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Chapter 1

Knowledge Representation

Reports that say something hasn’t happened are always interesting to
me, because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also unknown
unknowns — the ones we don’t know we don’t know. [Donald Rumsfeld,
February 2002]

We think we know what he means. But we don’t know if we really know.
[John Lister, spokesman for Britain’s Plain English Campaign, December
1, 2003]

Artificial Intelligence (AI) is a field of computer science and engineering concerned
with the computational understanding of what is commonly called intelligent behavior,
and with the creation of artifacts that exhibit such behavior (Shapiro, 1992a, p. 54).

Knowledge representation (KR) is a subarea of Artificial Intelligence concerned
with understanding, designing, and implementing ways of representing information in
computers so that programs can use this information

• to derive information that is implied by it,

• to converse with people in natural languages,

• to decide what to do next

• to plan future activities,

• to solve problems in areas that normally require human expertise.

Deriving information that is implied by the information already present is a form of
reasoning. Because knowledge representation schemes are useless without the abil-
ity to reason with them, the field is usually known as “knowledge representation and
reasoning” (though still generally abbreviated as KR). KR can be seen to be both nec-
essary and sufficient for producing general intelligence. That is, KR is an AI-complete
area (Shapiro, 1992a, p. 56).
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4 CHAPTER 1. KNOWLEDGE REPRESENTATION

Many philosophers consider knowledge to be justified true belief. Thus, if John
believes that the world is flat, we would not say that John knows that the world is flat,
because he is wrong—“the world is flat” is not true. Also, it may be that Sally believes
that the first player in chess can always win, Betty believes that the second player can
always win, and Mary believes that, with optimal play on both sides, chess will always
end in a tie. One of them is correct, but we would still not say that any of them knows
the answer, because their belief cannot have been justified by a complete analysis of
the game. A computer system could not limit its information to knowledge in this
strict sense, so it would be more accurate to say that the topic being discussed is belief
representation, rather than knowledge representation. Nevertheless, we will continue
to use “knowledge representation,” because that has become accepted as the name of
this subject.

The field of knowledge representation began, around 1958, with an investigation of
how a computer might be able to represent and use the kind of commonsense knowl-
edge we have when we decide that to get from our house to the airport, we should walk
to our car and drive to the airport, rather than, for example drive to our car and then
walk to the airport. The manifesto of KR may be taken to be

a program has common sense if it automatically deduces for itself a suf-
ficiently wide class of immediate consequences of anything it is told and
what it already knows. . . In order for a program to be capable of learning
something it must first be capable of being told it. (McCarthy, 1959)

The phrases in this quote give us

Requirements for a Knowledge-Based Agent

1. “what it already knows”
A knowledge base of beliefs.

2. “it must first be capable of being told”
A way to put new beliefs into the knowledge base.

3. “automatically deduces for itself a sufficiently wide class of immediate con-
sequences”
A reasoning mechanism to derive new beliefs from ones already in the
knowledge base.

In the 1960s and 1970s, much knowledge representation research was concerned
with representing and using the kind of information we get from reading and from talk-
ing to other people; that is, the information that is often expressed in natural languages,
and that underlies our ability to understand and to use natural languages. For example,
we probably understand each of the sentences in the first column of Table 1.1 as shown
in the second column, by adding our “background knowledge” to what the sentences
explicitly say. Moreover, our understanding of English includes our being able to make
the following inferences.

Every student studies hard. Therefore every smart student studies.
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Table 1.1: Some sentences and how we understand them.
Sentence How we understand it
John likes ice cream. John likes to eat ice cream.
Mary likes Asimov. Mary likes to read books written by Isaac Asimov.
Bill flicked the switch. Bill moved the switch to the “on” position,
The room was flooded with light. which caused a light to come on,

which lit up the room Bill was in.
Betty opened the blinds. Betty adjusted the blinds so that
The courtyard was flooded with light. she could see through the window

they were in front of, after which she
could see that the courtyard on the
other side of the window was bright.

Tuesday evening, Jack either went to the movies, played bridge, or studied.
Tuesday evening, Jack played bridge. Therefore, Jack neither went to the
movies nor studied Tuesday evening.

In the 1970s and 1980s, researchers became increasingly concerned with knowl-
edge about specific domains in which human experts operate, such as medical diagnosis
and the identification of chemical compounds from mass spectrometry data, and also
with the other extreme—knowledge about the everyday world that everyone knows,
such as the fact that when you tip over a glass of water, the water will spill on the floor.

In the 1980s and 1990s, these concerns focussed on the details of specific sub-
domains of everyday knowledge, such as theories of time and space, and also on
the general structure of our knowledge of everyday terms, leading to the construc-
tion of large and general purpose “ontologies.” For example, the Cyc Project has de-
voted many staff-years to the organization of a computer-useable representation of all
the knowledge that is not contained in encyclopedias (Thus the name “Cyc,” from
“encyclopedia.”) but is assumed to be already known by people who read them, and
Lycos uses such an ontology to organize searches of the World-Wide Web.

In the twenty-first century, people are again interested in representing and using the
kind of information expressed in natural language in order to make use of the vast store
of information contained on the world-wide web.
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Chapter 2

Need for a Representation
Language

Although you can understand and reason about information expressed in natural lan-
guage, it is clear that you don’t do that by just remembering the sentences you read.
This was demonstrated by Bransford and Franks in a series of experiments reported
in 1971 (Bransford and Franks, 1971). Participants were shown a series of sentences,
including these:

The sweet jelly was on the kitchen table.
The ants in the kitchen ate the jelly.
The ants ate the sweet jelly that was on the table.
The sweet jelly was on the table.
The jelly was on the table.
The ants ate the jelly.

Then they were given sentences, and asked if they had seen these very sentences
before, and how confident they were about their answer. Participants were highly con-
fident that they had seen the sentence

The ants ate the sweet jelly that was on the kitchen table.

Obviously, the participants remembered the information in the sentences, rather than
the sentences themselves. The subject matter of KR is how might people, and how
could a computer, represent such information so that they can reason about it, and how
can that reasoning be carried out.

7
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Chapter 3

Logic

In the late 1800s and early 1900s, various formal systems were developed by people
who hoped, thereby, to turn human reasoning into a kind of calculation. From our
perspective, we can now see that what these people were engaged in was research in
knowledge representation. The formal systems they developed were systems of logic,
a topic which has been studied since the days of Plato and Aristotle.

Logic is the study of correct reasoning. It is not a particular KR language. Thus, it
is not proper to say “We are using (or not using) logic as our KR language.” There are,
indeed, many different systems of logic (see (Haack, 1978), (McCawley, 1981), and
the various articles on Logic in (Shapiro, 1992a) beginning with (Rapaport, 1992)). So
KR research may be regarded as the search for the right system of logic to use in AI
systems.

A logic1 consists of two parts: a language, and a method of reasoning. The logical
language, in turn, has two aspects, syntax and semantics. Thus, to specify or define a
particular logic, one needs to specify three things:

syntax: A set of atomic symbols, and the grammatical rules for combining them into
well-formed expressions (symbol structures);

semantics: The meanings of the atomic symbols, and the procedures for determining
the meanings of the well-formed expressions from the meanings of their compo-
nent parts;

proof theory: A procedure that, given an initial set of well-formed expressions, gen-
erates additional well-formed expressions.

The way that a logic captures the notion of “correct reasoning” is that the seman-
tics provides a procedure for identifying which well-formed expressions have a certain
property, called for simplicity Truth, and the proof theory guarantees that, if started
with a set of True well-formed expressions, all generated well-formed expressions will
also be True. Of course, if the proof-theory starts with a set of well-formed expressions

1From now on, we will say “logic” or “logics” rather than “system of logic” or “systems of logic”.

9



10 CHAPTER 3. LOGIC

that are not all True, it may generate additional well-formed expressions that are also
not True.

Various ways that systems of logic have been defined, the intricacies and variety
of their syntax rules, and their semantic and proof-theoretic procedures, and how their
semantic and proof-theoretic procedures may be mechanized, are the subjects of the
rest of this book.
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Propositional Logic
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Chapter 4

Introduction

Propositional logics conceptualize domains at, but not below, the level of propositions.
A proposition is an expression in some language

• that is true or false,

• whose negation makes sense,

• that can be believed or not,

• whose negation can be believed or not,

• that can be put in the frame
“I believe that it is not the case that .”

Some examples of propositions are

• Betty is the driver of the car.

• Barack Obama is sitting down or standing up.

• If Opus is a penguin, then Opus doesn’t fly.

Some examples of non-propositions are

• Barack Obama

• how to ride a bicycle

• If the fire alarm rings, leave the building.

13



14 CHAPTER 4. INTRODUCTION

A proposition is not the same as a sentence, though they are related. A sentence is
an expression of a spoken or written language that, when written usually begins with
a capital letter and ends with a period, question mark, or exclamation point. Some
sentences do not contain a proposition. For example,

“Hi!”
“Why?”
“Pass the salt!”

Some sentences do not express a proposition, but contain one. For example

“Is Betty driving the car?”

contains the proposition

Betty is driving the car.

