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Device Representation and Graphics Interfaces of VMES 
J. Geller, M.R. Taie, S.C. Shapiro, S.N. Srihari 
Department of Computer Science, State University of New York at Buffalo, 
Buffalo, NY 14260, U.S.A. 

ABSTRACT 
The VMES project aims to create a device-model-based versatile maintenance 
expert system which assists the user in isolating specific faulty components or 
connections in a malfunctioning digital circuit. We describe a device representa­ 
tion formalism that supports the diagnostic reasoning of VMES and eases its 
adaptation to new devices. The salient feature of this scheme is the inclusion of 
both logical and physical structural descriptions of the target device. The two 
representations enable VMES to make efficient diagnostic judgements and to 
interact effectively with the user in performing repair and test. The user inter­ 
face of VMES is treated as a separate area of scientific investigation. We describe 
the design and implementation of three interfaces, viz., a graphics display inter­ 
face, a graphics input interface, and a natural language input interface. The use 
of knowledge based interface technology has proven a rewarding area of research 
from the theoretical as well as the applied perspective. 

INTRODUCTION 

VMES is a device-model-based versatile maintenance expert system for the 
domain of digital circuits [7). The objective of V!vlES is to interact with a 
maintenance technician (the user) to identify the specific faulty component or 
connection of a malfunctioning circuit. The versatility of VMES is multifold: 
across a wide range of devices, covering most possible faults, suitable for different 
maintenance levels, and providing an intelligent user interface. VMES uses a 
device-model-based approach since it is more general than the traditional 
empirical-rule-based approach [ 1, 2, 7). · 

VMES consists of live modules: the knowledge-base; the inference engine; 
the active database; the end-user interface; and the intermediate-user interface 
(Fig. 1). The knowledge base rs implemented as an expandable component library 
which 'contains component descriptions. The inference engine has the generic 
diagnosis knowledge of the domain, and uses the SNIP semantic network infer­ 
ence package of SNePS, the semantic network processing system, as its basis [5, 3). 
An active database is created and updated throughout each diagnostic session to 
keep the instantiated objects and their associated diagnostic states and values. 
The end-user interface interfaces the maintenance technicians when carrying out 
a diagnostic session. The intermediate-user interface interfaces the engineers or 
senior technicians to update the knowledge-base for new devices. All these five 
modules are implemented on top of SNePS. · 

As knowledge engineering is to empirical-rule-based systems, device 
modeling/representation is the key to the success of a device-model-based fault 
diagnosis system, since knowledge about the structure and function of a device is 
the major knowledge source of reasoning in such a system. Consequently, our 
efforts are focused on the development of a device representation formalism for 
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versatile maintenance. All knowledge, whether of structural, functional, or 
graphical, is in a unified knowledge base (Fig. 2), which is easily expandable and 
is referred as a "component library". 

Engineer Technician 

BuJld1u Interfaces 
Graphics 
Natural Language 
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Natural Language 
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Component Library: 

Instantiation Rules 
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Figure 1 Architecture of VMES. 
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Figure 2 A unified knowledge representation using SNePS. 
(a) The SNePS network representing "01 is an 
M3A2, 01-M1 is a MUL Tiplier, and 01-M1 is a 
subpart of 01 ". (b) Adding graphical knowledge 
without changing the original representation in (a). 
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User interaction is an important issue of the VMES project in two aspects: 
VMES has. to communicate with the maintenance technician for test and repair, 
and it has to provide an engineer or a senior technician facilities for adapting it 
to other devices by adding their descriptions to the component library. In the 
next section, the VMES device representation scheme is described with the 
emphasis on device representation which facilitates a better user interaction. Sec­ 
tion 3 discusses the knowledge-based graphics package of VMES, which main­ 
tains and reasons on "graphical deep knowledge" when interacting with the user. 
Section 4 is the conclusion. 

DEVICE REPRESENTATION 

ln VMES, a device is modeled as hierarchically arranged modules. While this is 
hardly a new idea, the innovative part of our work includes: the use of an 
expandable component library; a clear distinction between two levels of abstrac­ 
tion of an object; representing a component "type" as an instantiation rule and a 
structural template; an explicit representation of wires and points of contact 
(POCONs); and the incorporation of logical and physical structure of devices for 
both diagnostic reasoning and user interaction. 

