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ABSTRACT

We present a formal svntax and semantics for SNePS considered as
the (modeled) mind of a cogmitive agent. The semantics is based
on a Mecinongian theory of the intensional objects of thought that
is appropriate for Al considered as “computational philosophy™ or
“computationa! psychologv™.

1. INTRODUCTION.

We present a formal syntax and semantics for the SNePS
Semantic Network P rocessing S ystem (Shapiro 1979), based on a
\cinongian theory of the intensional objects of thought (Rapaport
19%5a). Such a theory avoids possible worlds and is appropriate
tor Al considered as “computational philosophy™—Al as the study
of how intelligence is passible—or “computational psychology™
Al with the goal of writing programs as models of human cogni-
tive behavior. Recently, SNePS has been used for a variety of Al
research and applications projects. These are described in Shapiro
& Rapaport 1985, of which the present paper i< a much shortened
version. Here, we use SNePS te madel (or construct) the mind of a
cugnitive agent, referred to o CASSIE (the Cognitive Agent of
the $NePS S ystem—aun [ nielhgem K ntitv).

2. INTENSIONAL KNOWLEDGE REPRESENTATION.

$\ePS represents propositions about entities having properties and
sanding in relations. Nodes represent the propasitions, entities,
properties, and relations, while the arcs represent structural links
hetween these. SNel’S nodes might represent extensional entities,
whose identity conditions do not depend on their manner of
representation. Two extensional entities are equivalent (for some
purpase) iff thev are identical (ie. iff “they™ are really one entity,
not two).

.Although SNeP’S can be used 10 represéfit extensional entities
in" the world, we believe that it must represent intensional
entities—entities whose identity conditions do depend on their
manner of representation. Two intensional entities might be
equivalent (for some purpose) without being identical (e, theyv
might really be two, not one). Only if one wints 1o represent the
relations between a mind and the world would it also have to
sepresent extensional entities (Rapaport 1978, McCarthy 1979). if
SNePS is used just to represent a mind—ie., a mind's model of the
world—then it does not need to represent any extensional ob jects.
1t can then be used either to model the mind of & particular cogni-
tive agent or to build such a mind—ie, w0 be a copnitive agent
ttsell (Maida & Shapire 1982). There have been a number of
urguments presented 1n both the \l und philosophical literature in
the past few years Tor *hie nieed 1or in*ensional entities (Castafieda
1974. Woods 1975, Muida & Shapure 1952, Rapeport 19854, Bruch-

* This research was supported in part by SUNY Buffalo
Research Development Fund grants #150-9216-F, 150-8537-G, and
the National Science Foundation under Grant No. IST-8504713
{Rapuport) and in part by the Air Force Systems Command, Rome
Awr Development Center, Grifiss Air Force Base, New York
13441-5700, and the Air Force Office of Scientific Rescarch, Bolling
AFB DC 20332 under contract No. F30602-85-C-0008 (Shapiro).
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man 1977, Routley 1979, Farxons 1980, Among them, the fol
lowing considerations are especially sipnificant: '

Principle of Fine-Grained Representation: The chjects of
thought (i.c.. intent 1onal objects) are intensional: 4 mind «un bave
two or more objects of thought that correspond 10 unly une exten
sional object. To take the classic example, the Morning Star and
the Evening Star might be distinct objects of thought, vet there is
only onc extensional objct {(a certain astronomical bodv)
corresponding to them.

Principle of Displacemcnt: Cognitive agents can think
and talk about non-existents: a4 mind can have an object of
thought that corresponds to no extensional objpct. Again to take
several classic examples, cognitive agents can think and talk about
fictional objects such as Santa Claus, possible but non-existing
objects such as a golden mountain, impossible objects such as a
round square, and possibie but not-vet-proven-to-exist objects such
as theoretical entities (e.g., bluck holes).

If nodes only represent intensions {wnd extensional entities
are not represented in the network), how do thev Jdink up to the
external, extensional world? (Ine unswer is by means of a LEX
arc (see (Syn.1) and (Sem.1), below) The nodes at the head of the
LLEX arc are our (the user’s) interpretation of the nwde at its tail.
The network without the ILEN arcs and their head-nodes displayvs
the structure of CASSIs mind (Carnap 1928, Sect. 14; for other
unswers, see Maida & Shapiro 1982, Shapiro & Rapaport 1985).