Some sentences contain more than one proposition. For example,

If Opus is a penguin, then Opus doesn’t fly.

contains four propositions:

1. Opus is a penguin.

2. Opus flies.

3. Opus doesn’t fly

4. If Opus is a penguin, then Opus doesn’t fly.



Chapter 5

CarPool World

We will use CarPool World as a simple example domain. In CarPool World, Tom and
Betty carpool to work. On any day, either Tom drives Betty or Betty drives Tom. In
the former case, Tom is the driver and Betty is the passenger. In the latter case, Betty
is the driver and Tom is the passenger.

The finest analysis of CarPool World in Propositional Logic is that there are six
propositions:

Betty drives Tom. Tom drives Betty.
Betty is the driver. Tom is the driver.
Betty is the passenger. Tom is the passenger.

We will return to CarPool World repeatedly throughout this book.

15
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Chapter 6

The “Standard” Propositional
Logic

6.1 Introduction

We will begin our look at propositional logics with the “standard,” “classical,” propo-
sitional logics. This is “logics” in the plural because it will be a class of standard
propositional logics. We will give examples of particular propositional logics as we
proceed.

6.2 Syntax

6.2.1 Syntax of Standard Propositional Logics

The syntactic expressions of propositional logics consist of atomic propositions and
nonatomic, well-formed propositions (wfps).

Syntax of Atomic Propositions

• Any letter of the alphabet, e.g.: P

• Any letter of the alphabet with a numeric subscript, e.g.: Q3

• Any alphanumeric string, e.g.: Tom is the driver

is an atomic proposition.

Syntax of Well-Formed Propositions (WFPs)

1. Every atomic proposition is a wfp.
2. If P is a wfp, then so is (¬P ).
3. If P and Q are wfps, then so are

(a) (P ∧ Q)

17



18 CHAPTER 6. THE “STANDARD” PROPOSITIONAL LOGIC

(b) (P ∨ Q)

(c) (P ⇒ Q)

(d) (P ⇔ Q)

4. Nothing else is a wfp.

We will not bother using parentheses when there is no ambiguity, in which case
∧ and ∨ will have higher priority than ⇒, which, in turn will have higher priority
than ⇔. For example, we will write P ∧Q ⇔ ¬P ⇒ Q instead of ((P ∧Q) ⇔
((¬P ) ⇒ Q)).
We will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn) to be used, and will justify
this later.
We will also allow matching square brackets, “[“ and “]”, to be used instead of
parentheses.
Some example wfps are

¬(A ∧ B) ⇔ (¬A ∨ ¬B)
Tom is the driver ⇒ Betty is the passenger
Betty drives Tom ⇔ ¬Tom is the driver

The symbols: ¬, ∧, ∨, ⇒, and ⇔ are also called logical connectives. Although
we will be consistent in the use of these logical connectives, alternatives you
should be aware of are shown in Table 6.1

Table 6.1: Alternative logical connectives
Our Symbol Alternatives

¬ ∼ !
∧ & ·
∨ |
⇒ → ⊃ ->
⇔ ↔ ≡ <->

Exercise 6.1 Which of the following are syntactically correct well-formed proposi-
tions?

1. (P ∧ Q ∧ R) ⇒ Q

2. (P ⇒ ¬Q) ∨ (¬Q ⇒ P )

3. BirdsFly ¬ ⇒ PenguinsFly

4. TomIsHome ∧ ∨BettyIsHome

5. ((P ∧ Q) ∧ R) ⇔ [P ∧ (Q ∧ R])

6. OpusIsAPenguin ⇒ ¬OpusFlies

7. isParent ⇔ isPerson ∧ hasChild

8. Tom drives Betty ⇒ Tom is driver

9. TomsOut ∨ (TomsHome ∧ TomsStudying)
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6.2.2 Syntax of CarPool World Propositional Logic

The atomic propositions we will use in our propositional logic formalization of CarPool
World are:

1. Betty drives Tom

2. Tom drives Betty

3. Betty is the driver

4. Tom is the driver

5. Betty is the passenger

6. Tom is the passenger

Example wfps in CarPool World Propositional Logic are:

Tom is the driver ⇒ Betty is the passenger
Tom is the driver ⇒ ¬Tom is the passenger
Betty drives Tom ⇔ Betty is the driver ∧ Tom is the passenger

6.2.3 A Computer-Readable Syntax

The syntax we presented in § 6.2.1 is convenient for writing by hand and for printing in
documents (such as this one), but not as convenient for input to computer programs. For
that, many implemented KR systems use a version of the Common Logic Interchange
Format (CLIF) (ISO/IEC, 2007).

An atomic proposition, must be recognizable as a single token by the program. So,
instead of a multi-word atomic proposition like Betty drives Tom, one of the following
is used:

Embedded underscores: Betty drives Tom

Embedded hyphens: Betty-drives-Tom

CamelCase: BettyDrivesTom

sulkingCamelCase: bettyDrivesTom

Escape brackets: |Betty drives Tom|

Quotation marks: "Betty drives Tom"

For non-atomic wfps, the CLIF forms that correspond to the wfps of § 6.2.1 are
shown in Table 6.2.
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Table 6.2: CLIF syntax
Print Form CLIF Form

¬P (not P)
P ∧ Q (and P Q)
P ∨ Q (or P Q)
P ⇒ Q (if P Q)
P ⇔ Q (iff P Q)

(P1 ∧ · · · ∧ Pn) (and P1 ...Pn)
(P1 ∨ · · · ∨ Pn) (or P1 ...Pn)

6.3 Semantics

To specify the semantics of a propositional logic, we must give the semantics of each
atomic proposition and the rules for deriving the semantics of the wfps from their
constituent propositions. There are actually two levels of semantics we must specify:
extensional semantics and intensional semantics.

The extensional semantics (value or denotation) of the expressions of a logic
are relative to a particular interpretation, model, possible world, or situation. The
extensional semantics of CarPool World, for example, are relative to a particular day.
The denotation of a proposition is either True or False. If P is an expression of some
logic, we will use [[P ]] to mean the denotation of P . If we need to make explicit that
we mean the denotation relative to situation S, we will use [[P ]]S .

The intensional semantics (or intension) of the expressions of a logic are inde-
pendent of any specific interpretation, model, possible world, or situation, but are de-
pendent only on the domain being formalized (“conceptualized”). If P is an expression
of some logic, we will use [P ] to mean the intension of P . If we need to make explicit
that we mean the intension relative to domain D, we will use [P ]D . Many logicians
consider the intension of an expression to be a function from situations to denotations.
For them, [P ]D(S) = [[P ]]S . However, less formally, the intensional semantics of a wfp
can be given as a statement in a previously understood language (for example, English)
that allows the extensional value to be determined in any specific situation. Intensional
semantics are often omitted when a logic is specified, but they shouldn’t be.

Since the intensional semantics depends only on the domain, whereas the exten-
sional semantics depends also on a particular situation, it is appropriate to give the
intensional semantics of a particular system of logic first.

6.3.1 Intensional Semantics of CarPool World Propositional Logic

To specify the intensional semantics, we must list the atomic propositions, and, for each
one, give an English interpretation. The intensional semantics of the atomic proposi-
tions of CarPool World are:

1. [Betty drives Tom] = Betty drives Tom to work

2. [Tom drives Betty] = Tom drives Betty to work
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3. [Betty is the driver] = Betty is the driver of the car

4. [Tom is the driver] = Tom is the driver of the car

5. [Betty is the passenger] = Betty is the passenger in the car

6. [Tom is the passenger] = Tom is the passenger in the car

Note that each atomic proposition is a single indivisible symbol; the fact that the atomic
propositions look like English sentences whose meanings are paraphrases of the inten-
sional semantics is purely for mnemonic purposes. To emphasize this point, we could
have given the following intensional semantics for CarPool World logic:

[Betty drives Tom] = Tom drives Betty to work.
[Tom drives Betty] = Betty drives Tom to work.
[Betty is the driver] = Tom is the passenger in the car.
[Tom is the driver] = Betty is the passenger in the car.
[Betty is the passenger] = Tom is the driver of the car.
[Tom is the passenger] = Betty is the driver of the car.

Or, we could have specified the atomic propositions to be A, B, C, D, E, and F , and
given the following intensional semantics for CarPool World logic:

[A] = Betty drives Tom to work.
[B] = Tom drives Betty to work.
[C] = Betty is the driver of the car.
[D] = Tom is the driver of the car.
[E] = Betty is the passenger in the car.
[F ] = Tom is the passenger in the car.

The moral is

• Don’t omit specifying the intensional semantics.

• Don’t presume what the intensional semantics are.

• Don’t rely on “pretend it’s English” semantics.

6.3.2 Intensional Semantics of WFPs

The semantics, whether intensional or extensional, of the wfps of a logic are given by
listing the grammatical rules for forming wfps, and, for each one, giving a procedure
for computing the semantics of a wfp from the semantics of its components. This is
known as

Compositional semantics: The semantics of a non-atomic expression is a function of
the semantics of its component parts and of the way they have been combined.

We will specify the intensional semantics of wfps of propositional logics by giving,
for each syntactic rule, a sentence frame in which the intensional semantics of the
component parts may be inserted:
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• [¬P ] = It is not the case that [P ].