General Representation Scheme 
Devices in the digital circuit domain share many common component types. 
Representing every detail of a device causes much representation overhead, which 
in turn leads to system inefficiency. Instead of coding each device, we only 
describe the component types used by the device to the component library. Parts 
of a device are instantiated as needed. Adapting VMES to a new device is an 
easy task - just adding to the component library those component types used by 
the new device and not already in the component library. Since the representa­ 
tion scheme is still being experimented with, we currently have only about 
twenty different component types in the component library. 

A component type is abstracted at two levels. At Ievel-I, it is a module 
(black box) with J/0 ports and a functional description. At level-2, its subparts 
and connections are described. In a previous implementation, these two levels 
were represented as t wu instantiation rules [7). Since, usually, only a few sub­ 
parts of an object are relevant to further diagnostic investigation, instantiating 
all subparts is inefficient. As an improvement, the two levels are now 
represented as an instantiation rule and a structural template [10]. An instantia­ 
tion rule instantiates an object with its ports and functional associations. A 
structural template is a piece of passive knowledge, which allows VMES to 
search the suspicious subparts of an object. Unlike other procedural representa­ 
tions of the level-2 abstraction [ 1, 7], the structural tern plate itself is never fired 
or copied. Since the investigation of a suspect is often terminated without check­ 
ing its subparts, the clear distinction of the two levels of abstraction along with 
their separate representation has advantages on diagnosis and representation 
efficiencies. 

Explicit representation of wires and POCONs is necessary for diagnosing 
faults of circuit connections [11]. The traditional model of a wire as a uni­ 
directional module is inappropriate, because it ignores its bi-directional nature, 
and it does not include POCONs. In VMES, a wire is modeled as a bi-directional 
module to preserve its physical property, and its uni-directional design intention 
is retained by the connection mechanism. Components are connected either by 
forming a POCON from two different ports or by superimposing two ports, 
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which are a same port abstracted at two different hierarchical levels, together. 
With this new model, VMES is able to locate interrupted wires and bad contact 
points. 

Adding Physical Representation 
Human diagnosticians of electronic devices seem to simultaneously maintain 
models of the logical and physical structures of the target device. They carry out 
most of the diagnostic reasoning over the logical structure of the device due to its 
functional association. While carrying out the reasoning, the logical structure is 
apparently mapped to the physical structure from time to time. Tests and meas­ 
urements are first initialized using the logical structure, and then are realized and 
executed on the physical structure. Repair, which is usually done by replacing a 
physical unit or by fixing a physical connection, is planned and done on the phy­ 
sical structure. In other words, maintenance technicians use a model of physical 
structure of the target device, which is a hierarchically arranged set of replace­ 
able physical components at various maintenance levels such as field-level and 
depot-level. By mapping the logical structure of the device to its physical 
equivalent, maintenance technicians are able to terminate the diagnostic process 
at the right moment and to form an adequate repair plan. 

Given that the mapping between the logical structure of the device and its 
physical equivalent happens throughout the diagnostic process at all hierarchical 
levels, the speed in carrying out the mapping is critical to the time needed to 
locate faults. This implies that objects on both the logical structure and the phy­ 
sical structure of the device should be closely linked to each other so that the 
mapping is done efficiently. Even experienced technicians may have difficulty in 
locating a point of a schematic diagram on the real device, where the schematic 
diagram represents the logical structure of the device, and the form of the real 
device is the physical structure; which is attributable to the large difference 
between the logical and the physical structures and a lack of cross-links at all 
hierarchical levels of the device in human memory. On the other hand, when 
modeling and representing a device in an automatic fault diagnosis system, the 
cross-links between its logical structure and physical structure can be modeled 
and represented to an appropriate level of detail. This is indeed possible to do in 
a computer with reasonably sized mernorv. 

