Logical Formalizations of Commonsense Reasoning — Papers from the AAAI 2011 Spring Symposium (S§S-11-06)

The Jobs Puzzle
A Challenge for Logical Expressibility
and Automated Reasoning

Stuart C. Shapiro
Department of Computer Science and Engineering and Center for Cognitive Science
The State University of New York at Buffalo
Buffalo, NY 14260-2000
shapiro@buffalo.edu

Abstract

The Jobs Puzzle, introduced in a book about automated rea-
soning, is a logic puzzle solvable by some “intelligent sixth
graders,” but the formalization of the puzzle by the authors
was, according to them, “sometimes difficult and sometimes
tedious.” The puzzle thus presents a triple challenge: 1) for-
malize it in a non-difficult, non-tedious way; 2) formalize it
in a way that adheres closely to the English statement of the
puzzle; 3) have an automated general-purpose commonsense
reasoner that can accept that formalization and solve the puz-
zle quickly. In this paper, I present and discuss three formal-
izations that are less difficult and less tedious than the orig-
inal. However, none satisfy all three requirements as well as
might be desired, and there are a significant number of au-
tomated reasoners that cannot solve the puzzle using any of
the formalizations. So the Jobs Puzzle remains an interesting
challenge.

1 Introduction

The Jobs Puzzle was introduced by Wos et al. (1984, pp.
44-78)! as [p. 44, numbering added]

“1. There are four people: Roberta, Thelma, Steve, and
Pete.

2. Among them, they hold eight different jobs.

3. Each holds exactly two jobs.

4. The jobs are: chef, guard, nurse, telephone operator,
police officer (gender not implied), teacher, actor, and
boxer.

5. The job of nurse is held by a male.

6. The husband of the chef is the telephone operator.

7. Roberta is not a boxer.

8. Pete has no education past the ninth grade.

9. Roberta, the chef, and the police officer went golfing
together.

Question: Who holds which jobs?”

In the next sections, Wos et al. discuss “The Solution by
Person or Persons Unknown” [§3.2.1] and “The Solution
by Program or Programs Known” [§3.2.2]. The “Program
or Programs Known” was a resolution refutation theorem
prover such as Otter (Kalman 2001; McCune and Wos 1997)

Copyright (© 2011, Stuart C. Shapiro. All rights reserved.
'In the remainder of this paper, every citation to sections or
pages that omits mention of a work is a citation to (Wos et al. 1984).

96

was to become. In the discussion of “The Solution by Per-
son or Persons Unknown,” Wos et al. mention some imme-
diate inferences that may be made in addition to those in the
puzzle statement “based on common usage of everyday lan-
guage” [p. 56], such as that Roberta is female and that the
actor is male (because it’s “actor,” not “actress.”) They sug-
gest that the way people would solve the puzzle is by making
a table whose rows are labeled with jobs and whose columns
are labeled with people. As the solver reasons through the
puzzle and decides which people hold which jobs and which
couldn’t possibly hold which jobs, she would write “yes” or
“no” in the entries of the table. In the discussion of “The So-
lution by Program or Programs Known,” Wos et al. represent
the domain rules of the puzzle and the additional immediate
inferences as clauses. In addition, “Clauses can be written to
simulate the use of [the] table. Some simulate the table (and
its labels). Others enable the program to cross off possibil-
ities and to, in effect, fill in the squares” [p. 62]. They note
that “some tedious but necessary items must be translated
” [p. 60], and “Make no mistake, the representation of the
problem to an automated reasoning program is sometimes
difficult and sometimes tedious” [p.63].2

The challenge posed in this paper is to represent the
Jobs Puzzle to an automated reasoning program, suitable for
general-purpose commonsense reasoning, in a non-difficult,
non-tedious way, by a series of logical formulae that adhere
closely to the English statements of the puzzle and the al-
lowed immediate inferences, and have that automated rea-
soning program solve the puzzle quickly.