• [P ∧ Q] = [P ] and [Q].

• [P ∨ Q] = Either [P ] or [Q] or both.

• [P ⇒ Q] = If [P ] then [Q].

• [P ⇔ Q] = [P ] if and only if [Q].

Since we will use the symbols: ¬, ∧, ∨, ⇒, and ⇔ as the logical connectives for all
the standard propositional logics we will discuss, these rules specify the intensional se-
mantics of the wfps of all those logics, no matter what atomic propositions are chosen.
Here are some examples for CarPool World:

• [Tom is the driver ⇒ Betty is the passenger]
= If Tom is the driver of the car then Betty is the passenger in the car

• [Tom is the driver ⇒ ¬Tom is the passenger]
= If Tom is the driver of the car then it is not the case that Tom is the passenger
in the car

• [Betty drives Tom ⇔ Betty is the driver ∧ Tom is the passenger]
= Betty drives Tom to work if and only if Betty is the driver of the car and Tom
is the passenger in the car

Exercise 6.2

Using the following atomic propositions, with the given intensional semantics

• [Io is a moon of Jupiter] = Io is a moon of Jupiter

• [Io is large] = Io is large

• [Io is cold] = Io is cold

• [Io is far from the Sun] = Io is far from the Sun

formalize the following sentences as well-formed propositions of Propositional Logic.

1. If Io is far from the Sun, then Io is cold.

2. If Io is cold, Io is not large.

3. Io is a large cold moon of Jupiter.

4. Io is far from the Sun, but is not cold.

5. Io is far from the Sun if and only if it is large or a moon of Jupiter.
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Table 6.3: Five situations of CarPool World
Denotation in Situation

Proposition 1 2 3 4 5
Betty drives Tom True True True False False
Tom drives Betty True True False True False
Betty is the driver True True True False False
Tom is the driver True False False True False
Betty is the passenger True False False True False
Tom is the passenger True False True False False

6.3.3 Extensional Semantics of Atomic Propositions

The denotation of an atomic proposition is a truth value, True or False. Each way of
assigning a truth value to each atomic proposition forms one situation. For example,
each column of Table 6.3 gives one situation of CarPool World. Table 6.3 shows 5
situations. Since there are 6 propositions, and each one can have either of 2 truth
values, there are a total of 26 = 64 different situations in CarPool World. We will see
in §6.3.10 how to limit these to the two that “make sense.”

6.3.4 Extensional Semantics of WFPs

Just as there is a compositional intensional semantics for the wfps of propositional
logics, there is a compositional extensional semantics. The standard way to compute
the denotations of wfps from their constituents is:

• [[¬P ]] is True if [[P ]] is False. Otherwise, it is False.

• [[P ∧ Q ]] is True if [[P ]] is True and [[Q ]] is True. Otherwise, it is False.

• [[P ∨ Q ]] is False if [[P ]] is False and [[Q ]] is False. Otherwise, it is True.

• [[P ⇒ Q ]] is False if [[P ]] is True and [[Q ]] is False. Otherwise, it is True.

• [[P ⇔ Q ]] is True if [[P ]] and [[Q ]] are both True, or both False. Otherwise, it is
False.

These can also be shown in the truth tables of Tables 6.4 and 6.5.

Table 6.4: Truth table defining ¬
P True False
¬P False True

Notice that each column of these tables represents a different situation. These truth
tables are the transpose of what is usually presented. Usually, each proposition heads
a column and each row represents a different situation. We do it this way so that the
propositions can be rather long without taking up too much space on the page.

These semantics justify the following terminology:
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Table 6.5: Truth table defining ∧, ∨, ⇒, and ⇔
P True True False False
Q True False True False
P ∧ Q True False False False
P ∨ Q True True True False
P ⇒ Q True False True True
P ⇔ Q True False False True

• ¬P is called the negation of P .

• P ∧ Q is called the conjunction of P and Q. P and Q are referred to as con-
juncts.

• P ∨Q is called the disjunction of P and Q. P and Q are referred to as disjuncts.

• P ⇒ Q is called a conditional or implication. P is referred to as the an-
tecedent; Q as the consequent.

• P ⇔ Q is called a biconditional or equivalence.

The version of implication presented here is called material implication. If ⇒ is
material implication, then P ⇒ Q is True whenever P is False, regardless of whether
Q is True or False. If “if . . . then” is interpreted as material implication, then an “if
. . . then” proposition is True whenever the antecedent is False. For example, if “if
. . . then” is material implication, “If the world is flat, then the moon is made of green
cheese” is True because “The world is flat” is False. Some logicians do not think that
material implication is the correct way to formalize the English “if . . . then,” but that’s
the way it’s done in standard, classical propositional logic, so we will abide by that
(until later in this book).

In every situation, P ⇒ Q and ¬P ∨ Q have the same denotation (are equivalent).
This can be seen by examining the last two rows of Table 6.6: In fact, in some versions

Table 6.6: The equivalence of P ⇒ Q and ¬P ∨ Q

P True True False False
Q True False True False
¬P False False True True
P ⇒ Q True False True True
¬P ∨ Q True False True True

of propositional logic, P ⇒ Q is considered to be just a syntactic abbreviation of
¬P ∨ Q. We will see this equivalence a lot.

6.3.5 Example Extensional Semantics of WFPs in CarPool World

In Table 6.7, we extend the previous table of five of the CarPool World situations by
showing the denotations of two non-atomic wfps.
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Table 6.7: Denotations of two CarPool World non-atomic wfps in five situations
Denotation in Situation

Proposition 1 2 3 4 5
Betty drives Tom True True True False False
Tom drives Betty True True False True False
Betty is the driver True True True False False
Tom is the driver True False False True False
Betty is the passenger True False False True False
Tom is the passenger True False True False False
¬Tom is the driver False True True False True
Betty drives Tom ⇔ ¬Tom is the driver False True True True False

6.3.6 Uninterpreted Languages and Formal Logic

We have already slipped into a habit that is both a strength of logic (as the study of
correct reasoning), and a potential confusion for the novice. Consider again Table 6.6.
We said that this table shows that P ⇒ Q is equivalent to ¬P ∨ Q in the sense that
the two always have the same truth values in the same situations. But what happened
to the rule that one should always specify the intensional semantics? By not giving
the intensional semantics of P and Q, we seem to be using an “uninterpreted” logical
language.

In fact, we are really making a point about every logical language in the class of
standard classical propositional logics. Perform this thought experiment: replace all
occurrences of P in the above table with any wfp of any specific standard classical
propositional logic (complete with intensional semantics); replace all occurrences of Q

in the table with any wfp of the same specific propositional logic (It could be the same
wfp as you used for P or a different wfp.); consider the bottom two rows. In every
colum, the bottom two rows will be the same. The observation does not depend on the
specific logic, but only on the form of the wfps (and the assumption that ⇒ is material
implication). The fact that the techniques and results we are studying depend only on
the form of the logical expressions, and not on their content (intensional semantics), is
why this topic is often called Formal Logic.

When we use “uninterpreted” expressions in our study, it is not that what we are
dealing with is not applicable to any practical situation, but that it is applicable to every
practical situation formalized in a logic in the class of logics we are studying.

Exercise 6.3 Draw truth tables for the following wfps.

1. P ∧ ¬P ⇒ Q

2. (P ⇒ Q) ∨ (Q ⇒ P )

3. (P ⇒ Q) ⇔ (¬P ⇒ ¬Q)

4. (P ⇒ Q) ⇔ (¬Q ⇒ ¬P )
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6.3.7 Properties of Logical Connectives

On page 18, we said that “we will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn) to be
used, and will justify this later.” In Table 6.2, we also showed that CLIF allows the
wfps, (and P1 ...Pn) and (or P1 ...Pn). We are now ready to justify these
notations.

A binary operator, ◦, is commutative if, for any arguments, x, y, (x ◦ y) = (y ◦ x).
That conjunction and disjunction are commutative may be seen by comparing the third
column with the fourth column, and the fifth column with the sixth column in Table 6.8.

Table 6.8: Commutativity of conjunction and disjunction
A B A ∧ B B ∧ A A ∨ B B ∨ A

True True True True True True
True False False False True True
False True False False True True
False False False False False False

A binary operator, ◦, is associative if, for any arguments, x, y, z, ((x ◦ y) ◦ z) =
(x ◦ (y ◦ z)). That conjunction is associative may be seen by comparing the last two
columns in Table 6.9, and that disjunction is associative may be seen by comparing the
last two columns in Table 6.10.

Table 6.9: Associativity of conjunction
A B C A ∧ B B ∧ C (A ∧ B) ∧ C A ∧ (B ∧ C)

True True True True True True True
True True False True False False False
True False True False False False False
True False False False False False False
False True True False True False False
False True False False False False False
False False True False False False False
False False False False False False False

A binary operator, ◦, is idempotent if, for any argument, x, x ◦ x = x. That con-
junction and disjunction are idempotent may be seen by comparing the first with the
second, and the first with the third columns in Table 6.11.