In VMES, the physical structure or a device is represented distinctly from 
but in a similar way as its logical structure. In a structural template for a logi­ 
cal component type, even· subpart of the component type is specified with a sub­ 
part "id" and a subpart "rvpe", which are used to instantiate the subpart if it is 
found to be a suspect and further investigation of it is necessary. In addition to 
the subpart "id" and "type", an "mntn-Iv" indicator is also associated with every 
subpart of a physical component type. The "rnntn-Iv" indicator shows the 
intended maintenance level of the subpart, i.e., the maintenance level where the 
subpart, if found faulty, is replaced without further diagnosis. The "rnntn-Iv" 
indicator is associated with the physical structure rather than the logical struc­ 
ture of a device to reflect the fact that human experts form and carry out a 
repair plan based on a physical model rather than a logical model of the device. 

In order to abstract a device into a model, which can be efficiently 
represented and interpreted, some abstraction restrictions have to be made. First, 
the hierarchical trees abstracted from the two perspectives should have the same 
number of hierarchical levels. Second, the cross-links can only be made at the 
same hierarchical level. Third, several logical objects on the logical structure can 
correspond to the same physical object on the physical tree, but a logical object 
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can not spread over several physical objects. This restriction seems unreasonable 
at first, but a closer investigation of the electronic domain shows the contrary - 
physical objects in the domain usually have larger grain size than logical objects. 
This is especially true with modern technology as more and more logical func­ 
tioning units are being packed into a physical unit, e.g., a simple Hexlnverter chip 
(a physical object) contains six independent inverters (logical objects). 

~links between R@resentations 
The two representations of the logical and the physical structures of a device are 
cross-linked at every hierarchical levels. There are two kinds of cross-links 
between the logical structure and the physical structure of a device. The first 
kind are cross-links for components. The second kind are cross-links for ports. 
Cross-links for components are implemented by the "object<logical.obj>I 
inside<physical.obj>" semantic network case-frame (Fig. 3(a)). No distinction is 
necessary as to whether the physical object contains a single logical object or 
several logical objects. This is because we just care about whether the 
corresponding physical object of a faulty logical object is at the intended mainte­ 
nance level and should be replaced, or it is not and the diagnostic process should 
continue; this is independent of whether the physical objects contains anything 
else. (Actually, a physical object in the electronic domain is often replaced with 
most of its parts being intact.) · · 

. ~ . objo~s;,O ~ . 
· modality type obJe~ ~ject type modality 

@®~ ~~e 
(a) 

. _e__ . gobJect equiv~ 

... J:L bit lo-bit .. 
type signal id port-of <;ff" ~ ~ ~ 0 ~ type id port-of · ~bit 

type bit-width S 0 9 ">;<( 
~ >-_ type Jd port-of 

~ ~ _L..__ A >-- 
(bl ~ \.:,I ~ 

Figure 3 Representation of cross-links between the logical 
and the physical structures of a device. 
(a) Component cross-links. (b) Port cross-links. 

While the cross-links of components helps in determining if the diagnostic 
process should go on or terminate, and in forming a repair plan, the cross-links of 
ports makes user interaction much easier - when ordering a test or a measure­ 
ment, it can be used to clearly direct the user to the right location on the real 
device. It is implemented by the "object<logical.port >lequiv<physkal.porl >" 
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semantic network case-frame (Fig. 3(b)). The advantage of a logical abstraction 
of the device is that it provides a high level view of the device which facilitates 
the diagnostic reasoning. For instance, a n-bit wire is abstracted as a single logi­ 
cal wire, thus freeing the technician (or a fault diagnosis system) from thinking 
about bit slices. However, when a measurement is required, it is necessary to 
locate all the bit-ports on the real device, and this is often a difficult task since 
these bit-ports may spread out randomly. In our representation (Fig. 3(b)), these 
bit-ports (physical ports) are linked together, from high-order bit to low-order 
bit, by the recurrent case-frame of "on ca.physical.port v/ 
lo.bit<the.remaininglower.bits > ". 