3. DESCRIPTION OF SNePS.

SNePS satishes the Uniqueness Principle: There is a one-to-one
correspondence between nodes and represented concepts. This
principle guarantees that nodes represent intensional objects and
that nodes will be shared whenever possible. Nodes that only
have arcs pointing to them are considered to be unstructured or
atomic. They include: (1) sensory nodes, which—when SNePS is
being used to model 2 mind—represent interfaces with the exter-
nal world (in the examples that follow, they represent utter-
ances), (2) base nodes, which represent individual concepts and
properties; and (3) variable nodes, which represent arbit rary indi-
viduals (Fine 1983) or arbitrary propasitions.

Molecular nodes, which have ares emansting from them,
include: (1) structured individual ncdes. which represent struc-
tured individual concepts or properties (ie.. concepts and properties
represented in such a wav that their internal structure is exhi-
bited); and (2) structured. proposition awdes. which represent pro-
positions; those with ne incoming ares represent beliefs of the sys-
tem. {Note that strw tured proposition nodes can also be considered
1o be structured s viduals) Proposition nodes are either atomic
(representing atomjs -propositions) or are rule nodes. Rule nodes
represent deduction rules and are used for node-based deductive
inference (Shapiro, 1978; Shapiro & McKay 1980; McKay &
Shapiro 1981; Shapiro, Martins, & Mchkay 1982). For esch of the
three categories of molecular nodes (structured individuals, atomic
propositions, and rules), there are constant nodes of that category
and pattern nodes of that category representing arbitrary entities
of that category.
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There are a few built-in arc labels, used mostly for rule
nodes. Paths of arcs can be defined, allowing for path-based
inference, including property inheritance within generalization
hierarchies (see below: Shapiro 1978, Srihari 1981). All other arc
labels are defined by the user, typically at the beginning of an
interaction with SNel’S.

3.1. CASSIE—A Modecl of a Mind.

Stace must ares are user-defined, users are ohh;_,.xlcd w pr()wdc a
formal syntax and semantics for their SNePS networks. We shall
describe the way in which we have been using SNel’S to build
CASSHL Using Brachmun’s (1979) terminology, insofar as SNeP$
is 4 semantic network svstem at the logical level and can thus be
used 1o define one at the epistemological or conceptual level, CAS-
SHI is SNeb’S being used at a conceptual level.

The nodes represent the objects of CASSIHTs thoughts-—the
things she thinks about, the properties and relations with which
she characterizes them, her beliefs, ete. (Maida & Shapiro 1982,
Rapapart 1985a). The Principle of Ihisplacement says that a cogni-
tive agent is able to think about virtually anythiag, including
fictional objcts. possible but non-existing objects. and impossible
objgcts. Any theory that would account for this requires a non-
standard logic, and its semantics cannot be limited 1o merely possi-
ble worlds.

Theories hased on Alexius Meinong’s Theory of Objects are of
precisely this kind. Menong held that psvchological experiences
consist in part of @ psvihological act (such as thinking, believing,
wishing, etc.) and the «hject 10 which the act is directed (e.g., the
abject that is thought about or the proposition that is believed).
Two Kinds of Meinongian objycts of thought are relevant for us:
(1) The objectum, or object of “simple™ thoughts: Santa Claus is
the objectum of John's act of thinking of Santa Claus. The mean-
ing of a noun phrase is an objectum. (2) The objective, or object
of belief, knowledpe, etc.: that Santa Claus is thin is the objective
of John's act of believing that Sants Claus is thin. Objectives are
like propositions in that they are the meanings of sentences and
other sentential structures. Note that objcta need not exist and
that objectives need not be true. (Cf. Meinong 1904; Rapaport
1978, 1981; Castafeda 1974, 1975; Routley 1979 Parsons 1980
Fambert 1983; Zalta 1983.)