Consider a fully parenthesized expression all of whose operators are the same asso-
ciative, commutative, idempotent, binary operator. Because the operator is associative,
inner parentheses may be removed. Because the operator is commutative, the order of
the operands may be permuted. Because the operator is idempotent, multiple occur-
rences of any one operand may be exchanged for just a single occurrence. Because
conjunction and disjunction are associative, commutative, and idempotent, they may
be given arbitrary numbers of arguments, with the order and multiplicity of the argu-
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Table 6.10: Associativity of disjunction
A B C A ∨ B B ∨ C (A ∨ B) ∨ C A ∨ (B ∨ C)

True True True True True True True
True True False True True True True
True False True True True True True
True False False True False True True
False True True False True True True
False True False True True True True
False False True False True True True
False False False False False False False

Table 6.11: Idempotency of conjunction and disjunction
A A ∧ A A ∨ A

True True True
False False False

ments being irrelevant. That is, they may be considered connectives that take sets of
arguments.

Exercise 6.4 Is biconditional commutative? Is it associative? Is it idempotent?

Exercise 6.5 Would it be correct to formalize “A, B, and C are equivalent” as A ⇔
B ⇔ C?

Nor (↓) is a logical connective with the following truth table:

A B A ↓ B

True True False

True False False

False True False

False False True

Note that (A ↓ B) ⇔ ¬(A ∨ B).

Exercise 6.6 Is nor commutative? Is it associative? Is it idempotent?

Nand (|) is a logical connective with the following truth table:

A B A | B

True True False

True False True

False True True

False False True

Note that (A | B) ⇔ ¬(A ∧ B).

Exercise 6.7 Is nand commutative? Is it associative? Is it idempotent?
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6.3.8 Computing Denotations

Using Spreadsheets to Create Truth Tables

For our first computerized KR system, we will use Microsoft Excel (any other spread-
sheet, for example Google Docs Spreadsheets, should do as well). Excel has the truth
values TRUE and FALSE, and the logical functions NOT, AND, and OR. We can use =
as the biconditional, and OR(NOT(p),q) for p ⇒ q.

To set up the spreadsheet as a truth table, enter the propositions along the top-most
row (you will have to use rather short propositions). If you have n atomic propositions,
list them across the first n cells of the top row. The next 2n rows should give all the
possible situations. Continue along the top row, entering non-atomic propositions. In
each of the 2n cells below each non-atomic proposition, enter the spreadsheet formula
to compute the value of the non-atomic proposition from the values of its components.
Table 6.12 is an example, showing what you should enter. The way the spreadsheet

Table 6.12: Formulas entered in a spreadsheet to compute a truth table
A B C D

1 P Q ∼P P=>Q
2 TRUE TRUE =NOT(A2) =OR(C2,B2)
3 TRUE FALSE =NOT(A3) =OR(C3,B3)
4 FALSE TRUE =NOT(A4) =OR(C4,B4)
5 FALSE FALSE =NOT(A5) =OR(C5,B5)

will actually appear is shown in Table 6.13.

Table 6.13: A spreadsheet showing a truth table
A B C D

1 P Q ∼P P=>Q
2 TRUE TRUE FALSE TRUE
3 TRUE FALSE FALSE FALSE
4 FALSE TRUE TRUE TRUE
5 FALSE FALSE TRUE TRUE

Exercise 6.8 Complete the spreadsheet shown in Tables 6.12 and 6.13 to include P ∧
Q, P ∨ Q, and P ⇔ Q, as well as what’s shown.

Exercise 6.9 Create a spreadsheet showing all 64 situations of CarPool World. You
need only enter the atomic propositions for now. Save this spreadsheet for later use.

Computing the Denotation of a Wfp in a Model

A Common Lisp program to compute the denotation of a wfp in a model is a direct
implementation of the procedure outlined in § 6.3.4:
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(defun denotation (wfp model)
"Returns the denotation of the well-formed-proposition, wfp,

given the model."
;; Use an association list for a model.
;; E.g. ((P . True) (Q . False))

;; Use CLIF for non-atomic wfps:
;; (not P)
;; (and P Q)
;; (or P Q)
;; (if P Q)
;; (iff P Q)
(if (atom wfp)

(cdr (assoc wfp model))
(ecase (first wfp)
(not (ecase (denotation (second wfp) model)

(True ’False)
(False ’True)))

(and (if (and (eq (denotation (second wfp) model) ’True)
(eq (denotation (third wfp) model) ’True))

’True
’False))

(or (if (and (eq (denotation (second wfp) model) ’False)
(eq (denotation (third wfp) model) ’False))

’False
’True))

(if (if (and (eq (denotation (second wfp) model) ’True)
(eq (denotation (third wfp) model) ’False))

’False
’True))

(iff (if (eq (denotation (second wfp) model)
(denotation (third wfp) model))

’True
’False)))))

For example,

cl-user(1): (denotation ’(if p (if q p)) ’((p . True) (q . False)))
True
cl-user(2): (denotation

’(if BettyDrivesTom (not TomIsThePassenger))
’((BettyDrivesTom . True) (TomIsThePassenger . True)))

False

Exercise 6.10 Extend the denotation function to allow wfps of the form (and P1
...Pn) and (or P1 ...Pn).
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6.3.9 Model Finding

The techniques of § 6.3.8 were for finding the denotation of a wfp given a model. The
converse problem, given the denotation of a wfp, find a model in which the wfp has
that denotation, is actually more useful.

We say that a model satisfies a wfp if the wfp is True in that model. Obviously, if
a wfp P is False in a model, M, then M satisfies ¬P .

Exercise 6.11 Prove that a wfp P is False in a model, M, if and only if M satisfies
¬P .

Similarly, we say that a model satisfies a set of wfps if they are all True in the model.
It should also be obvious that a model, M, satisfies the wfps P1, . . . , Pn if and only if
M, satisfies P1 ∧ . . . ∧ Pn.

Exercise 6.12 Prove that a model, M, satisfies the wfps P1, . . . , Pn if and only if M,
satisfies P1 ∧ . . . ∧ Pn.

The significance of these two facts is

Observation 1 The problem of finding a model in which a set of wfps each has a given
denotation is equivalent to the problem of finding a model that satisfies a wfp.

Model Finding with a Spreadsheet

You can use a spreadsheet to find satisfying models of a set of wfps.

1. Set up the spreadsheet according to the instructions on page 28:

(a) put the n atomic propositions in the first n columns of the top row;
(b) enter truth values in the next 2n rows so that each row is one of the possible

models;
(c) enter non-atomic propositions in the first row after the atomic propositions;
(d) enter appropriate formulas in the 2n rows under each non-atomic proposi-

tion.

2. Use your spreadsheet’s table (or list) feature to make a table of the entire truth
table. Each column should be headed by a wfp, and the entries should appear as
truth values.

3. For each wfp that you want to be satisfied, filter its column so that only rows in
which that wfp has the value of True appear.

4. Each visible row represents a satisfying model of the wfps, specified by the truth
values of the atomic wfps that head the first n columns.

Exercise 6.13 Extend the spreadsheet truth table for CarPool World that you created
for Exercise 6.9, and use it to find the satisfying models for Betty is the driver∧
¬Tom is the driver . How many satisfying models are there? What are they?
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The Tableau Procedure for Model Finding

We will give two versions of a procedure for finding satisfying models that is easy to
do by hand. It is variously called the method of tableaux or semantic tableaux or
analytic tableaux, and is due to (Beth, 1959), (Wang, 1960), and (Smullyan, 1968).
We will call it the tableau procedure. The first version is a sketch that should be easy
to understand. The second version organizes this sketch into a formal algorithm.

Both versions begin with a set of wfps for which we want to find a satisfying model.
They label each of the wfps True, and follow the procedure of § 6.3.4 backward recur-
sively. The first, less formal version is:

• Given: Wfps labeled True, False, or unlabeled.

• If any wfp is labeled both True and False, terminate with failure.

• If all the atomic wfps are labeled, return the labeling as a model.

• If ¬P is

– labeled True, try labeling P False.
– labeled False, try labeling P True.

• If P ∧ Q is

– labeled True, try labeling P and Q True.
– labeled False, try labeling P False, and try labeling Q False.

• If P ∨ Q is

– labeled False, try labeling P and Q False.
– labeled True, try labeling P True, and try labeling Q True.

• If P ⇒ Q is

– labeled False, try labeling P True and Q False.
– labeled True, try labeling P False, and try labeling Q True.

• If P ⇔ Q is

– labeled True, try labeling P and Q both True, and try labeling P and Q

both False.
– labeled False, try labeling P True and Q False, and try labeling P False

and Q True.

Notice that each sub-bullet considers a case where a non-atomic wfp has a given label
and “tries” either one or two labellings for the components of the non-atomic wfp. For
example, if P ∧ Q is labeled True, that can only be because P and Q are both True.
That is, the only models that satisfy P ∧Q are models in which P and Q are both True.
On the other hand, if P ∧ Q is labeled False, that could be either because P is labeled
False or because Q is labeled False. That is, the only models that satisfy ¬(P ∧ Q)
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are models in which P is False (and Q could be either True or False) or in which Q is
False (and P could be either True or False).

