
INFEHENCEWITHRECURSIVERULES 

Stuart C. Shapiro and Donald P. McKay 

Department of Computar Science 
State University of New York at Buffalo 

Amherst, New York 14226 

ABSTRACT 

Recursive rules, such as "Your parents' ances- 
tors are your ancestors", although very useful for 
theorem proving, natural language understanding, 
questions-answe ring and information retrieval 
systems, present problems for many such systems, 
either causing infinite loops or requiring that 
arbitrarily many copies of them be made. We have 
written an inference system that can use recursive 
rules without either of these problems. The solu- 
tion appeared automatically from a technique 
designed to avoid redundant work. A recursive 
rule causes a cycle to be built in an AND/OR graph 
of active processes. Each pass of data through the 
cycle resulting in another answer. Cycling stops 
as soon as either the desired answer is produced, 
no more answers can be produced, or resource 
bounds are exceeded. 

Introduction 

Recursive rules, such as "your parents' ances- 
tors are your ancestors", occur naturally in 
inference systems used for theorem proving, 
question answering, natural language understanding, 
and information retrieval. Transitive relations, 

v(x,y,z) [ANCES'lloR(x,y) & ANCESToR(y,z)-+ 
%%SToR(x,z)], inheritance rules, e.g. ~z(x,y,p) 
[ISA(x,y) & HAs(y,p) -+ HAS(x,p)l, circular defini- 
tions and equivalences are all occurrences of 
recursive rules. Yet, recursive rules present 
problems for system implemantors. Inference 
systems which use a %aive chaining" algorithm can 
go into an infinite loop, like a left-to-right 
top-down parser given a left recursive grammar 
[41. Sme systems will fail to use a recur- 
sive rule more than once, i.e. are incomplete 
[6,121. Other systems build tree-like data 
structures (connection graphs) containing branches 
thelengthofwhichdependonthenlrmberoftimes 
the recursive rule is to be applied [2,131. Since 
scme of these build the structure before using it, 
the correct length of these branches is problematic. 
Son-e systems eliminate recursive rules by deriving 
and adding to the data base all implications of 
the recursive rules in a special pass before normal 
inference is done [91. 

The inference system of SNePS [13] was designed 
ti use rules stored in a fully indexed data base. 
when a question is asked, the system retrieves 
--7-s- 
Theworkwas supported inpartbytheNationa1 
Science Foundation under Grant No. MCS78-02274. 

relevant rules and builds a data structure of 
processes which attempt to derive the answer frcm 
the rules and other information stored in the data 
base. Since we are using a semantic network to 
represent all declarative information available in 
the system, we do not make a distinction between 
"extensional" and "intensional" data bases, i.e. 
non-rules and rules are stored in the same data 
base. More significantly, we do not distinguish 
"base" frm "defined" relations. Specific 
instances of ANCESTOR maybe storedaswell as 
a ruledefining ANCESTOR. This point of view 
contrasts with the basic assurrption of several 
data base question answering systems [3,8,9]. In 
addition, the inference system described here does 
not restrict the left hand side of rules to con- 
tain only one literal which is a derived relation 
[3], does not need to recognize cycles in a graph 
[3,8] and does not require that there be at least 
one exit frm a cycle [8l. 

The structure of processes may be viewed as 
an AND/OR problem reduction graph in which the 
process working on the original question is the 
mot, and rules are problem reduction operators. 
Partly influenced by Kaplan's producer-consumer 
model [53, we designed the system so that if a 
process working on some problem is about to 
create a process for a subproblem, and there is 
another process already working on that subproblem, 
the parentprocess canmake useof the extant 
process and so avoid solving the same problem 
again. The method we employ handles recursive 
rules with no additional mechanism. The structure 
of processes may be viewed as an active connection 
graph, but, as will be seen below, the size of the 
resulting structure need not depend on the number 
of times a recursive rule will be used. 

