieve holding Block A?"

’(Held A ?s)

:answer ’(By doing ?s))

How do you achieve holding Block A?

(ask ’(Held A ?s)) = (By doing (do (pickUp A) S0))
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A Harder Problem

(query "How do you put Block A on Block C"

’(On A C ?s)

:answer ’(By doing ?s))

Just loops!
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The Frame Problem

We want

(On A C (do (putOn A C) (do (pickUp A) S0)))

but this requires C to be clear in situation

(do (pickUp A) S0)

That can’t be decided.

We need to specify what propositional fluents don’t change when

an action is performed.
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A Frame Axiom

(assert

’(all (x y s) (=> (and (Clear x s) (not (= x y)))

(Clear x (do (pickUp y) s)))))
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Another Problem

Still doesn’t work, because we don’t know that

(not (= C A))
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Unique Names Axioms

(assert ’(not (= A B)))

(assert ’(not (= A C)))

(assert ’(not (= B C)))

Also need

(use-paramodulation)

after (initialize)

This includes the theory of equality with resolution.

Page 586



Success!

(query "How do you put Block A on Block C" ’(On A C ?s)

:answer ’(By doing ?s))

How do you put Block A on Block C

(ask ’(On A C ?s))

= (By doing (do (putOn A C) (do (pickUp A) S0)))
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11 Summary

Artificial Intelligence (AI): A field of computer science and

engineering concerned with the computational understanding of

what is commonly called intelligent behavior, and with the

creation of artifacts that exhibit such behavior.

Knowledge Representation and Reasoning (KR or KRR):

A subarea of Artificial Intelligence concerned with

understanding, designing, and implementing ways of

representing information in computers, and using that

information to derive new information based on it.

KR is more concerned with belief than “knowledge”. Given

that an agent (human or computer) has certain beliefs, what

else is reasonable for it to believe, and how is it reasonable for it

to act, regardless of whether those beliefs are true and justified.
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What is Logic?

• Logic is the study of correct reasoning.

• There are many systems of logic (logics). Each is specified by

specifying:

– Syntax: Specifying what counts as a well-formed expression

– Semantics: Specifying the meaning of well-formed

expressions

∗ Intensional Semantics: Meaning relative to a Domain

∗ Extensional Semantics: Meaning relative to a Situation

– Proof Theory: Defining proof/derivation, and how it can be

extended.
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KR and Logic

Given that a Knowledge Base is represented in a language with a

well-defined syntax, a well-defined semantics, and that reasoning

over it is a well-defined procedure, a KR system is a logic.

KR research can be seen as a search for the best logic to capture

human-level reasoning.
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Proof Theory and Semantics

Proof Derivation Theoremhood

Theory A1, . . . , An ` P ⇔ ` A1 ∧ . . . ∧An ⇒ P

⇓⇑ ⇓⇑

A1, . . . , An |= P ⇔ |= A1 ∧ . . . ∧An ⇒ P

Semantics Logical Implication Validity

(⇓ Soundness) (⇑ Completeness)
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Inference/Reasoning Methods

Given a KB/set of assumptions A and a query Q:

• Model Finding

– Direct: Find satisfying models of A;

see if Q is true in all of them.

– Refutation: Find if A ∪ {¬Q} is unsatisfiable.

• Natural Deduction

– Direct: Find if A ` Q.

• Resolution

– Direct: Find if A ` Q (incomplete).

– Refutation: Find if
∧
A ∧ ¬Q is inconsistent.
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Logics We Studied

1. Standard Propositional Logic

2. Clause Form Propositional Logic

3. Standard Finite-Model Predicate Logic

4. Clause Form Finite-Model Predicate Logic

5. Standard First-Order Predicate Logic

6. Clause Form First-Order Predicate Logic

7. Horn Clause Logic

8. Relevance Logic

9. SNePSLOG & SNeRE

10. The Situation Calculus

11. Description Logics
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Classes of Logics

• Propositional Logic

– Finite number of atomic propositions and models.

– Model finding and resolution are decision procedures.

• Finite-Model Predicate Logic

– Finite number of terms, atomic formulae, and models.

– Reducible to propositional logic.

– Model finding and resolution are decision procedures.

• First-Order Logic

– Infinite number of terms, atomic formulae, and models.

– Not reducible to propositional logic.

– There are no decision procedures.