The second version of the tableau procedure involves drawing a tree diagram. The
root of the tree will show all the wfps labeled “T ”, for True. Each step of the procedure
will consist of either:

• “closing” a branch of the tree because it contains some wfp labeled both “T ” and
“F ”;

• extending one leaf of the tree by choosing one non-atomic wfp in its branch that
has not yet been “reduced” in this branch, and giving this leaf one or more child
nodes.

• marking a branch as finished because there are no more non-atomic wfps in its
branch that have not yet been reduced in this branch.

When the procedure terminates, every finished branch gives a satisfying model of the
original set of wfps. The procedure is:

1. Draw the root of the tree with each wfp in the original set of wfps labeled “T ”.

2. While there is a leaf node with neither a check mark (“
√

”) nor an x mark (“×”)
under it, choose one such leaf node and do the following:

• If any wfp in the branch ending at the leaf node is labeled “T ” in some node
and “F ” in some node, close the branch by writing “×” below the leaf.

• Else, if there is no non-atomic wfp that is written in some node in the
branch ending at the leaf node, that has not yet been “reduced” in this
branch, indicate that the branch is finished by writing “

√
” below the leaf.

• Else choose one non-atomic wfp that is written in some node in the branch
ending at the leaf node, but has not yet been “reduced” in this branch, and
reduce it by doing the following:

– If the non-atomic wfp is of the form ¬P and is
∗ labeled “T ”, add a new node below the chosen leaf, and write in it

“F : P ”.
∗ labeled “F ”, add a new node below the chosen leaf, and write in

it “T : P ”.
– If the non-atomic wfp is of the form P1 ∧ . . . ∧ Pn and is

∗ labeled “T ”, add a new node below the chosen leaf, and write in it
“T : P1” and . . . and “T : Pn”.

∗ labeled “F ”, add n new nodes below the chosen leaf, and write in
the ith node “F : Pi”.

– If the non-atomic wfp is of the form P1 ∨ . . . ∨ Pn and is
∗ labeled “T ”, add n new nodes below the chosen leaf, and write in

the ith node “T : Pi”.
∗ labeled “F ”, add a new node below the chosen leaf, and write in

it “F : P1” and . . . and “F : Pn”.
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– If the non-atomic wfp is of the form P ⇒ Q and is
∗ labeled “T ”, add two new nodes below the chosen leaf, and write

in one “F : P ” and in the other “T : Q”.
∗ labeled “F ”, add a new node below the chosen leaf, and write in

it “T : P ” and “F : Q”.
– If the non-atomic wfp is of the form P ⇔ Q and is

∗ labeled “T ”, add two new nodes below the chosen leaf, and write
in one both “T : P ” and “T : Q”, and in the other both “F : P ”
and “F : Q”.

∗ labeled “F ”, add two new nodes below the chosen leaf, and write
in one both “T : P ” and “F : Q”, and in the other both “F : P ”
and “T : Q”.

3. If any branch ends with a “
√

”, the labellings of the atomic wfps on that branch
give a satisfying model of the original set of wfps. If any atomic wfp in the
original set is not labeled in this branch, then it could be either True or False in
this satisfying model.

For example, using the tableau procedure to find satisfying models of the set of
wfps, {BP ⇒ ¬BD, TD ⇒ BP, BD} produces the tree:

F : TD√ T : BP

×

�
�

�
�

P
P

P
P

F : BP

F : BD

×

T : ¬BD

�
�

�
�

hhhhhhhh

T : BP ⇒ ¬BD

T : TD ⇒ BP

T : BD

Under the root node, we reduced BP ⇒ ¬BD. Under the F : BP node, we reduced
TD ⇒ BP . Under the T : ¬BD node, we reduced ¬BD. The right-most branch
contains both T : BD and F : BD. The middle branch contains both F : BP and
T : BP . The left-most branch shows that [[BD ]] = True, [[BP ]] = False, and [[TD ]] =
False is a satisfying model.

We will call a tree drawn by following the tableau procedure a tableau.

Exercise 6.14 Prove that the tableau procedure terminates for any finite original set
of wfps.

Exercise 6.15 Prove that the tableau procedure is correct. That is, any branch that
gets a “

√
” written at its end provides a satisfying model of the original set of wfps.

Exercise 6.16 Prove that the tableau procedure is complete. That is, for any finite
original set of wfps, and for any satisfying model of the set, this procedure will find the
satisfying model.
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Exercise 6.17 Prove that the tableau procedure is, in the worst case, exponential in the
number of atomic wfps in the original set of wfps. That is, if there are n different atomic
wfps in the original set of wfps, this procedure may produce a tree with 2n branches.

Exercise 6.18 Draw tableaux to find satisfying models of each of the following set of
wfps, and for each set, indicate the satisfying model found in your tableau.

1. {(¬M ⇒ (S ∨ P )), ((S ⇒ H) ∧ (P ⇒ K)),¬K}

2. {(A ⇒ B ∨ C), (P ⇒ Q ∧ R),¬(C ∨ R)}

3. {((A ⇒ B) ⇔ (P ∧ Q)), (¬P ⇒ A),¬P}

An Implementation of the Tableau Procedure

Following is a recursive Common Lisp program that finds satisfying models using the
tableau procedure. The program, models, takes a list of wfps to be satisfied, and,
optionally, up to three more lists: a list of wfps that should all be False in the models;
a list of atomic wfps that should be True in the models; and a list of atomic wfps that
should be False in the models. At each recursive loop, models, removes one wfp
from either of the first two lists, and either puts it in one of the lists of atomic wfps,
or puts its components in the appropriate lists of possibly non-atomic wfps. If there
is ever a non-empty intersection of the first two lists or of the third and fourth list, the
empty model is returned. If the first two lists are both empty, then the model assigns
True to the atomic wfps in the third list and False to the atomic wfps in the fourth list.
In approximately half of the recursive cases, models calls itself twice, in which case
it appends the two lists of satisfying models.

The models program uses two “helper” functions:

(defun add (wfp wfps)
"If wfp is already on the list wfps, returns wfps;

otherwise, returns a copy of wfps with wfp added to it."
(adjoin wfp wfps :test ’equal))

(defun addall (newwfps oldwfps)
"Returns a list of all the wfps on either newwfps or oldwfps."
(union newwfps oldwfps :test ’equal))

Here is the models program itself:

(defun models (trueWfps &optional falseWfps trueAtoms falseAtoms)
"Returns the set of models that:

satisfy the list wfps in trueWfps;
falsify the wfps in falseWfps;
satisfy the list of atomic wfps in trueAtoms;
and falsify the list of atomic wfps in falseAtoms.

If there are no such models, returns nil."
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;; Use an association list for a model.
;; E.g. ((P . True) (Q . False))

;; Use CLIF for non-atomic wfps:
;; (not P)
;; (and P1 ... Pn)
;; (or P1 ... Pn)
;; (if P Q)
;; (iff P Q)
(cond
((or (intersection trueAtoms falseAtoms)

(intersection trueWfps falseWfps :test ’equal))
nil)

(trueWfps
(let ((wfp (first trueWfps)))
(cond ((atom wfp)

(models (rest trueWfps) falseWfps
(add wfp trueAtoms) falseAtoms))

(t (case (first wfp)
(not (models (rest trueWfps)

(add (second wfp) falseWfps)
trueAtoms falseAtoms))

(and (models (addall (rest wfp) (rest trueWfps))
falseWfps trueAtoms falseAtoms))

(or (loop for disjunct in (rest wfp)
append (models

(add disjunct (rest trueWfps))
falseWfps trueAtoms falseAtoms)))

(if (append (models (add (third wfp) (rest trueWfps))
falseWfps trueAtoms falseAtoms)

(models (rest trueWfps)
(add (second wfp) falseWfps)
trueAtoms falseAtoms)))

(iff (append
(models (add (second wfp)

(add (third wfp) (rest trueWfps)))
falseWfps trueAtoms falseAtoms)

(models (rest trueWfps)
(add (second wfp)

(add (third wfp) falseWfps))
trueAtoms falseAtoms))))))))

(falseWfps
(let ((wfp (first falseWfps)))
(cond ((atom wfp)

(models trueWfps (rest falseWfps)
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trueAtoms (add wfp falseAtoms)))
(t (case (first wfp)

(not (models (add (second wfp) trueWfps)
(rest falseWfps)
trueAtoms falseAtoms))

(and (loop for conjunct in (rest wfp)
append (models

trueWfps
(add conjunct (rest falseWfps))
trueAtoms falseAtoms)))

(or (models trueWfps
(addall (rest wfp) (rest falseWfps))
trueAtoms falseAtoms))

(if (models (add (second wfp) trueWfps)
(add (third wfp) (rest falseWfps))
trueAtoms falseAtoms))

(iff (append
(models (add (second wfp) trueWfps)

(add (third wfp) (rest falseWfps))
trueAtoms falseAtoms)

(models (add (third wfp) trueWfps)
(add (second wfp) (rest falseWfps))
trueAtoms falseAtoms))))))))

(t (list (append (mapcar #’(lambda (a) (cons a ’True))
trueAtoms)

(mapcar #’(lambda (a) (cons a ’False))
falseAtoms))))))

Here are some tests of models:

cl-user(1): (models ’( (if BP (not BD)) (if TD BP) BD))
(((BD . True) (BP . False) (TD . False)))

cl-user(2): (models ’( BDT (if BDT (and BD TP)) (not (or TP BD))))
nil

cl-user(3): (models ’( (if BDT (and BD TP)) (if TDB (and TD BP))))
(((TD . True) (BP . True) (BD . True) (TP . True))
((BD . True) (TP . True) (TDB . False))
((TD . True) (BP . True) (BDT . False))
((BDT . False) (TDB . False)))

The first test of models returns one satisfying model; the second returns no sat-
isfying model. The third test looks like it returns four satisfying models, but those
four actually represent a lot more. There are six atomic propositions in the wfps (if
BDT (and BD TP)) and (if TDB (and TD BP)). The first result of models
shows truth values for only four of them, so the remaining two, BDT and TDB, could
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have any truth values. Therefore, the first result actually represents 22 = 4 models.
Similarly, the second result represents 8 models; the third represents 8 models, and
the fourth result represents 16 models. There are not, however, 36 satisfying models
of (if BDT (and BD TP)) and (if TDB (and TD BP)) because some of
them are repeats.