Physical Representation at Work 
In the rest of this section. we describe how VMES uses this device representation 
to facilitate fault diagnosis and user interaction. When bad outputs are found in 
the suspect currently being investigated, the system has to determine if the diag· 
nosis should terminate or not. Most fault diagnosis systems use the simple idea 
of SRL' (smallest replaceable unit) which says that the diagnostic process stops 
when the current suspect is a SRU, i.e., a terminal node (a leaf) of the structural 
hierarchical tree of the device [I, 2]. VMES takes a more flexible approach by 
incorporanng the idea of "intended maintenance level" into the system. A sys· 
tern parameter, VMES.L'v1L, is set to the "intended maintenance level" the system 
is working on. If a part shows some bad outputs and it is at the intended mainte­ 
nance level, it is declared faulty and the diagnosis on it is terminated. For exam" 
pie, a board is replaced at field and then sent back to a depot where the fault is 
further isolated to a chip. The checking for the maintenance level of a part is 
done on the corresponding physical object of the part (a logical object), and a 
repair plan is formed based on the component type of the physical object. VMES 
also provides an opportunity for the user to short-cut the diagnosis by noticing 
that all remaining (logical) suspects are in a single replaceable physical unit at 
VMES.IML. Since the same physical object gets replaced no matter which logical 
suspect is faulty, further discr imi na t ron among the suspects are unnecessary pro· 
vided that connections are assumed to he intact. 

The major interaction between \ 'v11:s and the user is the input of port 
values. Since diagnostic reasoning is earned out on the logical model of the dev­ 
ice, VMES always wants the value ot " lugical port. Through the cross-links 
between logical and the physical structures, VMES is able to inform the user 
which "physical ports" should be measured for a logical port. Note that in digital 
circuits, a logical port may corresponding to several randomly spread-out physi­ 
cal ports (or pins of chips). Two examples of how the physical representation of 
a device helps the user in executing a port value measurement are shown in Fig. 
4. The port to be measured in Fig. 4(a l is a port of a common component (non­ 
wire component): and the one in Fig. 4(h) is u bi-directional port (a wire-end) of 
a wire. For representation and display efficiencies, wires are excluded from the 
physical representation of a device; this cJoes not hurt the user interaction since 
the wire-end of a wire can always be identified as the wire-end connected to a 
port of a common component in the physical representation as shown in Fig. 4(b). 
Note that two kinds of values a user can type in: decimal and binary, where the 
binary numbers are prefixed by the letters "13" or "b", The user interaction 
shown in Fig. 4 is through pure text in SNePSliL (SNePS User Language) format, 
it can be improved by implementing it in natural language and graphics [8]. 
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what's the value of port 
(m316 (signal (m152 (bit-width (4)) (type (D)))) 

(id (inp2)) (port-of (D1-A2)) (type (I-PORT))) 
Equivalent Physical Port from Hi-bit to Lo-bit: 
(m398 (id (2)) (type (P-PORT)) (port-of (D1-U2))) 
(m399 (id (4)) (type (P-PORT)) (port-of (D1-U2))) 
(m400 (id (6)) (type (P-PORT)) (port-of (D1-U2))) 
(m401 (id (8)) (type (P-PORT)) (port-of (D1-U2))) 

• [value]/nil? 80110 
(a) 

what's the value of port 
(m291 (signal (m35 (bit-width (2)) (type (D)))) 

(id (1 )) (port-of (D1 -W2)) (type (B-POAT))) 
Equivalent Physical Port from Hi-bit to Lo-bit: 
The WIRE-EN Os connected to 
(m427 (id (6)) (type (P-PORT)) (port-of (D1 ))) 
(m428 (id (7)) (type (P-PORT)) (port-of (D1 ))) 

• [value]/nil? 2 
(b) 

Figure 4 Asking a port value measurement. (a) 
On a common component. (b) On a wire. 