In the remainder of this paper, I show and discuss three
formalizations that more or less satisfy these requirements.

2 The Solution by TPTP Participants

One non-difficult and relatively non-tedious formalization
of the Jobs Puzzle is given as problem PUZO019-1 in the
TPTP (Thousands of Problems for Theorem Provers)® ver-
sion 5.1.0 web site*. The formalization is given as a se-

2A statement of the puzzle, with “clerk” replacing “telephone
operator”, the correct answer, and the clauses suitable for in-
put to OTTER are at http://www.mcs.anl.gov/ wos/
mathproblems/jobs.html.

*http://www.tptp.org/

*http://tinyurl.com/jobsPuzzle

quence of clauses, but for clarity, I will use a more stan-
dard FOL syntax. There are 64 clauses, four of which are
non-Horn clauses. Rather than using “=" and paramodu-
lation, two special-purpose equality predicates are used:
equal_people and equal_jobs. First are four clauses stating
the reflexivity and symmetry of the equality predicates:

V(z)(equal_people(x, z) A equal_jobs(x, x))
(Note that this implies that jobs are equal to themselves as
people, and people are equal to themselves as jobs.)
Y(z, y)(equal _people(z, y) = equal_people(y, x)
V(z,y)(equal_jobs(z, y) = equal_jobs(y, x)
Then, rather than making a unique-names assumption, 34
special-purpose nonequality axioms are given, such as

—equal _people(roberta, thelma)
—equal_jobs(chef, guard).

Finally, 25 clauses come from the statement of the puzzle,
and one clause from the query. The formal axioms as pre-
sented below are preceded by English statements labeled
“jp” for sentences coming directly from the statement of the
Jobs Puzzle or “inf” for immediate inferences allowed by
(Wos et al. 1984).

1. jp: There are four people: Roberta, Thelma, Steve, and
Pete.

Yz (has_job(roberta,) V has_job(thelma, x)
Vhas_job(pete, z) V has_job(steve,))

inf: “if the four names did not clearly imply the sex of the
people, [the puzzle] would be impossible to solve.” [p. 56]

Va((male(z) V female(z)) A —(male(x) A female(z)))
(Note that this also implies that each job is male or female.)

male(steve) A male(pete)
A female(roberta) A female(thelma)

2. jp: Among [the people], they hold eight different jobs.
4. jp: The jobs are: chef, guard, nurse, telephone operator,
police officer (gender not implied), teacher, actor, and boxer.
Va(has_job(z, chef) V has_job(x, guard)
Vhas_job(z, nurse) V has_job(x, operator)
Vhas_job(z, police) V has_job(x, teacher)
Vhas_job(z, actor) V has_job(x, bozer))

3. jp: Each holds exactly two jobs.

Y(z,y, z, u)(has_job(z, y) Nhas_job(z,)
Ahas_job(z, u)
= equal_jobs(z,y) Vequal_jobs(u, y)
Vequal jobs(u, x))

inf: “No job is held by more than one person.” [p. 56]

V(. y,) (has_job(x, 2) A has_job(y. =)
= equal_people(z, y))

5. jp: The job of nurse is held by a male.
Va(has_job(z, nurse) = male(z))

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

Va(has_job(z, actor) = male(z))

97

6. jp: The husband of the chef is the telephone operator.

YV (has_job(z, chef)
= Vy(husband(z,y) < has_job(y, operator)))

inf: “the implicit fact that husbands are male” [p. 57]

Y(z,y)(husband(z,y) = female(z) A male(y))

inf: since the chef has a husband, she must be female. [p. 57]

Vz(has_job(z, chef) = female(z))

7. jp: Roberta is not a boxer.

—has_job(roberta, boxer)

8. jp: Pete has no education past the ninth grade.