Exercise 6.19 How many satisfying models of (if BDT (and BD TP)) and (if
TDB (and TD BP)) are there? What are they?

Model Finding with Decreasoner

The models program written above was written for pedagogical purposes. It was
not written to be especially efficient. A model-finding program that was written to
be efficient is decreasoner1 (Mueller, 2006; Mueller, 2008). We will discuss how
decreasoner operates later in this book. For now we will demonstrate its use using
the ubdecreasonerP.py front end, and the first example given to models above.
First, we prepare an input file,
/projects/shapiro/CSE563/Examples/Decreasoner/cpwExample.e
containing

;;; Propositional Car Pool World Example
;;; Stuart C. Shapiro
;;; December 2, 2008

proposition BettyIsDriver ; Betty is the driver of the car.
proposition TomIsDriver ; Tom is the driver of the car.
proposition BettyIsPassenger ; Betty is the passenger in the car.

BettyIsPassenger -> !BettyIsDriver.
TomIsDriver -> BettyIsPassenger.
BettyIsDriver.

Then we run it from the Linux command line:2

<nickelback:˜:1:53> cd /projects/shapiro/CSE563/decreasoner

<nickelback:decreasoner:1:54> python ubdecreasonerP.py
../Examples/Decreasoner/cpwExample.e

Copyright (c) 2005 IBM Corporation and others.
All rights reserved. This program and the accompanying materials
are made available under the terms of the Common Public License v1.0
which accompanies this distribution, and is available at
http://www.eclipse.org/legal/cpl-v10.html

Contributors:

1available from http://decreasoner.sourceforge.net/
2The second command was split into two lines to fit on this page. It should be entered on one line.
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IBM - Initial implementation

---

model 1:

BettyIsDriver.
!BettyIsPassenger.
!TomIsDriver.

Notice that the model found by decreasoner is the same one found by models.

Exercise 6.20 Use ubdecreasonerP.py to find satisfying models of (if BDT
(and BD TP)) and (if TDB (and TD BP)). How many does it report? What
are they?

6.3.10 Semantic Properties of WFPs

We have already seen that, for a given wfp, there may be no model that satisfies it, or
there might be one satisfying model, or there might be more than one satisfying model.
In general, a wfp is either satisfiable, contingent, valid, or contradictory according
to the situations (models) in which it is True. A wfp is

satisfiable if it is True in at least one situation;
contingent if it is True in at least one situation and False in at least one

situation;
valid if it is True in every situation;
contradictory if it is False in every situation.

For example, as Table 6.14 shows, ¬P , Q ⇒ P , and P ⇒ (Q ⇒ P ) are satisfiable,
¬P and Q ⇒ P are contingent, P ⇒ (Q ⇒ P ) is valid, and P ∧¬P is contradictory.

Table 6.14: Truth table showing satisfiable, contingent, valid, and contradictory wfps
P True True False False
Q True False True False
¬P False False True True
Q ⇒ P True True False True
P ⇒ (Q ⇒ P ) True True True True
P ∧ ¬P False False False False

If A is a well-formed proposition of a logic L, it is standard to write |=L A to
indicate that A is valid in logic L. The subscript may be omitted if it is clear from
context. Thus, Table 6.14 table shows that |= P ⇒ (Q ⇒ P ). Valid wfps are also
called tautologies. The symbol “|=” is called a “double turnstyle”. You should read
“|= A” as “A is valid.” We also write “A is not valid” as “6|= A.” Notice that if A is not
valid, it still might be satisfiable.
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Related to the notion of validity is the notion of logical entailment (sometimes
called “logical implication”, “semantic entailment”, or “semantic implication”). The
set of wfps {A1, . . . , An} logically entails the wfp B in logicL (written A1, . . . , An |=L

B) if and only if B is True in every situation in which every Ai is True. For example,
Table 6.14 shows that Q, Q ⇒ P |= P and P |= Q ⇒ P .

6.3.11 The KRR Enterprise

Domain knowledge is used to reduce the set of situations to only those that “make
sense.” For example, in CarPool World, we want to specify that:

• Betty is the driver or the passenger, but not both:

Betty is the driver ⇔ ¬Betty is the passenger

• Tom is the driver or the passenger, but not both:

Tom is the driver ⇔ ¬Tom is the passenger

• If Betty drives Tom, then Betty is the driver and Tom is the passenger:

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

• If Tom drives Betty, then Tom is the driver and Betty is the passenger:

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

• Finally, either Tom drives Betty or Betty drives Tom:

Tom drives Betty ∨ Betty drives Tom

Table 6.15 shows the only two situations of CarPool World (numbered as in Ta-
ble 6.3) in which all five of these domain rules are True. Notice that these are precisely

Table 6.15: Truth table of “common sense” situations of CarPool World
Denotation in Situation

Proposition 3 4
Betty drives Tom True False
Tom drives Betty False True
Betty is the driver True False
Tom is the driver False True
Betty is the passenger False True
Tom is the passenger True False

the two commonsense situations.
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Exercise 6.21 Extend the spreadsheet you created for Exercise 6.9 to include the five
domain rules for CarPool World shown above. Use the technique described in § 6.3.9
so that only the situations that satisfy the domain rules appear. Convince yourself that
these are the two situations shown in Table 6.15. Save this spreadsheet.

Exercise 6.22 Using the spreadsheet you created for Exercise 6.21, convince yourself
that the English intensional semantics given above for each domain rule is correct. Do
this by filtering the spreadsheet by each domain rule by itself. The situations that satisfy
each domain rule should be the ones described by the English intensional semantics.

The number of situations that satisfy a set of wfps is monotonic nondecreasing
as the set of wfps is increased. In general, as we add domain rules, the number of
situations that satisfy them will be reduced, although it might be the case that when
we add a new domain rule, the number of satisfying situations will remain the same.
In that case, the last domain rule added is not independent of the previous domain
rules, and there is no reason to include it as a domain rule of the particular domain.
The best possible formalization of a domain is achieved when the smallest possible set
of independent domain rules that reduce the number of satisfying models to those that
“make sense” is found. There may, however, be several equally small independent sets.

Exercise 6.23 Using the spreadsheet you created for Exercise 6.21, convince yourself
that the five CarPool World domain rules given above are independent. Do this by
starting with the full spreadsheet, then filter it by each domain rule one at a time, then
two at a time, etc. It should be the case that, whichever domain rules are “active,”
when you add one more, the number of satisfying situations decreases.

If we let Γ stand for the set of CarPool World domain rules, and A be any wfp in the
logic of CarPool World, then Γ |= A says that the domain rules logically imply A. That
means that A is True in every model that satisfies the domain rules—every situation that
“makes sense.” This is how every KR system is used (when a Propositional Logic is
used to formalize the domain):

1. Given a domain you are interested in reasoning about.

2. List the set of propositions (expressed in English) that captures the basic infor-
mation of interest in the domain.

3. Formalize the domain by creating one atomic wfp for each proposition listed in
step (2). List the atomic wfps, and, for each, show the English proposition as its
intensional semantics.

4. Using the atomic wfps, determine a set of domain rules so that all, but only, the
situations of the domain that make sense satisfy them. Strive for a set of domain
rules that is small and independent.

5. Optionally, formulate an additional set of situation-specific wfps that further re-
strict the domain to the set of situations you are interested in. We will call this
restricted domain the “subdomain”.
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6. Letting Γ be the set of domain rules plus situation-specific wfps, and A be any
proposition you are interested in, A is True in the subdomain if Γ |= A, is false in
the subdomain if Γ |= ¬A, and otherwise is True in some more specific situations
of the subdomain, and False in others.

These steps are what this book is all about. Steps (2)–(5) constitute the Knowledge
Representation problem. Determining if Γ |= A constitutes the Reasoning problem.
As we proceed, we will study various logics that enable Steps (2)–(4), and various
computational methods to determine if Γ |= A.

The techniques you know at this point to determine if Γ |= A is to use the tech-
niques of §6.3.9 to find the models that satisfy Γ, and then to use the techniques of
§6.3.8 to find the denotation of A in each of those models. If A is True in every model
that satisfies Γ, then Γ |= A.