This paper describes hm our system handles 
recursive rules. Aspects of the system not 
directly relevant to this issue will be abbreviated 
orcmitted. Inparticular,details of thematch 
routine which retrieves formulas unifiable with a 
given formula will not be discussed (but see [lOI). 

The Inference Systeq 

The SNePS inference system builds a graph of 
processes [7,11] to answer a question (derive 
instances of a given formula) based on a data base 
of assertions (ground atomic formulas) and rules 
(non-at&c formulas). Each process has a set of 

151 

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved. 



registers which contain data, and each process may 
send messages to other processes. Since, in this 
system, the messages are all answers to scnte ques- 
tion, we will call a process P2 a boss of a process 
PI if PI sends messages to P2. Sane processes, 
called data collectors, are distinguish& by two 
features: 1) they can have store than one boss: 2) 
they store all massages they have sent to their 
bosses. The stored messages are used for two 
purposes: a) it allows the data collector to avoid 
sending the sama message twice; b) it allows the 
data collector to be given a new boss, which can 
inmediately be brought up to date by being given 
all the messages already sent to the other bosses. 
Four types of processes are important to the 
discussion of recursive rules. They are called 
INFER, CHAIN, SWITCH and FILTER. INFER and CHAIN 
are data collectors, SWITCH and FILTER are not. 

Four Processes 

An INFER process is created to derive 
instances of a formula, Q. It first matches Q 
against the data base to find all formulas 
unifiable with Q. The result of this match is a 
list of triples, <T,-r,W, where T is a retrieved 
formula called the target. and 'c and 0 are sub- 
stitutions called ti?get binding and source 
binding respectively. -- Essentially -c and o are 
factorea versions of the mst general unifier 
(mgu) ofQ and T. Pairs of the rqu whose variables 
are in Q appear in G, while those whose variables 
areinTappearinT. Any variable in term position 
is taken from T. Factoring the q-u obviates the 
need for renaming variables. For example if 
Q=P(x,a,y) and *P(b,y,x), we would have 
o=(b/x,x/y) and T={a/y,x/x) (the pair x/x is 
included to make our algorithms easier to describe). 
Note that Qa = T-r = P(b,a,x), the variables in the 
variable position of the substitution pairs of 0 
are all and only the variables in Q, the variables 
in the variable position of 'c are all and only the 
variables in T, all terms of cr ce from T, and 
the non-variables in T came from Q. 

for 
For each match 
Q, there are two 

<TJ,o> that an INFER finds 
possiblities we shall consider. 

First, T might be an -assertion in the data base. 
In this case, G is an answer (Qcr has been derived). 
If the INFER has already stored 0, it is ignored. 
Otherwise, CT is stored by the INFER and the pair 
<Q,o> is sent to all the INFER's bosses. For CT to 
be a reasonable answer, it is crucial that all its 
vai&les occur in Q. The other case we shall con- 
sider is the one in which T is the consequent of 
some rule of the form Al&...&An1T. (our system 
allcrws other forms of rules, but consideration of 
this one will suffice for explaining how we handle 
recursive rules). In this case, the INFER creates 
two other processes, a SWITCH and a CHAIN to 
derive instances of T-r. The SWITCH is made the 
CHAIN's boss, and the INFER the SWITCH's boss. 
It maybe the case that an already extant CHADJ 
maybeused insteadof anewone. This will be 
discussed below. 

The SWITCH process has a register which is 
set to the source binding, O. The answers it 
receives from the W are substitutions B, 

signifying that TTB has been derived. SW'PK!H 
sends to its boss the application 46. the sub- , 
stitution derived from o by replacing each term 
t in o by tB. The effect of the SWITCH is to 
change the answer from the context of the vari- 
ables of T to the context of the variables of Q. 
1n0u.r example, themmightsendthe answer 
B=k/xl. SWITCH would then send a\B = {b/x,x/y}\ 
{c/xl= (b/x,c/y) to the INFER, indicating that 
Q~\B = P(x,a,y)(b/x,c/y) = P(b,a,c) has been 
derived. The importance of the factoring of the 
mguof Q andT into the sourcebinding 0 and the 
targetbinding T - a separation which the SWITCH 
repairs -- is thattheCHAIN canwork onT in the 
context of its original variables and report to 
many bosses, each through its own SWITCH. 