—educated (pete)

inf: “the jobs of nurse, police officer, and teacher each re-
quire more than a ninth-grade education.” [p. 57]

Yz (has_job(z, nurse) Vhas_job(x, police)
Vhas_job(z, teacher)
= educated(z))

9. jp: Roberta, the chef, and the police officer went golfing
together.

inf: “Thus, we know that Roberta is neither the chef nor the
police officer.” [p. 57]

—(has_job(roberta, chef) V has_job(roberta, police))

inf: “Since they went golfing together, the chef and the police
officer are not the same person.” [p. 57]

Va—(has_job(x, chef) A has_job(x, police))

Jp: Question: Who holds which jobs?

xl,22, 23,24, 15,26, 27, 28)(has_job(x1, chef)
A has_job(x2, guard) A has_job(x3, nurse)
A has_job(z4, operator) A has_job(x5, police)
A has_job(z6, teacher) A has_job(x7, actor)
A has_job(x8, boxer))

Of 29 systems that tried this formulation of the Jobs Puz-
zle, 20 were successful.’ For example, SNARK (Stickel,
Waldinger, and Chaudhri undated; Stickel 2010) solved
this formulation of the Jobs Puzzle using unit-resulting-
resolution and hyperresolution in September of 2010, af-
ter having previously failed to prove it without using unit-
resulting-resolution [Mark Stickel, personal communica-
tion].

3 The Solution by Constraint Lingo

Constraint Lingo (Finkel, Marek, and Truszczynski 2002;
2004) is a high-level language for specifying a single rela-
tion via requirements and constraints. The specified relation
is conceived of as a table whose i*" column contains entries
from a specified i" domain, and each of whose rows is one
n-tuple in the relation. (One table entry may contain a set
of elements from the appropriate domain.) The Constraint
Lingo specification is translated into one of several back-
end reasoners. The solution is then translated back into a
table. Notice that this table does not have the same rows and
columns as the table discussed in (Wos et al. 1984, §3.2.1).

A Constraint Lingo solution to the Jobs Puzzle, us-
ing lparse/smodels (Syrjanen 1998; 2000; Niemeld and Si-
mons 2000) as the back-end, was provided to the author
by Raphael Finkel [personal communication], but has been
omitted from this paper due to space constraints, and be-
cause a solution directly in Iparse/smodels is given below in
§5 The Constraint Lingo solution is available from the au-
thor.

4 The Solution by SNePS

SNePS (Shapiro and Rapaport 1992; Shapiro 2000) was de-
signed for commonsense reasoning and natural language
competence, rather than to be a high-powered theorem
prover. An important design criterion was to have a formal
logical language that captured the expressibility of English
statements. Thus, the Jobs Puzzle is a natural example prob-
lem for SNePS, and has been distributed with SNePS° as a
standard demonstration for a number of years. The formal-
ization shown here uses the SNePSLOG front-end (Shapiro
and The SNePS Implementation Group 2010, Chap. 6) and
is for the latest version of SNePS, SNePS 2.7.1 (Shapiro and
The SNePS Implementation Group 2010), which includes
all the connectives discussed in (Shapiro 2010).

SNePS does not use clauses and resolution, but represents
the axioms in the way they are entered and uses natural de-
duction. We have felt that there is heuristic information in
the way that the user formalizes the information that would
be lost in a canonicalization into clause form. For instance,

Shttp://tinyurl.com/TPTPpuzSolns
*http://tinyurl.com/SNePSDownloads

98

modus ponens is implemented in SNePS, but modus tollens
isnot,” sop => qis treated differently from ~g => ~p,
though a user who wanted both modus ponens and modus
tollens could enter or{~p, g} instead. Because modus
tollens is not implemented, the Jobs Puzzle is formulated
with hasJob predicates only in consequent position.

SNePS has the unique names assumption built in, which
obviates the need for inequality axioms. In particular,
the unique names assumption is used by the numerical
quantifier (Shapiro 1979): nexists (1,4, k) (x) (P (x) :
O (x)) means that k individuals satisfy P (x) , and, of them,
at least ¢ and at most j also satisfy O (x) . The unique names
assumption is used when making these counts.