Exercise 6.24 Letting Γ be the set of CarPool World domain rules, determine if

Γ |= Tom is the passenger ⇒ Betty drives Tom

If we want to reason about fewer situations than all of those that satisfy the domain
rules, we add them to the left-hand side of the Γ |= A expression. For example, for
some Γ, A, B, and C, we might investigate whether Γ, A, B |= C. The collection of
wfps on the left-hand side can be considered a knowledge base (KB). The question
then is, is it the case that KB |= C ?

Exercise 6.25 Letting Γ be the set of CarPool World domain rules, determine if

Γ, Betty drives Tom |= ¬Tom is the driver

In English, this problem is: In CarPool World, is it the case that on days when Betty
drives Tom, Tom is not the driver?

It is easy to show that

Metatheorem 1 A1, . . . , An |=L B if and only if A1 ∧ · · · ∧ An |=L B

We will, therefore, sometimes talk about a set of wfps logically implying a wfp, and
sometimes talk about a wfp logically implying a wfp.

Logical implication and logical validity are related by the following

Metatheorem 2 A |=L B if and only if |=L A ⇒ B

The significance of this is

Observation 2 If one is interested in determining either logical validity or logical
implication, one may solve the other problem, and then, citing Metatheorem 2, show
the solution of the original problem.
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6.4 Computational Methods for Determining Entailment
and Validity

As you have just seen, given a knowledge base KB and a query Q, one way to de-
termine if Q is True in the domain described by KB , that is if KB |= Q , is to find
all models that satisfy KB, and then see if Q is True in each one of them. The pro-
gram models, shown on page 34, returns the set of models that satisfies a wfp, and
the program denotation, shown on page 28, computes the denotation of a wfp in a
model. So a first draft of a procedure to decide whether KB |= Q is to loop through
every model, M, returned by (models KB), and make sure that (denotation Q
M) returns True for each one of them. This procedure is captured by the program
entails:

(defun entails (KB Q)
"Returns t if the knowledge base KB entails the query Q;
else returns nil."

;; Uses models to find the set of models that satisfy KB.
;; Then uses denotation to see if Q is true in every satisfying model.

;; Use CLIF for non-atomic wfps:
;; (not P)
;; (and P Q)
;; (or P Q)
;; (if P Q)
;; (iff P Q)
(loop for model in (models KB)

unless (denotation Q model)
do (return-from entails nil))

t)

For example,

cl-user(1): (entails ’( (if BP (not BD)) (if TD BP) BD )
’(and (not BP) (not TD)))

t

There are two problems with this program:

1. as we noted on page 36, models does not really return all the satisfying models—
some of the “models” it returns represents multiple models with some atomic
wfps having different denotations in different ones;

2. after models tries to generate all the satisfying models, denotation goes
through every one evaluating an arbitrarily complex wfp.

Exercise 6.26 What does entails do if you try

(entails ’( (if BDT (and BD TP)) (if TDB (and TD BP)))
’(or (not BD) (not TD)))
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A better idea is based on the idea that KB |= Q if and only if no model satis-
fies KB ∧ ¬Q. Methods based on this idea are called Tableau methods or Semantic
Tableau methods. We will also refer to them as Model-Finding Refutation methods.

The Wang Algorithm (Wang, 1960) is a model-finding refutation procedure that is
just a slight reorganization of the models program. wang takes two lists of wfps,
Twfps and Fwfps , and “tries” to find a model that both satisfies the wfps in Twfps and
falsifies the wfps in Fwfps . However, if it succeeds in this, it returns False. If there is
no such model, wang returns True.

wang(Twfps, Fwfps) {
/*
* Twfps and Fwfps are sets of wfps.
* Returns True if there is no model
* that satisfies Twfps and falsifies Fwfps;
* Otherwise, returns False.

*/

if Twfps and Fwfps intersect, return True;
if every A ∈ Twfps ∪ Fwfps is atomic, return False;
if (P = ¬A) ∈ Twfps, return wang(Twfps \ {P}, Fwfps ∪ {A});
if (P = ¬A) ∈ Fwfps, return wang(Twfps ∪ {A}, Fwfps \ {P});
if (P = A ∧ B) ∈ Twfps, return wang((Twfps \ {P}) ∪ {A,B}, Fwfps);
if (P = A ∧ B) ∈ Fwfps, return wang(Twfps , (Fwfps \ {P}) ∪ {A})

and wang(Twfps, (Fwfps \ {P}) ∪ {B});
if (P = A ∨ B) ∈ Twfps, return wang((Twfps \ {P}) ∪ {A}, Fwfps);

and wang((Twfps \ {P}) ∪ {B}, Fwfps);
if (P = A ∨ B) ∈ Fwfps, return wang(Twfps , (Fwfps \ {P}) ∪ {A,B})
if (P = (A ⇒ B)) ∈ Twfps, return wang(Twfps \ {P}, Fwfps ∪ {A})

and wang((Twfps \ {P}) ∪ {B}, Fwfps);
if (P = (A ⇒ B)) ∈ Fwfps, return wang(Twfps ∪ {A}, (Fwfps \ {P}) ∪ {B});
if (P = (A ⇔ B)) ∈ Twfps, return wang((Twfps \ {P}) ∪ {A,B}, Fwfps)

and wang(Twfps \ {P}, Fwfps ∪ {A,B});
if (P = (A ⇔ B)) ∈ Fwfps, return wang(Twfps ∪ {A}, (Fwfps \ {P}) ∪ {B})

and wang(Twfps ∪ {B}, (Fwfps \ {P}) ∪ {A});
}

Using wang, we can rewrite entails as:

(defun entails (KB Q)
"Returns t if the knowledge base KB entails the query Q;

else returns nil."
;; Uses wang to determine that no model satisfies KB
;; while falsifying Q.

;; Use CLIF for non-atomic wfps:
;; (not P)
;; (and P Q)
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;; (or P Q)
;; (if P Q)
;; (iff P Q)
(wang KB (list Q)))

For example,

cl-user(4): (entails ’( (if BP (not BD)) (if TD BP) BD )
’(and (not BP) (not TD)))

t

Exercise 6.27 What does this version of entails do if you try

(entails ’( (if BDT (and BD TP)) (if TDB (and TD BP)))
’(or (not BD) (not TD)))

Exercise 6.28 Formalize the following domain.3

Background (Domain) knowledge: If there is a good movie on TV
and Tom doesn’t have an early appointment the next morning, then
he stays home and watches a late movie. If Tom needs to work and
doesn’t have an early appointment the next morning, then he works
late. If Tom works and needs his reference materials, then he works
at his office. If Tom works late at his office, then he returns to his
office. If Tom watches a late movie or works late, then he stays up
late.

To Assume (Situation-specific knowledge): Tom needs to work, doesn’t
have an early appointment, and needs his reference materials.

To Prove: Tom returns to his office and stays up late.

Using this version of entails, show that background knowledge plus the assump-
tions logically entail the sentence to be proved.

6.5 Proof Theory

There are two basic varieties of proof theory (or syntactic inference methods) in propo-
sitional logics, Hilbert-style methods, and natural deduction methods. Hilbert-style
inference methods use a large number of (logical) axioms and a small number of rules
of inference, whereas natural deduction methods use a small number of (logical) ax-
ioms (or even none at all) and a large number of rules of inference.4 Usually there
are two rules of inference for each logical connective, ¬, ∧, ∨, ⇒, and ⇔, an intro-
duction rule, and an elimination rule. These are usually abbreviated by writing the
logical connective before “I” or “E”, respectively. For example ¬I is the “negation
introduction” rule, and ∧E is the “and elimination” rule. The rule ⇒ E is also often
called modus ponens.

3Based on an example in (Shapiro, 1987, 779–785).
4According to (Pelletier, 2000) the real distinguishing feature of natural deduction methods is that they

include a method of using subproofs.
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6.5.1 Hilbert-Style Methods

In Hilbert-style methods, a derivation of a wfp, A, from a set of assumptions (or non-
logical axioms,) Γ, is a list of wfps in which each wfp in the list is either a logical
axiom, or a non-logical axiom, or follows from previous wfps in the proof according
to one of the rules of inference. A Hilbert-style proof of a wfp, A, is a derivation of A

from an empty set of assumptions. If A can be derived from Γ in the logic L, we write
Γ `L A, (The symbol “`” is called a “turnstyle”.) while if A can be proved in L, we
write `L A. If A can be proved in L, A is called a theorem of L.

One set of axioms for the standard propositional calculus is (Mendelson, 1964, p.
31):

(A1). (A ⇒ (B ⇒ A))

(A2). ((A ⇒ (B ⇒ C)) ⇒ ((A ⇒ B) ⇒ (A ⇒ C)))

(A3). ((¬B ⇒ ¬A) ⇒ ((¬B ⇒ A) ⇒ B))

Note that these axioms use only the connectives⇒ and ¬. The others may be defined as
abbreviations of these, or additional axioms may be given for them. For our purposes,
we will not bother about them.

