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1 Introduction

These notes comment on, and are, in part, derived from Brachman & Levesque,Knowl-
edge Representation and Reasoning,Chapter 11.

This chapter goes beyond the previous two, to discussdefault(or defeasible) rea-
soning, in a general logical framework. (Note that there is a large literature on defeasi-
ble reasoning that is not mentioned in this chapter.)

One issue is the difference between generics and true universals.
A theme isnonmonotonicreasoning. Standard logic ismonotonic:

If A ` φ
then A ∪ B ` φ

But default reasoning is not:

1. Birds fly.

2. Penguins are birds.

3. Chilly is a penguin.

4. Does Chilly fly?

5. BTW, peguins don’t fly.

6. Does Chilly fly?

(Aside: Last semester, we had a discussion about the meaning ofbut.
Notice: Penguins are birds, but they don’t fly.)
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2 Closed-World Reasoning

Incorporate the Closed-World Assumption (CWA) into the standard approach by defin-
ing

KB |=C α iff KB+ |= α, where
KB+ = KB ∪ {¬p | p is atomic and KB 6|= p}

Problem: if KB = {(p∨q)}, thenKB+ contains{(p∨q),¬p,¬q}, and is inconsistent.
Solution: generalized closed-world assumption (GCWA)

KB |=GC α iff KB∗ |= α, where
KB∗ = KB ∪ {¬p | for all collections of atoms p, q1, . . . , qn,

if KB |= (p ∨ q1 ∨ . . . ∨ qn), then KB |= (q1 ∨ . . . ∨ qn)}

So, if KB = {(p ∨ q)}, then¬p 6∈ KB∗ and¬q 6∈ KB∗, but¬r ∈ KB∗.
Example: In Clue, Tom is asked if he has Miss Scarlett, the Kitchen, or the knife, and
shows one card. Later, he’s asked if he has Prof. Plum, the Kitchen, or the knife, and
shows one card. However, you have Prof. Plum. GCWA allows you to conclude, by
default, that Tom doesn’t have Miss Scarlett.
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Domain Closure: What does{¬p | p is atomic} include? Form all atomic sentences
by giving every predicate symbol every possible combination of arguments. It’s a finite
collection as long as there’s no function symbol. (The text says even then, but I don’t
think so.) Consider a KB with: no quantified formulas; one unary predicate,P ; one
binary predicate,R; two individual constants,a, b; one individual constant, c, such that
KB hasP (c), butc doesn’t occur as either argument ofR.
{¬p | p is atomic}, and therefore KB+, includes

{¬R(a, c),¬R(c, a),¬R(b, c),¬R(c, b),¬R(c, c)}

However,KB+ 6|= ¬∃xR(x, c) if you assume there could be some individual other
thana, b, or c, i.e. anunnamedindividual.

This raises the issue of how semantics is done:

1. (The way I like): [[∃xR(x, c)]] is True if there is some ground term,t such that
[[R(t, c)]] is True; otherwise, it is False. By this,KB+ |= ¬∃xR(x, c).

2. (The usual way):[[∃xR(x, c)]] is True if there is some individuali in the domain
such that〈i, [[c]]〉 ∈ [[R]]; otherwise, it is False. By this, there might be no ground
term denotingi, andKB+ 6|= ¬∃xR(x, c).

Closed-world assumption with domain closureuses (2), but uses:

KB |=CD α iff KB� |= α, where
KB� = KB+ ∪ {∀x[x = c1 ∨ . . . ∨ cn]}

wherec1, . . . , cn are all the individual constants in KB.

SoKB� |= ¬∃xR(x, c), even using semantics version (2). Moreover,

KB |=CD ∀xα iff KB |=CD α{c/x}, for everyc appearing in KB;
KB |=CD ∃xα iff KB |=CD α{c/x}, for somec appearing in KB;

Notice that the domain closure axiom means that every individual in the domain has an
individual constantthat denotes it. In fact, if the KB includes function symbols, then,
by the domain closure axiom, every functional term is also equal to some individual
constant. This is more restrictive than what I use for semantics, which is just the
assumption that every individual is denoted by some ground term.

The text’s ultimate KB for CWA is KB� with the further addition of theunique
name assumption,that c1 6= c2 for every pair of distinct individual constants,c1 and
c2.

With this version of KB�, KB |=CD α or KB |=CD ¬α for any formula,α.
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Warning: Still, I may need to modify my approach, and KB� may be inconsistent.
Consider KB =P (a)∧ (∀x¬R(x, x))∧ (∃xR(x, a)). This is only consistent if there is
an “unnamed” individual—one other than[[a]].

In fact, one can require an infinite number of individuals with

N(a)∧(∀xB(x, f(x)))∧(∀x, y, z(B(x, y)∧B(y, z)⇒ B(x, z)))∧(∀x, yB(x, y)⇔ ¬B(y, x))

and this would make the domain closure axiom inconsistent. The text says

But these examples are somewhat far-fetched; they look more like for-
mulas that might appear in axiomatizations of set theory than indatabases.
For “normal” applications, domain closure is much less of a problem.
[B&L, p. 215, italics added]

But what about KBs that include∀x[Duck(motherOf(x))⇒ Duck(x)]
or ∀p[Believe(p) ⇒ Believe(Believe(p))]? These require an infinite number of
individuals, and seem useful for commonsense reasoning.
[Modification of my approach: Add constants and function symbols as would be
required when Skolemizing all formulas in the KB.]