– Resolution plus factoring is refutation complete.
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Proof Procedures We Studied

1. Direct model finding: truth tables, decreasoner,

relsat (complete search) walksat, gsat (stochastic search)

2. Wang algorithm (model-finding refutation), wang

3. Semantic tableaux (model-finding refutation)

4. Hilbert-style axiomatic (direct), brief

5. Fitch-style natural deduction (direct)

6. Resolution (refutation), prover, SNARK

7. SLD resolution (refutation), Prolog

8. SNePS (direct), SNePS
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Utility Notions and Techniques

1. Material implication

2. Possible properties of connectives

commutative, associative, idempotent

3. Possible properties of well-formed expressions

free, bound variables

open, closed, ground expressions

4. Possible semantic properties of wffs

contradictory, satisfiable, contingent, valid

5. Possible properties of proof procedures

sound, consistent, complete,

decision procedure, semi-decision procedure
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More Utility Notions and Techniques

5. Substitutions

application, composition

6. Unification

most general common instance (mgci),

most general unifier (mgu)

7. Translation from standard form to clause form

Conjunctive Normal Form (CNF),

Skolem functions/constants

8. Resolution Strategies

subsumption, unit preference, set of support

9. The Answer Literal
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Yet More Utility Notions and Techniques

9. Closed vs. Open World Assumption

10. Negation by failure

11. Origin sets, contexts

12. Belief Revision/Truth-Maintenance
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Domain Modeling

1. Formalization in various logics

2. Reification

3. Ontologies/Taxonomies/Hierarchies

• extensional vs. intensional

• instance vs. subcategory

• Single (DAGs) vs multiple inheritance

• transitive relations/transitive closure

• mutually exclusive/disjoint categories

• exhaustive set of subcategories

• partitioning of a category

Page 599



More Domain Modeling

4. Time

• subjective vs. objective

• points vs. intervals

• Allen’s relations

5. Things (Count Nouns) vs. Substances (Mass Nouns)

6. Acting

• situations

• fluents
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12 Production Systems

Architecture

Working (Short-term) Memory

Contains set (unordered, no repeats) of

Working Memory Elements (WMEs).

Each being a rather flat, ground (no variables) symbol structure.
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Rule (Long-term) Memory

Contains set (unordered, no repeats) of

Production Rules.

Each being a condition-action rule

of form

if condition1 . . . conditionn then action1 . . . actionm

Each condition and action being like a WME,

but allowing variables (and, maybe, other expressions)

Page 602



Rule Triggering

A rule if condition1 . . . conditionn then action1 . . . actionm

is triggered

if there is a substitution, σ

such that each conditioniσ is a WME.

A single rule can be triggered in multiple ways (by multiple

substitutions).
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Rule Firing

A rule if condition1 . . . conditionn then action1 . . . actionm

that is triggered in a substitution σ

fires by performing every actioniσ.
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Production System Execution Cycle

loop

Collect T = {rσ | rσ is a triggered rule}
if T is not empty

Choose a rσ ∈ T
Fire rσ

until T is empty.

Page 605



Some Typical Actions

• stop

• delete a WME

• add a WME

• modify a WME

• formatted print
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Conflict Resolution Strategies

Purpose: to “Choose a rσ ∈ T ”

Specificity: If the conditions of one rule are a subset of a second

rule, choose the second rule. [B & L, p. 126]

Recency: Based on recency of addition or modification of WMEs,

or on recency of a rule firing. [B & L, p. 126]

Refactoriness: Don’t allow the same substitution instance of a rule

to fire again. [B & L, p. 127]

Salience: Explicit salience value. “The use of salience is generally

discouraged” [http://herzberg.ca.sandia.gov/jess/docs/70/

rules.html#salience].
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The Rete Algorithm

Assumptions

Rule memory doesn’t change.

WM changes only slightly on each cycle.

WMEs are ground.

Production Systems are data-driven (use forward chaining).

Many rules share conditions.
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The Rete Network

Create a network from the conditions (Like a discrimination tree)

with rules at the leaves.

Create a token for each WME.

Pass each token through the network, stopping when it doesn’t

satisfy a test; resuming when the WME is modified.

When tokens reach a leaf, the rule is triggered.

Kinds of branch nodes

α nodes: Simple test.