There are two attitudes taken about axioms such as these:

1. They are axiom schemata. The actual axioms (There are an infinite number
of them.) may be derived from them by taking any one axiom schema, and
substituting any wfp whatsoever for all occurrences of each of the letters, A, B,

and C. We will take this attitude in the example below.

2. They are actual axioms, and the rule of Substitution, sketched above, is a Rule
of Inference.

Whether (A1) – (A3) are axioms or axiom schemata, the (other) Rule of Inference
is modus ponens, which says that if any wfp A is a line of a proof, and a wfp of the
form A ⇒ B is also a line in the proof, for any wfp B, then B can be added as a line
in the proof. This rule of inference can be summarized as

A, A ⇒ B

B

An example proof that ` A ⇒ A is (Mendelson, 1964, p. 32):
(1) (A ⇒ ((A ⇒ A) ⇒ A)) ⇒ ((A ⇒ (A ⇒ A)) ⇒ (A ⇒ A)) Instance of A2
(2) A ⇒ ((A ⇒ A) ⇒ A) Instance of A1
(3) (A ⇒ (A ⇒ A)) ⇒ (A ⇒ A) From 1, 2 by MP
(4) A ⇒ (A ⇒ A) Instance of A1
(5) A ⇒ A From 3, 4 by MP

As a second example, let’s show that

John is the passenger ,
John is the passenger ⇒ Betty is the driver ,
Betty is the driver ⇒ ¬Betty is the passenger

` ¬Betty is the passenger
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The derivation is
(1) John is the passenger Assumption
(2) John is the passenger ⇒ Betty is the driver Assumption
(3) Betty is the driver From 1, 2 by MP
(4) Betty is the driver ⇒ ¬Betty is the passenger Assumption
(5) ¬Betty is the passenger From 3, 4 by MP

Notice that “rules” in the sense of “rule-based systems” correspond not to rules
of inference, but to non-atomic assumptions. Rules of inference are used by the un-
derlying “inference engine” of rule-based systems. We sometimes call assumptions
non-logical axioms because they are used in proofs the same way axioms are, but they
are not actually axioms of any logical system. The rules of rule-based systems are ac-
tually non-logical axioms. Sometimes, they are also called domain rules to distinguish
them from rules of inference.

6.5.2 Natural Deduction Methods

Natural deduction proof methods are characterized by having no axioms, but a Large
set of rules of inference5, including a few structural rules of inference, and one intro-
duction rule and one elimination rule for each connective.

The natural deduction proof method we will present here is based on that of Fitch
(1952). A Fitch-style proof of a theorem P is

• An ordered list of wfps and subproofs ending with P , such that

• each wfp or subproof on the list must be justified by a rule of inference.

A Fitch-style derivation of a wfp P from an assumption A is a hypothetical sub-
proof whose hypothesis is A and which contains

• An ordered list of wfps and inner subproofs ending with P , such that

• each wfp or inner subproof on the list must be justified by a rule of inference.

Structural Rules of Inference

i. A Hyp
i. A

...
j. A Rep, i

i. A
...

...
j. A Reit, i

Rules for ¬
i. A Hyp

...
j. B

j + 1. ¬B

j + 2. ¬A ¬I, i–(j + 1)

5According to (Pelletier, 2000) the real distinguishing feature of natural deduction methods is that they
include a method of using subproofs.
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i. ¬¬A

j. A ¬E, i

Rules for ∧
i. A

...
j. B

k. A ∧ B ∧I, i, j

i. A ∧ B

j. A ∧E, i

i. A ∧ B

j. B ∧E, i

Rules for ∨
i. A

j. A ∨ B ∨I, i

i. B

j. A ∨ B ∨I, i

i. A1 ∨ · · · ∨ An

...
i + j1. A1 ⇒ B

...
i + jn. An ⇒ B

i + k. B ∨E, i, i + j1, . . . , i + jn

Rules for ⇒
i. A Hyp

...
j. B

k A ⇒ B ⇒I, i–j

i. A
...

j. A ⇒ B

k. B ⇒E, i, j

Rules for ⇔
i. A ⇒ B

...
j. B ⇒ A

k. A ⇔ B ⇔ I, i, j

i. A
...

j. A ⇔ B

k. B ⇔E, i, j

i. B
...

j. A ⇔ B

k. A ⇔E, i, j

Example Fitch-Style Proof

1. A Hyp

2. A Rep, 1
3. A ⇒ A ⇒ I, 1–2
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Example Fitch-Style Derivation

1. Tom is the driver
∧(Tom is the driver ⇒ Betty is the passenger)
∧(Betty is the passenger ⇒ ¬Betty is the driver) Hyp

2. Tom is the driver ∧E, 1
3. Tom is the driver ⇒ Betty is the passenger ∧E, 1
4. Betty is the passenger ⇒ E, 2, 3
5. Betty is the passenger ⇒ ¬Betty is the driver ∧E, 1
6. ¬Betty is the driver ⇒ E, 4, 5

Fitch-Style Proof of Axiom A1

1. A Hyp

2. B Hyp

3. A Reit, 1
4. B ⇒ A ⇒ I, 2–3
5. A ⇒ (B ⇒ A) ⇒ I, 1–4

CarPool World Derivation
1. (Tom is the driver ⇔ ¬Tom is the passenger)

∧ (Tom is the passenger ⇔ Betty is the driver)
∧ (Betty is the driver ⇔ ¬Betty is the passenger)

∧ Tom is the driver Hyp

2. Tom is the driver ∧E, 1
3. Tom is the driver ⇔ ¬Tom is the passenger ∧E, 1
4. ¬Tom is the passenger ⇔ E, 3
5. ¬Betty is the passenger Hyp

6. Betty is the driver ⇔ ¬Betty is the passenger ∧E, 1
7. Betty is the driver ⇔ E, 5, 6
8. Tom is the passenger ⇔ Betty is the driver ∧E, 1
9. Tom is the passenger ⇔ E, 7, 8

10. ¬Tom is the passenger Reit, 4
11. ¬¬Betty is the passenger ¬I, 5–10
12. Betty is the passenger ¬E, 11

More Connections

• A ` P if and only if ` A ⇒ P .
• So proving theorems and deriving conclusions from

assumptions are equivalent.
• But no atomic proposition is a theorem.
• So theorem proving makes more use of Introduction Rules than most

AI reasoning systems.
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3 Important Properties
of Logical Systems

Soundness: ` P implies |= P

Consistency: not both ` P and ` ¬P

Completeness: |= P implies ` P

Connections

• If at most 1 of |= P and |= ¬P

then soundness implies consistency.
• Soundness is the essence of “correct reasoning.”
• Completeness less important for running systems since a proof may

take too long to wait for.
• The Propositional Logics we have been looking at are complete.
• Gödel’s Incompleteness Theorem: A logic strong enough to formal-

ize arithmetic is either inconsistent or incomplete.

More Connections

A1, . . . , An ` P ⇔ ` A1 ∧ . . . ∧ An ⇒ P

soundness ⇓⇑ completeness soundness ⇓⇑ completeness

A1, . . . , An |= P ⇔ |= A1 ∧ . . . ∧ An ⇒ P
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Exercises

1. Prove that |= (A ⇒ B) ∨ (B ⇒ A).

2. Prove that |= ¬(A ∧ B) ⇔ (¬A ∨ ¬B).

3. Letting Γ be the domain rules for CarPool World, show that
Γ ,Betty drives Tom |= ¬Betty is the passenger ∧ ¬Tom is the driver .

4. This question was adapted from S. J. Russell and P. Norvig, Artificial Intelli-
gence: A Modern Approach, Second Edition, (Upper Saddle River, NJ: Pearson
Education, Inc.), 2003, p. 238.

(a) (3) Formalize the domain that has the following domain rules, by showing
the syntax and intensional semantics of the atomic propositions.

“If the unicorn is mythical, then it is immortal, but if it is not
mythical, then it is a mortal mammal. If the unicorn is either
immortal or a mammal, then it is horned. The unicorn is magical
if it is horned.”

(b) Using your formalization, list the wfps that represent the above domain
rules.

(c) Using the wang program, determine which of the following sentences is
logically implied by these domain rules.

i. The unicorn is mythical.
ii. The unicorn is magical.

iii. The unicorn is horned.
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Chapter 7

Clause Form Logic

7.1 Syntax

7.2 Semantics

7.3 Proof Theory
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Part III

Predicate Logic Over Finite
Models
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Chapter 8

The “Standard” Logic

8.1 Syntax

8.2 Semantics

An interesting discussion of substitutional vs. the usual, objectual, semantics is in
(Hand, 2007).

8.3 Proof Theory
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Chapter 9

Clause Form Logic

9.1 Syntax

9.2 Semantics

9.3 Proof Theory
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Chapter 10

SNePS Logic

10.1 Syntax

10.2 Semantics

10.3 Proof Theory
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Part IV

Full First-Order Predicate
Logic
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Chapter 11

The “Standard” Logic

11.1 Syntax

11.2 Semantics

11.3 Proof Theory
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Chapter 12

Clause Form Logic

12.1 Syntax

12.2 Semantics

12.3 Proof Theory
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Chapter 13

SNePS Logic

13.1 Syntax

13.2 Semantics

13.3 Proof Theory
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Part V

Relevance Logic
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