»»> IGOTTHEF.AJJLTYPARTSAS »»> 
(01-M2) 
$$ Repair Order: replace 01 -U3 (type:MCOO) 
done 

(a) 

»»> IGOTTHEF.AJJLTYPARTSAS >»» 
(D1-W1) . 
$$ Repair Order: fix the wire connecting 
(m420 (id (4)) (type (P-PORT)) (port-of (D1))) 
(m389 (id (8)) (type (P-PORT)) (port-of (D1-U3))) 
(m429 (id \4)) (type (P-PORT)) (port-of (D1-U3))) 
$ and a so the wire connecting 
(m419 (id (3)) (type (P-PORT)) (port-of (D1))) 
(m388 (id (10)) (type (P-PORT)) (port-of (D1-U3))) 
(m428 (id (2)) (type (P-PORT)) (port-of (D1-U3))) 
done 

(b) 

»»> IGOTTHEF/.J.JLTYPARTSAS >»» 
(m324 (contact (m322 (signal (m35 (bit-width (2)) (type (0)))) 

. (id (3)) (port-of (01-W1 )) (type (8-POAT))) 
(m323 (signal (m35 (bit-width (2)) (type (0)))) 

(id (inp1 )) (port-of (D1-M2)) (type (I-PORT))))) 
$$ Repair Order: fix the contact point at 
(m388 (id (10)) (type (P-PORT)) (port-of (D1-U3))) 
done 

Figure 5 
(c) 

Repair suggestion made by VMES. (a) On a corn­ 
mon component. (b) On a wire. (c) On a POCON. 
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The third use of the physical representation of a device is in repair sugges­ 
tions. When a faulty object is found or at the end of the diagnosis session, VMES 
suggests a repair plan to the user according to the type of the faulty object (Fig. 
5). If the faulty object is a common component, VMES just suggests that the user 
replace its corresponding physical part. If it is a wire, the corresponding physical 
wires are identified for repair. Note that a logical wire may correspond to several 
physical wires, for example, a 4-bit logical wire is realized by four wires on a 
printed circuit board; only the physical wires which are responsible for the fault 
are identified for repair. This is done by decomposing the port value of a logical 
wire into bit slices to determine which bit(s) are giving incorrect values. 
Finally, if the faulty object is a POCO~ (point of contact (11]), that is, it is a bad 
contact point, the user is directed to the location of the contact point. The physi­ 
cal representation is not only used to form the repair plan, it also helps direct the 
user to the object or the location on the real device where. the repair is actually 
performed. In other words. it provides for better user interaction in both test and 
repair. 

THE INTELLIGENT USER INTERFACE 

General Remarks 
As described in [7] VMES contains a knowledge based graphics package which is 
used as part of the VMES user interface. The purpose of this part of the VMES 
project is to investigate new designs for user interfaces, and to investigate what 
we have called "Graphical Deep Knowledge". We consider a knowledge represen­ 
tation system to be dealing with Graphical Deep Knowledge (as opposed to graph­ 
ical knowledge), if the knowledge is organized in a way that makes it accessible 
not only to display routines, but also supports some form of graphical reasoning 
with this. knowledge. 

Naturally, a procedural knowledge paradigm is not acceptable for Graphical 
Deep Knowledge." While many graphics systems eliminate all information not 
essential to the purpose of display, our system contains prima-facie "redundant" 
information that is not immediately necessary for display purposes. However, 
we have found good reason to maintain this additional knowledge and have at 
least four reasons why additional knowledge adds to the power of a representa­ 
tional system. 
(1) It is helpful for a system to know what is currently visible on the 

screen. A graphical representation looses much of its power if the user 
cannot refer to the objects shown by that representation. One can con­ 
vince oneself easilv of the importance of this notion by looking at virtu­ 
ally any system of graphical representation (including the diagrams in 
this paper). The given figures are always referred to by some text and 
derive their explanatory power from this interaction with the text. 
However, this requires that the system think in the same relations as the 
user and maintain the same conceptual units as he does. 

(2) Declarative representations are required for any logic based reasoning. 
This factor has been the prime motivation for the representational tools 
developed here. An example of a simple reasoning operation would be a 
situation where the position of one object 01 is known, and it is also 
known that this object has an indeterminate spatial relation to another 
object 02, like e. g. leftness. Any person could immediately derive from 
these facts that the object 02 must therefore be somewhere to the right of 
01, and any system that could not follow this step of reasoning would be 
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considered by a user as not intelligent. Reasoning in the domain of 
graphics is especially interesting, because not only traditional forms of 
logic based reasoning have to be investigated, but also analog reasoning is 
of interest. 