β nodes: Constraints caused by different conditions.
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13 Description Logics

Main reference:

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider, Eds., The Description Logic

Handbook: Theory, Implementation and Applications, Second

Edition, Cambridge University Press, Cambridge, UK, 2007.
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DL: Main Ideas

• Terminological Box or T-Box.

Definition of Concepts (“Classes”) and Roles (“Properties”).

• Assertional Box or A-Box.

Assertions about individuals (instances)

– Unary predicates = concepts

– Binary predicates = roles

• Necessary and Sufficient conditions on classes.

• Subsumption Hierarchy
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Syntax of a Simple DLa

Atomic Symbols

• Positive integers: 1, 2, 3

• Atomic concepts: Thing, Pizza, PizzaTopping, PizzaBase

Thing is the top of the hierarchy.

• Roles: hasTopping, hasBase

• Constants: item1, item2
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Syntax of a Simple DL

Concepts
• Every atomic concept is a concept

• If r is a role and d is a concept, [ALL r d] is a concept.

The concept of individuals all of whose r’s are d’s.

E.g., [ALL hasTopping VegetarianTopping]

• If r is a role and n is a positive integer, [EXISTS n r] is a concept.

The concept of individuals that have at least n r’s.

E.g., [EXISTS 1 hasTopping]

• If r is a role and c is a constant, [FILLS r c] is a concept.

The concept of individuals one of whose r’s is c.

E.g., [FILLS hasTopping item2]

• If d1, . . . , dn are concepts, [AND d1, . . . , dn] is a concept

The concept that is the intersection of d1, . . . , dn.

E.g., [AND Pizza [EXISTS 1 hasTopping]

[ALL hasTopping VegetarianTopping]]
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Syntax of a Simple DL

Sentences

• If d1 and d2 are concepts, (d1 v d2) is a sentence.

d1 is subsumed by d2

E.g., VegetarianPizza v Pizza

• If d1 and d2 are concepts, (d1
.
= d2) is a sentence.

d1 and d2 are equivalent

E.g., VegetarianPizza
.
= [AND Pizza [EXISTS 1 hasTopping]

[ALL hasTopping VegetarianTopping]]

• If c is a constant and d is a concept, (c→ d) is a sentence.

The individual c satisfies the description expressed by d.

E.g., item1 → Pizza
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Necessary and Sufficient Conditions

A necessary condition on a class, d, is a property, p, such that if

an individual, c, is an instance of d, it is necessary that c satisfy p.

A sufficient condition on a class, d, is a property, p, such that if

an individual, c, satisfies p, then that is a sufficient reason to

decide that it is an instance of d.

A defined concept has both necessary and sufficient conditions.

A primitive concept has only necessary conditions.
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Subsumption Hierarchy

(d1 v d2)

d1 is subsumed by d2

E.g., VegetarianPizza v Pizza

means that every instance of d1 is an instance of d2.

Every DL concept is subsumed by Thing, the top of the hierarchy.
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Classification Algorithm

Decision procedure for placing every defined concept correctly in

the subsumption hierarchy.

Note: Two concepts that subsume each other are the same.

Note: No concept can be computed as being subsumed by a

primitive concept.
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Examples Using Classic

Defined and Primitive Concepts

: (cl-startup)

t

: (cl-define-concept ’PizzaTopping ’Classic-Thing)

*WARNING*: The new concept PizzaTopping is identical

to the existing concept @c{Classic-Thing}.

@c{Classic-Thing}

: (cl-define-primitive-concept ’PizzaBase ’Classic-Thing)

@c{PizzaBase}
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Creating An Individual

: (cl-create-ind ’base1 ’PizzaBase)

@i{base1}

: (cl-instance? @base1 @PizzaBase)

t

: (cl-print-ind @base1)

Base1 ->

Derived Information:

Primitive ancestors: PizzaBase Classic-Thing

Parents: PizzaBase

Ancestors: Thing Classic-Thing

@i{base1}
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Defining Some Roles

: (cl-define-primitive-role ’hasIngredient

:inverse ’isIngredientOf)

@r{hasIngredient}

: (cl-define-primitive-role ’hasBase :parent ’hasIngredient

:inverse ’isBaseOf)

@r{hasBase}

: (cl-define-primitive-role ’hasTopping :parent ’hasIngredient

:inverse ’isToppingOf)

@r{hasTopping}

Page 620



Necessary and Sufficient Conditions
: (cl-define-concept ’Pizza ’(and Classic-Thing (at-least 1 hasBase)