A CHAIN process is created to use a particu- 
lar substitution instance, T, of a particular 
formula, Al&... GAk1T to deduce instances of T-r. 
Its answers, which will be sent to a SWITCH, will 
be substitutions B such that T-rB has been deduced 
using the rule. For each Ai, ISilk, the CHAIN 
tries to discover if ANT is deducible by creating 
an INF'ER process for it. However, an INFER process 
might already be working on Aia. If ~.=TT, the 
already extant INFER is just what the CHAIN wants. 
It takes all the data the INFER has already 
collected, and adds itself to the INFER's bosses 
so that itwill also get future answers. If a 
is more general than -r, the INFER will produce all 
the data the CHAIN wants, but unwanted data as 
well. In this case the CHAIN creates a FILTER 
process to standbetween it and the INFER. The 
FILTER stores a substitution consisting of those 
pairs of T for which the term is a constant, and 
when it receives an answer substitution from the 
INFER, it passes it along to its CHAIN only if 
the stored substitution is a subset of the answer. 
For example, if T were (a/x,y/z,b/w} and a were 
(u/x ,v/z ,v/wl , a FILTER would be created with a 
sutstitution of {a/x,b/w), insuring that unwanted 
answers such as (c/x,d/z,b/w) produced by the more 
general INFER were filtered out. If a is not 
compatible with T, or is less general than T, a 
new INFER must be created. However, if a is less 
general than T, the old INFER might already have 
collected answers that the new one can use. These 
are takenby the new DJFERand senttoits bosses. 
Also, since thenew INFERwillprcduce all the 
additional answers that the old one would (plus 
others), the old INFER is eliminated and its 
bosses given to the new INFER with intervening 
FILTEXs. The net result is that the same 
structure of processes is created regardless of 
whether the mre general or less general question 
was asked first. 

A CHAIN receives answers from INFERS (possibly 
filtered) in the form of pairs <Ai,Bi> indicating 
that AiPi, an instanceof the antec&entAi,has 
beendeduced. Whenever the CHAIN collects a set 
of consistent substitutions (Bi,...,Bn), one for 
each antecedent, it sends an answar to its bosses 
consisting of the ccgnbination of Bl,...,Bk (where 
the ambination of 61 = ~tll/vll,...,tln,/vlnlI 
,...,Bk = ctkl/vkl ,...,tknk/vknkl is the mgu of 
the expressions (vll,...,vlnl,...,vkl,...,vknk) and 
(tll ,. . . ,tlnl,. . . ,tkl ,...,tknk) [l, p.1871). 

152 



Recursive Rules Cause Cycles 

Just as a CHAIN can make use of already exist- 
ing INFERS, an INFER can r&e use of already 
existing ms, filtered if necessary. A 
recursive rule is a chain of the form 
Al&... &Ak~Bl,Bl&...&Bn~...X, with C unifiable 
with at least one of the antecedents, Al say. 
When an INFER operates on Al, it will find that C 
matches Al, and it may find that it can use the 
CHAIN already created for C. Since this CHAIN is 
in fact the INFER's boss, this will result in a 
cycle of processes. The cycle will produce more 
answers as new data is passed around the cycle, 
but no infinite loop will be created since no data 
collector sends any answernore thanonce. (If an 
infinite set of Skolem constants is generated, the 
process will still terminate if the root goal had 
a finite number of desired answers specified [ll, 
p.1941). 