(3) Modern software engineering has made the concept of modularization 
mandatory, and Very often production programmers divide a program 
into modules, such that the user interface is one module, and the host 
program that performs the services the user is really interested in is 
another module. This leads to the existence of an interface between host 
program and user interface which, according to methods of good program 
design, has to be kept well defined and small. The result of this modular­ 
ization is that the important concepts of the host program are not avail­ 
able to the user interface, and vice versa. Therefore a user can only refer 
to units the system designer decided explicitly to export from the host 
program. Knowledge based programming permits the sharing of informa­ 
tion between different modules without creating a bottle-neck between 
them, and without having dangerous global information available to 
several modules. The reason why a knowledge base is not anywhere 
near as dangerous as the sharing of global variables is that knowledge 
bases are dealing with facts that are considered generally true, and if a 
fact is true there is no reason to keep it private to a single module, and 
little danger of conflicting definition or access. This last statement is espe­ 
cially true for rule-based systems. A rule expressing that A is left of B if 
and only if B is right of A is a universal truth that can be made avail­ 
able to any module in any system. 

(4) If a knowledge based system supplies tools for natural language interac­ 
tion a knowledge base containing Graphical Deep Knowledge becomes in 
an interesting sense an interlingua, namely an interlingua between the 
visual and the linguistic faculties of the system. Given that most 
knowledge based systems have been created with some consideration of 
natural language processing this observation should be of general interest 
to KH research. Specifically .the SNePS system has a number of tools for 
naturul language processing which permit the implied interactions. 

Some other comments on the use .of knowledge based methodologies in user 
interface design can be found in [4] and [9]. 

T_he TINA Graphics Interface to VMES 
Three user interfaces have been developed for the VMES system which are in 
different states of completion and integration with the maintenance reasoning 
program. The first interface is the "TINA" program for knowledge based image 
generation. This program maps a declarative knowledge structure into a 
diagrammatic representation on a visual display device. This module exists in 
two versions with different focus, one of which has been used in the past bv the 
maintenance reasoner to inform the user about the current state of the diagnosis 
process. Details or this representation have been reported elsewhere [7], but it 
should be pointed out that symbol colors are an important aspect of this represen­ 
tationul facility. 

It is relevant to the discussion of TINA that an important mode of display 
for which the theoretical ground work has been layed in this project, called the 
InteJJigent Machine Drafting mode, has been developed. Traditional CAD sys­ 
tems for circuit boards are usually concerned with the maintenance of graphical 
representations of· wire plans that show a physical picture of the device. In 
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contrast, technicians usually look (also) at logical wire plans: Logical wire plans 
are interestingly different from physical ones in that no absolute positions for 
components need to be maintained, only certain connectivity relations. 

Nevertheless it is possible to ·draw the same wire plan in two· different 
ways such that one of them brings across the idea of the representation, and the 
other one doesn't. It is the goal of TINA in IMD mode to create a logical diagram 
that is "easy to read", by laying it out and routing it not according to principles 
of CAD like minimization of energy consumption, but according to principles of 
minimal cognitive complexity. The most important such principle that has been 
used is the equal distribution of structure in the given space. 

It goes without saying that a knowledge base for use with !MD mode does 
not contain any knowledge of coordinates, and that the major effort in the pro­ 
cess of display is the reconstruction of this know ledge from hierarchy and con­ 
nectivity information. The abilities of the !MD module in use are limited to a 
small device class that we refer to as A*\1* and which has been modeled around 
the "Adder-Multiplier" (Fig. 6), a device famous in the maintenance literature. 
A*M* permits small variations of the Adder-Multiplier, for instance variations in 
the number of ports per components, in the number of components per row, in 
the number of processing rows, and in the number of- connections per port. A 
formal description of the device class has to be omitted due to limitations of 
space. 

in1~ 

in2 

A2~bout2 

A1~ out1 

in3~ 
w2 

Figure 6 A 3-multiplier/2-adder board. 