Other unique features of SNePS will be explained as they
are used in the following formalization.

1. jp: There are four people: Roberta, Thelma, Steve, and
Pete.

Person ({Roberta, Thelma,
Steve, Pete}).

If « is a set of terms and a is a term in «, then P ()
P (a) . This is called “reduction inference” (Shapiro and The
SNePS Implementation Group 2010, p. 65). So this axiom is
a concise way to say that Roberta, Thelma, Steve, and Pete
are all people.

inf: “if the four names did not clearly imply the sex of the
people, [the puzzle] would be impossible to solve.” [p. 56]

Female ({Roberta, Thelma}) .
Male ({Steve, Pete}).

2. jp: Among [the people], they hold eight different jobs.
3. jp: Each holds exactly two jobs.

all(p) (Person (p)
=> nexists(2,2,8) (j) (Job(7) :
hasJob(p,3J))) .

inf: “No job is held by more than one person.” [p. 56]

all(j) (Job (7))
=> nexists(1l,1,4) (p) (Person (p) :
hasJob(p,J))) .

4. jp: The jobs are: chef, guard, nurse, telephone operator,
police officer (gender not implied), teacher, actor, and boxer.

Job ({chef, guard, nurse, operator,
police, teacher, actor,
boxer}) .

5. jp: The job of nurse is held by a male.

all(w) (Female (w)

=> "hasJob (w, nurse)).

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

all(w) (Female (w)

=> "hasJob(w, actor)).

6. jp: The husband of the chef is the telephone operator:
inf: “the implicit fact that husbands are male” [p. 57]

"For a full list of implemented rules of inference, see (Shapiro
and The SNePS Implementation Group 2010, §6.4).

all(w) (Female (w)

=> "hasJob (w,
inf: since the chef has a husband, she must be female. [p. 57]
all(m) (Male (m) “"hasJob (m, chef)).
7. jp: Roberta is not a boxer.
“"hasJob (Roberta,
8. jp: Pete has no education past the ninth grade.
“educated (Pete) .
inf: “the jobs of nurse, police officer, and teacher each re-
quire more than a ninth-grade education.” [p. 57]

all (x) (Teducated (x)
=> nor{hasJob (x,
hasJob (x,
hasJob (x%,

9. jp: Roberta, the chef, and the police officer went golfing
together.

inf: “Thus, we know that Roberta is neither the chef nor the
police officer.” [p. 57]

nor {hasJob (Roberta,
hasJob (Roberta,

inf: “Since they went golfing together, the chef and the police
officer are not the same person.” [p. 57]

operator)) .
=>

boxer) .

nurse),
police),
teacher) }) .

chef),
police) }.

all(p) (Person (p)
=> nand{hasJob (p,
hasJob (p,
Jp: Question: Who holds which jobs?
ask hasJob (?p, ?3)°?
The SNePSLOG ask command triggers backward infer-

ence on its argument wff and prints all instances that are
inferred. When run, what is printed is:

chef),
police) }).

wfflll!: hasJob(Thelma, boxer)
wff101!: ThasJob (Pete, operator)
wff99!: hasJob (Pete,actor)
wff87!: hasJob (Steve, nurse)
wff85!: hasJob (Roberta, guard)
wff83!: hasJob (Roberta, teacher)
wff28!: hasJob (Thelma, chef)
wff24'!: hasJob (Steve,police)

It took 0.16 seconds to infer and print these answers on
a Dell Optiplex 780 minitower computer with 2 Intel(R)
Core(TM)2 Duo CPU, clocked at 3.16 GHz, and with 4 GB
of available system memory.”

5 The Solution by Lparse/Smodels

Smodels (Niemeld and Simons 2000) is an implementation
of the stable model semantics for logic programs. Essen-
tially, it finds satisfying models of a set of ground clauses.
Lparse (Syrjdanen 1998; 2000) is a front-end to smodels that
allows the clauses to be written in an extended logic pro-
gramming syntax. The following solution is written in the
language accepted by Iparse. Nonobvious expressions are
explained when first used.