3 Circumscription

3.1 Idea 1: Circumscribing Predicates

Can view CWA as minimizing the extension of all predicates. I.e.P (a) is True only
where it has to be; for all other individuals, b,¬P (b).

In circumscription, we minimize (circumscribe) the extension of selected predi-
cates.

3.2 Idea 2: Ab

We can’t say∀x [Bird(x )⇒ Flies(x )], because there are birds that don’t fly for various
reasons: they’re penguins, they’re emus, they’re immature, they’re dead, etc. We could
think of doing

∀x [Bird(x ) ∧ ¬Penguin(x ) ∧ ¬Emu(x ) ∧ ¬Immature(x ) ∧ ¬Dead(x )⇒ Flies(x )]

but whenever we come upon a new exceptional class, we’d have to delete this rule, and
replace it with a more inclusive one. Instead, once and for all state

∀x [Bird(x ) ∧ ¬AbFlies(x )⇒ Flies(x )]

and then for each exceptional case, add

∀xPenguin(x )⇒ AbFlies(x )
∀xEmu(x )⇒ AbFlies(x )
∀xImmature(x )⇒ AbFlies(x )
∀xDead(x )⇒ AbFlies(x )
etc.
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3.3 Together

So say we’ve done that, and have

Bird(chilly), Bird(tweety), (tweety 6= chilly), P engin(chilly)

Can we conclude Flies(tweety)? No! Because can’t infer¬AbFlies(tweety).
So circumscribeAbFlies .

3.4 Minimal Entailment

KB |=≤ α iff every interpretation (situation) that satisfies KB and minimizes the ex-
tension of eachAb predicate also satisfiesα.

Above KB|=≤ Flies(tweety) because every interpretation that satisfies the KB and
minimizesAbFlies also satisfies¬AbFlies(tweety) and therefore also satisfiesFlies(tweety).

3.5 Problems

Sections 11.3.2 and 11.3.3 of the text suggest additional modifications of circumscrip-
tion. Unfortunately, it all ends with “there is a serious limitation in using circumscrip-
tion for default reasoning” [B & L, p. 222].
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4 Default Logic

The general problem we’re considering is that generic statements may have exceptions—
they’re not actually strict universals. The Default Logic approach is to represent strict
universals in the usual Predicate Logic way, but to represent generic statements as a
special kind ofdefault rule.

A default rule is of the formα:β
δ , and may be glossed as “Ifα is true andβ is

consistent, then concludeδ.”
Default rules are not sentences of the object language. That is, a default rule cannot

be a subexpression of another expression. A default rule, instead, is like a rule of
inference of Predicate Logic.

A KB using default logic has two parts

1. A setF of sentences of Predicate Logic.

2. A setD of default rules.

If you view F as a set of beliefs that can increase as reasoning is performed, then
you can add toF any belief that is logically implied (according to the usual rules of
inference) by the beliefs already inF , and in addition, any belief that is justified by any
of the default rules inD. More formally, a set of beliefs implied by a default theory
KB = (F ,D) is anextensionE such that

π ∈ E iff F ∪ {δ | α : β
δ
∈ D, α ∈ E ,¬β 6∈ E} |= π

Example:

F = {Bird(Tweety), P enguin(Chilly),
∀x[Penguin(x)⇒ Bird(x)],∀x[Penguin(x)⇒ ¬Flies(x)]}

D = {Bird(x):Flies(x)
Flies(x) }

Flies(Tweety) may be inferred, but notFlies(Chilly).

Although, in general, in default rules,α:β
δ , β need have no syntactic relation toδ,

the most useful default rules arenormal default rules, whereβ is the same asδ. Normal
default rules also avoid the problematicTrue:p¬p .

What if we allow for flying penguins? Such a default KB might look like:

F = {Bird(Tweety), P enguin(Chilly),∀x[Penguin(x)⇒ Bird(x)]}

D = {Bird(x):Flies(x)
Flies(x) , Penguin(x):¬Flies(x)

¬Flies(x) }

We may conclude that Chilly flies or not, depending on which default rule is used (first).
Thus, we are again in the realm ofmultiple extensions,and can consider credulous
reasonersvs.skeptical reasoners.

We could try to patch the first default rule, and replace it withBird(x):Flies(x)∧¬Penguin(x)
Flies(x)

Now we are back to the problem that circumscription was designed to deal with, so
how aboutBird(x):Flies(x)∧¬AbFlies(x)

Flies(x) and True:¬AbFlies(x)
¬AbFlies(x) ? Would you then add

Penguin(x):AbFlies(x)
AbFlies(x) ?
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5 Autoepistemic Logic

Put default rules into the object language by introducing a modal, or higher-level, op-
eratorB, where the meaning ofBα is “α is believed.” Then the default flying rule
becomes∀x [Bird(x ) ∧ ¬B¬Flies(x )⇒ Flies(x )].

Now a set of beliefs justified by an autoepistemic KB is astable extension,E such
that

π ∈ E iff KB ∪ {Bα | α ∈ E} ∪ {¬Bα | α 6∈ E} |= π

E has three significant properties:

1. Closure under entailment: ifE |= α thenα ∈ E .

2. Positive introspection: ifα ∈ E thenBα ∈ E

3. Negative introspection: ifα 6∈ E then¬Bα ∈ E

Question: Are these cognitively reasonable?

6 Conclusion

B&L conclude, “Getting a logical account of default reasoning that is simple, broadly
applicable, and intuitively correct remains an open problem...it is perhapsthe open
problem in the whole area of knowledge representation.” [p. 232–3]
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