The Readform Interface for Object Creation 
The second interface is the "Readf orm" program which is used for the creation of 
visual icons in a format that is accessible to the knowledge representation system. 
This avoids the necessity of hand generation of graphics code. The compilation of 
a larger pictorial unit is done by asserting information about objects in the net­ 
work, such that in the process of drawing access is made to the icons created by 
Readforrn. A knowledge based version of Readform has been in the process of 
development for some time, however as of this writing only the theory of this 
system will be claimed. 

By observing users in the process of object creation (with Vanilla flavored 
Readform) it has become obvious that the internal conceptual structures of the 
person can to a certain degree be derived from the order of his actions as well as 
by asking a few questions at strategic points. Readform supplies the user with .a 
scratch buffer which is separate from the object created at the current moment. 
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Users have been observed to create objects by drawing a simple unit in the 
scratch buffer and then repeatedly yanking the buffer content into the picture. 

From this chain of actions one can derive that all the yanked objects are 
presumably members of a certain class, and the system can verify this by asking 

· the user whether there is in fact such a class, arid if so, how to name it. This 
information can be used to create exactly the Graphical Deep Knowledge Struc­ 
tures that have been mentioned before as being used for picture generation. 

The other thing that can be derived from the above chain of user interac­ 
tions is that all the yanked icons are presumably parts of a larger object which 
consists of all the iconic primitives (lines, arcs, etc.) which were not created by 
using the scratch buffer. This permits a system to ask the user whether he 
wishes to name this larger object separately, and if he desires so, a part relation 
between the yanked parts and the main structure can be formulated and stored 
in the knowledge base as a proposition. This proposition becomes part of the part 
hierarchy in the knowledge base. Part hierarchies are a backbone of many 
representational systems and are used in the process of maintenance reasoning as 
well as having major importance in the derivation of pictures from Graphical 
Deep Knowledge and in controling complexity of displayable pictures. 

The third user interface that we will treat in this paper is the natural 
language interface. 

The Natural Language Interface 
· A versatile maintenance system is in need of a user interface in two different 
situations. In the first situation a maintenance technician uses the system to get 
help in troubleshooting a currently Iuu ltv device. The second situation is as 
important, namely the initial creation of the device representation. In order to 
deserve the title "versatile" it must be possible to create device representations 
with ease and flexibility. The natural language interface that will be described 
here belongs to the second class of interfaces. It is the goal of this interface io 
create an internal device representation to the point where it is possible to 
display the whole device. However, as much of this creation as possible should 
be done with natural language. 

As has been pointed out in the section on Intelligent Machine Drafting, 
there is no necessity to actually enter coordinate information, so the natural 
language descriptions become quite natural. Natural language processing is done 
by way of an ATN interpreter/compiler that is part of the SNePS environment 
[6]. The class of objects that can be built by natural language is limited, even in 
comparison to the already limited class A*M* of displayable devices. The major 
additional limitation that is imposed by the language interface is the branching 
Factor of electrical connections. It is possible to create wires impinging on at 
most three port. 

llelow, the original set of sentences that is understood by the NL interface 
and that describes the Adder-Multiplier will be presented. Running this set of 
sentences through the ATN interpreter will create all the structures necessary to 
describe the Adder-Multiplier completely for display purposes. 

(nl) 
Dl is a board 
D1Ml is a multiplier 
D1M2 is a multiplier 
Dl M3 is a multiplier 
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Dl Al is an adder 
D1A2 is an adder 
Dl has 3 inports 
Dl has 2 outports 
D1Ml has 2 inports 
D1Ml has l outport 
D1M2 has 2 inports 
Dl M2 has l ou tport 
Dl M3 has 2 in ports 
D1 M3 has 1 ou tport 
DJ A 1 has 2 in ports 
DlAl has 1 out port 
D1A2 has 2 inports 
D1A2 has J out port 
connect input l of Dl with input 1 of DlMl and input J of D1M2 
connect input 2 of DJ with input 2 of DL\11 and input 1 of DJ\13 
connect input 3 of DJ with input 2 of Dllv12 and input 2 of l)J\13 
connect output 1 of DJ Ml with input 1 of DlAJ 
connect output l of Dl\12 with input 2 of DJAJ and input 1 of D1A2 
connect output l of DlM3 with input 2 of D1A2 
connect output 1 of DlAJ with output J of DJ 
connect output l of D1A2 with output 2 of DJ 
DlMl, D1M2, D1M3, DlAJ, and DlA2 are parts of DJ 
wires are parts of Dl 
the form of a board is xboard2 
the form of a multiplier is xmult2 
the form of an adder is xadd2 
the form of a PORT is xport 
'end 