1. jp: There are four people: Roberta, Thelma, Steve, and
Pete.

99

person (roberta;thelma; steve; pete) .

p(tl;...;tn) is treated as the conjunction of p (t1),
and ..., and p (tn), making this equivalent to the SNeP-
SLOG person ({roberta, thelma, steve, pete}).
2. jp: Among [the people], they hold eight different jobs.

3. jp: Each holds exactly two jobs.

2 {hasJdob (X,Y): job(Y)} 2
:— person (X) .

This means that, for each person, there must be exactly two
instances of hasJob (X, Y), where Y is some job, making
this equivalent to the SNePSLOG

all(x) (person (x)
=> nexists (2,2,8) (y) (job(y) :
hasJob (x,v)))

except that the 8 is not specified, since negative instances

are not inferred anyway.

inf: “No job is held by more than one person.” [p. 56]

1 {hasJob(X,Y):
1= job(Y).

4. jp: The jobs are: chef, guard, nurse, telephone operator,

police officer (gender not implied), teacher, actor, and boxer.

job (chef; guard; nurse; operator;
police; teacher; actor; boxer).

person(X)} 1

inf: “if the four names did not clearly imply the sex of the
people, [the puzzle] would be impossible to solve.” [p. 56]

female (roberta; thelma).
male (steve; pete).

No person is both male and female

:— person(X), male(X), female (X).

A headless body indicates that a common instance of all
body atoms is not to appear in any satisfying model.
5. jp: The job of nurse is held by a male.

male (X) :— person (X),

hasJob (X, nurse) .

inf: “everyday language distinguishes [actors and ac-
tresses] based on sex.” [p. 56]

male (X) :— person (X),

hasJob (X, actor) .
6. jp: The husband of the chef is the telephone operator.

hasJob (X, operator) :— person (X;Y),
hasJob (Y, chef), hasHusband(Y,X).
hasHusband (Y, X) :- person(X;Y),
hasJob (Y, chef),hasJob (X, operator) .

inf: “the implicit fact that husbands are male” [p. 57] inf:
since the chef has a husband, she must be female. [p. 57]

2 {female(X), male(Y)} 2
:— person(X;Y), hasHusband(X,Y).

That is, for each instance of hasHusband (X, Y), where
X and Y are people, that instance of both female (X) and
male (Y) isto be included in each satisfying model.

7. jp: Roberta is not a boxer.

:— hasJob (roberta, boxer).

8. jp: Pete has no education past the ninth grade.
:— educated (pete) .

inf: “the jobs of nurse, police officer, and teacher each re-
quire more than a ninth-grade education.” [p. 57]

educated (X) :-—
1 {hasJob (X, nurse),
hasJob (X,police),
hasJob (X, teacher)} 2,
person (X) .

The cardinality-constrained body group of atoms is a way
of putting a disjunction in the body. The “2” is specified
because it is known that no more than two common instances
of these atoms could appear in any satisfying model.

9. jp: Roberta, the chef, and the police officer went golfing
together.

inf: “Thus, we know that Roberta is neither the chef nor the
police officer.” [p. 57]

0 {hasJob (roberta,
hasJob (roberta,

inf: “Since they went golfing together, the chef and the police
officer are not the same person.” [p. 57]

0{hasJob (X, chef), hasJob (X,police)}l
:— person (X) .

Jp: Question: Who holds which jobs?

#hide.
#show hasJob (X,Y) .

Together, these declarations indicate that only the instances
of hasJob (X, Y) should be shown for each model.

After asking Smodels to show all the models, it reported
only the correct one, and reported the computation time as
“0.000”.

chef),
police)} O.