(at-least 1 hasTopping)))

@c{Pizza}

: (cl-create-ind ’pizza1 ’Pizza)

@i{pizza1}

: (cl-print-ind @pizza1)

Pizza1 ->

Derived Information:

Parents: Pizza

Ancestors: Thing Classic-Thing

Role Fillers and Restrictions:

Hasingredient[1 ; INF]

Hastopping[1 ; INF]

Hasbase[1 ; INF]

@i{pizza1}

: (cl-create-ind ’item3 ’(and (fills hasBase base3) (fills hasTopping topping3)))

@i{item3}

: (cl-print-ind @item3)

Item3 ->

Derived Information:

Parents: Pizza

Ancestors: Thing Classic-Thing

Role Fillers and Restrictions:

Hasingredient[2 ; INF] -> Base3 Topping3

Hastopping[1 ; INF] -> Topping3

Hasbase[1 ; INF] -> Base3

@i{item3}
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Classification
: (cl-define-concept ’PreparedFood ’(and Classic-Thing (at-least 1 hasIngredient)))

@c{PreparedFood}

: (cl-print-concept @PreparedFood)

PreparedFood ->

Derived Information:

Parents: Classic-Thing

Ancestors: Thing

Children: Pizza

Role Restrictions:

Hasingredient[1 ; INF]

@c{PreparedFood}

: (cl-print-concept @Pizza)

Pizza ->

Derived Information:

Parents: PreparedFood

Ancestors: Thing Classic-Thing

Role Restrictions:

Hasingredient[1 ; INF]

Hastopping[1 ; INF]

Hasbase[1 ; INF]

@c{Pizza}

: (cl-instance? @pizza1 @PreparedFood)

t
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Disjoint Concepts
: (cl-startup)

t

: (cl-define-primitive-concept ’PizzaTopping ’Classic-Thing)

@c{PizzaTopping}

: (cl-define-disjoint-primitive-concept ’CheeseTopping ’PizzaTopping ’pizzaToppings)

@c{CheeseTopping}

: (cl-define-disjoint-primitive-concept ’MeatTopping ’PizzaTopping ’pizzaToppings)

@c{MeatTopping}

: (cl-define-disjoint-primitive-concept ’SeafoodTopping ’PizzaTopping ’pizzaToppings)

@c{SeafoodTopping}

: (cl-define-disjoint-primitive-concept ’VegetableTopping ’PizzaTopping ’pizzaToppings)

@c{VegetableTopping}

classic(56): (cl-define-primitive-concept ’ProbeInconsistentTopping

’(and CheeseTopping VegetableTopping))

*WARNING*: Disjoint primitives: @tc{CheeseTopping}, @tc{VegetableTopping}.

*CLASSIC ERROR* while processing

(cl-define-primitive-concept ProbeInconsistentTopping (and CheeseTopping

VegetableTopping))

occurred on object @c{ProbeInconsistentTopping-*INCOHERENT*}:

Trying to combine disjoint primitives: @tc{CheeseTopping} and

@tc{VegetableTopping}.

classic-error

(disjoint-prims-conflict @tc{CheeseTopping} @tc{VegetableTopping})

nil

@c{ProbeInconsistentTopping-*INCOHERENT*}
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Open World
: (cl-define-primitive-concept ’MushroomTopping ’VegetableTopping)

@c{MushroomTopping}

: (cl-define-primitive-concept ’OnionTopping ’VegetableTopping)

@c{OnionTopping}

: (cl-define-concept ’VegetarianPizza ’(and Pizza (all hasTopping VegetableTopping)))

@c{VegetarianPizza}

: (cl-create-ind ’mt1 ’MushroomTopping)

@i{mt1}

: (cl-create-ind ’ot1 ’OnionTopping)

@i{ot1}

: (cl-create-ind ’pizza2 ’(and Pizza (fills hasTopping mt1) (fills hasTopping ot1)))

@i{pizza2}

: (cl-instance? @pizza2 @VegetarianPizza)

nil

: (cl-ind-close-role @pizza2 @hasTopping)

@i{pizza2}

: (cl-instance? @pizza2 @VegetarianPizza)

t
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Typology of DL Languages
Construct Syntax Language

Concept A

Role name R FL0

Intersection C∩D

Value Restriction ∀R.C FL−

Limited existential quantification ∃R.> AL

Top or Universal > S

Bottom ⊥
Atomic negation ¬A

Negation ¬C C

Union C ∪D U

Existential restriction ∃R.C E

Language S = ALCR+ = ALC plus transitive roles.