Figure 1 shows a structure of processes which 
we consider an active connection graph. It is 
built to derive instances of ANCESToR(William,w) 
form the rules vCrx,y) [PARENT(x,y)~ANCESToR(x,y) 1 
and V‘(x,y,z) [ANcESToR(x,y) & PAREMT(y,z)x 
ANCESToR(x,z)]. The notation for the rule 
instances is similar to thatpresented in [31. 
Note particularly the SWITCH in the cycle which 
allows newly derived instances of the goal 
ANCESToR(William,w) to be treated as additional 
instances of the antecedent ANCESToR(William,y). 
A similar structure would be built regardless of 
the order of asserting the two rules, the order 
of anteaedents inthetwoantecedentrule, the 
order of execution of the processes, whether the 
query had zero, either one, or both variables 
ground, or if the twoanteceiientruleused 
ANCESTOR for both antecedents. 

In the SNePS inference system, recursive 
rules cause cycles to be built in a graph structure 
of processes. The key features of the inference 
system which allow recursive rules to be handled 
are: I) the processes that produce derivations 
(INFER and CHAIN) are data collectors: 2) data 
collectors never send the same answer nore than 
once: 3) a data collector may report to mre than 
one boss: 4) a new boss may be assigned to a data 
collector at any time -- it will miately be 
given all previously collected data; 5) variable 
contexts are localized, SWITCH changing contexts 
dynamically as data flows around the graph: 6) 
FILTERs allow more general producers to be used 
by less general consumers. 

1. chang, C.-L., and Lee, R.C.-T., Symbolic Logic 
and Mechanical Theorem Proving, Acadtic Press, 
New York, 1973. 
2. chang, C.-L., and Slagle, J.R., Using rewriting 
rules for connection graphs to prove theorems, 
Artificial Intelligence 12, 2 (August 1979), 
159-180. 
3. chang, C.-L., On evaluation of queries contain- 
ing derived relations in a relational data base. 

In normal Bases for Data Bases, Gallaire, H., 
Minker, J. and Nicolas, J. (edS.), Plenum, New 
York, i980. 
4. Fikes, R.E., and Hendrix G.G., The deduction 
component. In Understanding Spoken Language, 
Walker, D.E., ed., Elsevier North-Holland, 1978, 
355-374. 
5. Kaplan, R.M., A multi-processing approach to 
natural language understanding. Proc. National 
Computer Conference, AFIPS Press, Montvale, NJ, 
1973, 435-440. 
6. Klahr, P., Planning techniques for rule selec- 
tion in deductive question-answering. In Pattem- 
Directed Inference Systems, Waterman, D.A., and 
Hayes-Roth, R., eds., Academic Press, New York, 
1978, 223-239. 
7. McKay, D.P. and Shapiro, S.C., MULTI--A LISP 
based muitiprocessing system. Proc. 1980 LISP 
Conference. Stanford Universitv. 1980. 
8. Naqvi,'S.A., and Henschen,-L.J., Performing 
inferences over recursive data bases. Proc. 
First AAAI Conference, Stanford Univers- 1980. 
9. Reiter, R., On structuring a first order data 
base, Proc. SecondNational Conference, Canadian 
Society for Computational Studies of Intelligence, 
1978, 50-99. - 
10. Shapiro, S.C., Representing andlocatingde- 
duction rules in a semantic network. Proc. Work- 
shop on Pattern-Directed Inference Systexns. In 
SIGART Newsletter, 63 (June 1977), 14-18. 
11. Shapiro, S.C., The SNePS sepnanticneixork 
processing system. In Associative Networks: The 
Representation and Use of Kncwledse bv Camrsuters. 
F&dler, N.V., ed., Acadenic Press, NW York, 1979, 
179-203. 
12. Shortliffe, E-H., Computer Based Medical Con- 
sultations: MYCIN, &rerican Elsevier, New York, 
1976. 
13. Sickel, S., A search technique for clause 
interconnectivity graphs, IEEE Transactions on 
Computers Vol. C-25, 8 (August 1976) I 823-835. 

ANCZSMR(William,z) 

PARETJT(William,y) AN(TlZSMR(William, y) 

Figure 1. 

153 