6 Discussion
6.1 Discussion of the TPTP Solution

The remaining “tedious” aspect of the TPTP formalization
of the Jobs Puzzle is the set of 38 clauses for the special-
purpose equality and inequality axioms. These could be
eliminated by making the unique names assumption and by
using paramodulation. The remaining 25 clauses are quite
straight-forward translations of the puzzle, although the for-
malizations of “Each person holds at most two jobs” and
“Each job is held by at most one person” might be consid-
ered more clever than straight-forward.

The formulation does not include a person or job predi-
cate, and has unintended implications, such as

equal_people(chef , chef),
equal_jobs(roberta, roberta),

and

(male(nurse) V female(nurse))
A—(male(nurse) A female(nurse)).

There are four non-Horn clauses:

1. Everyone has at least one of the eight jobs.

100

2. Each job is held by one of the four people.

3. If someone seems to have three jobs, two of those jobs are
the same.

4. Everyone is male or female.

Therefore, no reasoner limited to Horn clauses can solve this
formulation of the puzzle. Of the 29 attempts to solve the
puzzle using this formulation, 9 failed and 20 succeeded.
Some of the successes were due to careful choices of strate-
gies. For example, SNARK succeeded using unit-resulting-
resolution, but before that was tried, SNARK failed [Mark
Stickel, personal communication].

6.2 Discussion of the SNePS Solution

The SNePS formalization relies on several features specif-
ically designed into SNePS to make SNePSLOG formu-
las closer to English statements than would otherwise be
possible. Use of set arguments and reduction inference re-
duces the tedium of listing the four people, eight jobs,
and the sexes of the people in separate atomic formulas.
The numerical quantifier, nexists (7,7, k) (z) (P (x) :
O (x)), is a direct encoding of several kinds of general-
ized quantifiers (Barwise and Cooper 1981) and of predicate
minimalization—once j Ps are found to be @Js, all other Ps
are inferred to not be (Js, and once k — i Ps are found not to
be @s, all other Ps are inferred to be (s. The use of nor and
nand (Shapiro 2010) makes a small reduction in the length
and nesting of several axioms.

Leaving the formulas as stated, rather than translating
them into some canonical form such as clauses, using nat-
ural deduction, and the omission of modus tollens (as well
as several other apparently natural rules of inference), allows
SNePS to focus its work on answering the given question, a
focussing produced in resolution systems by careful choice
of strategies. However, this requires some rewriting of some
statements of the problem. For example, instead of formal-
izing “The chef is female” as
all (x) (hasJob (x, chef)
it is formalized as
all (x) (Male (x) “"hasJob (x, chef))

This is the place where the SNePS formulas are least like the
English statements they translate. However, this formaliza-
tion also eliminates the need to say that every person is either
male or female, but not both. The unique names assumption
is made in the implementation of the numerical quantifier,
and the two axioms that use it are the only two places where
judgments of equality and inequality are required.

=> Female (X))

=>

7 Discussion of the Lparse/Smodels Solution

Several noteworthy features of Iparse/smodels are similar to
features of SNePS. The reduction in tediousness achieved in
SNePS by set arguments is achieved in Iparse by conjunc-
tive arguments separated by *“; ”, and some of what is con-
veyed in SNePS by the numerical quantifier is conveyed in
Iparse/smodels by its cardinality constraints.

In formalizing “The husband of the chef is
the telephone operator”, notonly was the obvious

rule,

hasJob (X, operator)
hasJob (Y, chef),

:— person(X;Y),
hasHusband (Y, X) .

given, but also the less obvious

hasHusband (Y, X) :— person (X;Y),
hasJob (Y, chef),hasJob (X, operator) .

Notice that the TPTP solution also had clauses from both
such rules. In fact, experimentation showed that smodels
needed the second rule, but not the first.

Other than the non-obvious operator-is-husband rule,
Iparse/smodels satisfied the challenge well.