From A. Gòmez-Pèrez, M. Fernàndez-Lòpez & O. Corcho, Ontological Engineering, Springer-Verlag,

London, 2004, Table 1.1, p. 17.
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Typology, continued

Construct Syntax Language

Number restrictions (≥ n R) (≤ n R) N

Nominals {a1 . . . an} O

Role hierarchy R ⊆ S H

Inverse role R′ I

Qualified number restriction (≥ n R.C) (≤ n R.C) Q

Key to abbreviations under “Syntax”:

A: atomic concept

C, D: concept definitions

R: atomic role

S: role definition

From A. Gòmez-Pèrez, M. Fernàndez-Lòpez & O. Corcho, Ontological Engineering, Springer-Verlag,

London, 2004, Table 1.1, p. 17.
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14 Abduction

Abduction is the non-sound inference

from

P ⇒ Q

and Q

to

P

See Brachman & Levesque, Chapter 13.
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Some Uses of Abduction

1. Explanation

from It ′s raining ⇒ The grass is wet

and The grass is wet to It ′s raining

2. Diagnosis

from Infection ⇒ Fever

and Fever to Infection

3. Plan Recognition

from Cooking pasta ⇒ Boil water

and Boil water to Cooking pasta

4. Text Understanding

from ∀x (gotGoodService(x )⇒ leftBigTip(x ))

and Betty left a big tip. to Betty got good service.
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Prime Implicates

Applies to KRR using resolution.

For some KB and some clause C, if

KB |= C

and for any C′ s.t. C′ is a proper subset of C

KB 6|= C′
C is a prime implicate of KB.
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Example of Computing Prime Implicate
prover(4): (prove ’( (=> (and p q r) g)

(=> (and (not p) q) g)

(=> (and (not q) r) g))

’g)

1 (p (not q) g) Assumption

2 (q (not r) g) Assumption

3 ((not p) (not q) (not r) g) Assumption

4 ((not g)) From Query

5 (p (not q)) R,4,1,{}

6 (q (not r)) R,4,2,{} Subsumed

7 ((not p) (not q) (not r)) R,4,3,{} Subsumed

8 ((not r) p) R,5,6,{} Subsumed

11 ((not q) (not r)) R,7,8,{} Subsumed

12 ((not r)) R,11,6,{}

Example from Brachman & Levesque, p 271.
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Example 2

prover(8): (prove ’((forall x (=> (enterRestaurant x) (beSeated x)))

(forall x (=> (beSeated x) (beServed x)))

(forall x (=> (beServed x) (getFood x)))

(forall x (=> (getFood x) (eatFood x)))

(forall x (=> (eatFood x) (and (pay x) (leaveTip x))))

(forall x (=> (gotGoodService x) (leftBigTip x)))

(enterRestaurant Betty))

’(leftBigTip Betty))

1 ((enterRestaurant Betty)) Assumption

2 ((not (enterRestaurant ?1)) (beSeated ?1)) Assumption

3 ((not (beSeated ?3)) (beServed ?3)) Assumption

4 ((not (beServed ?5)) (getFood ?5)) Assumption

5 ((not (getFood ?7)) (eatFood ?7)) Assumption

6 ((not (eatFood ?9)) (pay ?9)) Assumption

7 ((not (eatFood ?10)) (leaveTip ?10)) Assumption

8 ((not (gotGoodService ?12)) (leftBigTip ?12)) Assumption

9 ((not (leftBigTip Betty)) (Answer (leftBigTip Betty))) From Query

10 ((not (gotGoodService Betty))

(Answer (leftBigTip Betty))) R,9,8,{Betty/?12}

nil

I.e., (=> (gotGoodService Betty) (leftBigTip Betty))
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Interpretation

Possible interpretations of

(=> (gotGoodService Betty) (leftBigTip Betty)):

1. Abduction: Since (leftBigTip Betty),

infer (gotGoodService Betty).

2. Diagnosis: Since (not (leftBigTip Betty)),

infer (not (gotGoodService Betty)).

3. Hypothetical Answer: If (gotGoodService Betty)

then (leftBigTip Betty).

4. Why Not: Didn’t infer (leftBigTip Betty)

because didn’t know (gotGoodService Betty).
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