The first (nl) above calls the natural language processor from the SNePS environ­ 
ment, while the 'end at the end returns to the SNePS environment. Although 
the vocabu larv of this interface. is quite limited there are variations of the sen­ 
tences shown above possible. 

Of special interest are the final sentences that start with "the form" because 
these sentences call, if necessary, the before mentioned Readform interface from 
inside the A TN interpreter and not only assert the relations between object class 
and form, hut also create any unknown form-icons by having the user draw this 
icon. If the form is already known to the system, then only the assertional com­ 
ponent of this operation will be executed. 

Figure 7 A low-end member of M*A*. 
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This last operation involves the call of Readform from the ATN interpreter 
which itself runs embedded in SNePS which itself runs on top of Franz LISP. 
While display operations are extremely slow (hours on a VAX 11/750 for non­ 
trivial layout tasks), the natural language interface works reasonably fast 
(response times under a minute) considering especially the multiple layering of 
the used systems. 

A device consisting of a single multiplier with two inputs and one output 
and the three wires needed to connect the multiplier to the three device ports, 
plus the six biports of the wires themselves are laid out in about 20 minutes (Fig. 
7). This device has also been created completely by natural language interactions 
and it represents a low end member of the A*M* class. 

CONCLUSION 

In diagnostic problem solving, human experts seem to use both the logical struc­ 
ture and the physical structure of the target device throughout the diagnostic 
process at every hierarchical level. Knowledge of the logical structure of the tar­ 
get device together with the associating functional knowledge is used for diag­ 
nostic reasoning, and knowledge of its physical structure is used to carry out a 
test, to determine when the diagnostic process be terminated, and to form a. repair 
plan. It is important to incorporate the physical representation and the logical 
representation of a device in maintenance. We find that a physical representation 
of the target device, together with the representation of the cross-links between 
the logical and the physical structures of the device, contributes to fault diag­ 
nosis in several aspects - such a system does not merely mimic the behavior of 
human experts, it may outperform human experts in certain situations, It helps 
determine when a diagnostic process should be terminated, thus it provides versa­ 
tility across maintenance levels. It can provide a short-cut to diagnosis by notic­ 
ing that all logical suspects are in a physical object at the intended maintenance 
level. It helps to form a repair plan based on the physical nature of the target 
device. Finally, (probably the most important point,) physical representation 
eases user interaction: it helps direct the user ~o the exact location in the real dev- 
ice for test and repair. · 

It has been argued in this paper that knowledge based methodologies are of 
increasing importance for intelligent systems. They permit intelligent behavior 
of the interface and help to offset problems in information privacy that are 
enforced by modern software engineering technology. A powerful set of user 
interfaces is also a precondition for a versatile system, because most expert sys­ 
tems have to talk with people of different requirements during their life cycle. 
Specifically three user interfaces have been introduced in this paper. The first one 
caters to the end user, which For VMES is the maintenance technician. It creates 
graphical representation, of circuit boards. The specific research contribution of 
this part of VMES is the creation or logical wire plans without any prior 
knowledge about coordinate values of the system icons. The other two interfaces 
are mainly of use for the de, ice designer who wants to enter information about 
a newly created device into the maintenance system, without having to learn 
some obscure graphics or KR language. The first of these two interfaces permits 
the creation of graphical icons of new components. This interface is called from 
inside the natural language interface, if a user attempts to use a primitive form 
which was not previously declared. The natural language interface is based on 
the SNePS ATN interpreter, and the complete necessary natural language input 
for the creation of an artificial device called the Adder-Multiplier has been 
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presented. 
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