7.1 Some Failed Attempts

Kandefer and Shapiro (2008) attempted to represent the Jobs
Puzzle in the Topbraid Ontology Editing Tool (Top Quadrant
Inc. 2007) and solve it using the Pellet OWL Description
Logic Reasoner (Clark & Parsia, LLC 2007), but were un-
successful because Pellet is unable to infer positive instances
from negative ones, as SNePS’s numerical quantifier does
(Shapiro 1979). An attempt to use SWRL (W3C 2004) was
also unsuccessful because SWRL rules lack negation.

8 Conclusions

The Jobs Puzzle has been solved by “intelligent sixth
graders” (Wos et al. 1984, p.55), but still presents a chal-
lenge for automatic reasoners. The challenge is three-fold:

1. Formalize the puzzle in a way that is neither difficult nor
tedious.

2. Formalize the puzzle as a series of logical formulas that
adhere closely to the English statement of the puzzle.
(This would entail part (1).)

3. Have a general-purpose commonsense reasoning program
that can accept that formalization, and solve the puzzle
without further human assistance.

The original formalization, by the original posers of the
puzzle, was, as admitted by them, “sometimes difficult and
sometimes tedious.” The TPTP formalization of the puzzle
is less so, but some tedium remains, and some of the formal-
izations of some of the statements of the puzzle are more
clever than they are direct translations. Nine of 29 recorded
attempts to have automatic reasoners use this formalization
to solve the puzzle failed, and no Horn-clause reasoner could
possibly succeed. A formalization in SNePSLOG, using its
generalized quantifier and set arguments, came quite close to
a direct translation of the statements of the puzzle, but some
statements needed to be translated into their contrapositives
in order for SNePS to solve the puzzle. A formalization in
Iparse/smodels, using its conjunctive arguments and cardi-
nality constraints came extremely close to meeting the chal-
lenge, needing only one “clever” rule. However, since smod-
els is a model-finder using what is essentially propositional
logic, it might be argued that it is not a general-purpose com-
monsense reasoner. Attempts to solve the puzzle using a De-
scription Logic reasoner failed, as did an attempt to formal-
ize it using SWRL rules. Other attempts to meet the chal-
lenge are welcomed.

101

Acknowledgments

I am grateful to Mark Stickel for pointing me to TPTP, ex-
plaining the information contained there, and for discussions
about SNARK. Inclusion of a Constraint Lingo solution was
recommended by an anonymous reviewer of this paper. |
thank Raphael Finkel for supplying the solution and for dis-
cussions about Constraint Lingo, and for motivating me to
investigate lparse/smodels. I apologize for having to omit
that solution from the final version of this paper. I thank
William J. Rapaport and Jonathan P. Bona for comments on
earlier drafts of this paper, and to Christian Miller for telling
me how to describe the computer on which SNePS solved
the puzzle. I am grateful to present and past members of the
University at Buffalo’s SNePS Research Group for aiding in
the implementation of SNePS, and for many years of fruitful
and enjoyable collaboration. This work has been supported
in part by a Multidisciplinary University Research Initiative
(MURI) grant (Number W911NF-09-1-0392) for “Unified
Research on Network-based Hard/Soft Information Fusion”,
issued by the US Army Research Office (ARO) under the
program management of Dr. John Lavery.

References

Barwise, J., and Cooper, R. 1981. Generalized quantifiers
and natural language. Linguistics and Philosophy 4(2):159—
219. Reprinted in (Kulas, Fetzer, and Rankin 1988, 241-
301).

Clark & Parsia, LLC. 2007. Pellet: The Open Source OWL
DL Reasoner. http://pellet.owldl.com/.

Finkel, R.; Marek, V.; and Truszczynski, M. 2002. Con-
straint lingo: A program for solving logic puzzles and other
tabular constraint problems. In Flesca, S.; Greco, S.; Ianni,
G.; and Leone, N, eds., Logics in Artificial Intelligence, vol-
ume 2424 of Lecture Notes in Computer Science. Berlin /
Heidelberg: Springer. 513-516.

Finkel, R.; Marek, V.; and Truszczynski, M. 2004. Con-
straint lingo: Towards high-level constraint programming.
Softward Practice and Experience 34(15):1481-1504.

Kalman, J. A. 2001. Automated Reasoning with Otter.
Princeton, NJ: Rinton Press.

Kandefer, M., and Shapiro, S. C. 2008. Comparing SNePS
with Topbraid/Pellet. SNeRG Technical Note 42, Depart-
ment of Computer Science and Engineering, The State Uni-
versity of New York at Buffalo, Buffalo, NY.

Kulas, J.; Fetzer, J. H.; and Rankin, T. L., eds. 1988. Phi-
losophy, Language, and Artificial Intelligence. Studies in
Cognitive Systems. Dordrecht: Kluwer.

Lehmann, F,, ed. 1992. Semantic Networks in Artificial In-
telligence. Oxford: Pergamon Press.

McCune, W., and Wos, L. 1997. Otter: The cade-13
competition incarnations. Journal of Automated Reasoning
18(211-220).

Niemeld, I., and Simons, P. 2000. Extending the smodels
system with cardinality and weight constraints. In Minker,

J., ed., Logic-Based Artificial Intelligence. Boston: Kluwer.
491-521.

Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS family.
Computers & Mathematics with Applications 23(2-5):243—
275. Reprinted in (Lehmann 1992, pp. 243-275).

Shapiro, S. C., and The SNePS Implementation Group.
2010. SNePS 2.7.1 User’s Manual. Department of
Computer Science and Engineering, University at Buffalo,
The State University of New York, Buffalo, NY. Avail-
able as http://www.cse.buffalo.edu/sneps/
Manuals/manual271.pdf.

Shapiro, S. C. 1979. Numerical quantifiers and their use
in reasoning with negative information. In Proceedings of
the Sixth International Joint Conference on Artificial Intelli-
gence. San Mateo, CA: Morgan Kaufmann. 791-796.

Shapiro, S. C. 2000. SNePS: A logic for natural language
understanding and commonsense reasoning. In Iwariska,
L. M., and Shapiro, S. C., eds., Natural Language Process-
ing and Knowledge Representation: Language for Knowl-
edge and Knowledge for Language. Menlo Park, CA: AAAI
Press/The MIT Press. 175-195.

Shapiro, S. C. 2010. Set-oriented logical connectives: Syn-
tax and semantics. In Lin, F.; Sattler, U.; and Truszczynski,
M., eds., Proceedings of the Twelfth International Confer-
ence on the Principles of Knowledge Representation and

102

Reasoning (KR2010), 593-595. Menlo Park, CA: AAAI
Press.

Stickel, M. E.; Waldinger, R. J.; and Chaudhri, V. K. un-
dated. A guide to SNARK. http://www.ai.sri.
com/snark/tutorial/tutorial.html.

Stickel, M. E. 2010. SNARK - SRI’s new automated rea-
soning kit. http://www.ai.sri.com/ stickel/
snark.html.

Syrjanen, T. 1998. Implementation of local grounding for
logic programs with stable model semantics. Technical Re-
port B18, Digital Systems Laboratory, Helsinki University
of Technology.

Syrjanen, T. 2000. Lparse 1.0 User’s Manual.
http://www.tcs.hut.fi/Software/smodels/
lparse.ps.gz.

Top Quadrant Inc. 2007. Topbraid Composer. http://
wWww . topbraidcomposer.com/.

W3C. 2004. SWRL: A semantic web rule language. http:
//www.w3.0org/Submission/SWRL/.

Wos, L.; Overbeek, R.; Lusk, E.; and Boyle, J. 1984. Au-
tomated Reasoning: Introduction and Applications. Engle-
wood Cliffs, NJ: Prentice-Hall.

	SSS-11
	2011 AAAI Spring Symposia Page
	Symposia Contents
	SS-11-01
	SS-11-02
	SS-11-03
	SS-11-04
	SS-11-05
	SS-11-06
	SS-11-07
	SS-11-08

	Help
	Terms
	AAAI Website
	Symposium Series Website