This is. perhaps, somewhat arcane terminology for what
might seem like Al common sense. But without an underiying
theory, such as Meinong's, there is no way to be sure if common
wense can be trusted. It is important 10 note that not only are all
represented things intensional, but that they are all objects of
CASSH's mental acts; ie., they are all in CASSITs mind (her
“belief space™)—they are all intentional.. Thus, even if CASSIE
represents the beliefs of someone else (e.g.. John’s belief that Lucy
w rich, as in the conversation in Sect. 3.2), the objects.that she
represents as being in that person’s mind (as being in his “belief
space™) are actually CASSIE's representations of those objects—ice.,
they are in CASSIE's mind.

3.2. A Conversation with CASSIE.

Before: giving the syntax and semantics of the case-frames
employed in representing CASSIHs “mind”, we present a conversa-
tion we had with her, showing the network structure as it is
built—i.e., showing the structure of CASSIE's mind as she is given
information and as she infers new infoumation. An ATN
parser/generator (Shapiro 1982) was used to parse the English
input into SNePS and the SNePS structures into English. User
input is on lines with the :-prompt; CASSIE's output is on the
lines that follow. Comments are enclosed in brackets. A frag-
ment of the full network showmg CASSIE's state of mind at the
end of the conversation is shown in Fig. 1.

: Young Lucy petted a vellow dog

1 understand that voung lLucy petted a vellow dog

[CASSIE is told something, which she now believes. At this point,
her entire belief structure consists of nodes bl, m1-m13, and the
corresponding sensorv nodes. The node lubeled “now™ represents
the current time, so the petting is clearly represented as being in
the past. CASSIE's response is ™ understand that” appended 10 her
English description of the proposition just entered.) -

What is vellow
a dog is yellow

[This response shows that CASSIE actually has some beliefs; she
did not just parrot back the above sentence.]

: Dogs are animals
! understand that dugs are aninuds

[CASSHE s told a small section of a class hierarchyv.]

: Who petted an animal
young Lucy petted a yellow dog

[CASSIE can answer the question using the class hierarchy, be-
cause, prior to the conversation, an inheritance rule was given to
SNePS. ‘T'he rule says that the CLASS arc is implied by the path
consisting of a CLLASS arc followed by zero or more occurgences of
the two-arc path consisting of the converse SUBCLASS arc fol-
lowed by the SUPERCIASS arc (Shapiro 1978, Srihari 1981). The
dog was called “a yellow dog™ rather than “a yellow animal™ be-
cause the redundant CLLASS arc is not built. CASSIIS new
beliefs about the dog's classification and color consists of nodes
m9-m13, m16-m17, and the corresponding sensory nodes.]

: Lucy is sweet
1 understand that young Lucy is sweet

[CASSITs response shows that she identifies this Lucy with the
previous Lucy.]

slucy is a girl
1 understind that sweet young Lucy is a girl
{the beginning of a class hierarchy for f.ucy. Notice that all the

adjectival properties of lucy are mentioned. ]

: Girls are people
I understand that girls are people

[More of the class hierarchy is given.)

: What was petted by a person

a vellow dog was petted by sweet young Lucy

{The proposition is retrieved using the CLLASS inheritance rule]

: The dog is named Rover
1 understand that Rover is a yvellow dog

[“The dog” refers 10 the anly dog € ASSIE knows about, who is
now given a name.

: What was petted by & person
vellow Rover was petted by sweet voung Lucy
[This question was ashed before but » answered differently this

time, because the dog now has & name, and CASSHE prefers to
describe an individuasl by its nome when it has unc.].

: John believes that Lucy is rich
i understand that John believes that Lucy is rich

{In our current development of CASSIE, she interprets ‘believes
that” contexts to be de dicto, so she ussumes that the Lucy that
John has in mind is a different one from the Lucy that she knows.
CASSIE’s beliefs about the two lucies are added t0 the network
(nodes m40, m44)]) '
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: Who is rich
1 don’t know.

{CASSIE knows no one who is rich. She only believes that John
believes that someone (whom he believes to be named ‘Lucy’) is
rich. The answer is "I don't know', rather than ‘no one is rich’, be-
cause CASSIE doesn’t use the closed-world hypothesis.)

: Who is sweet
voung bucy is sweet

{This question demonstrates that Lucy is able 10 answer a “who is
<property > question when she has relevant beliefs.]

: John believes that l.ucy is old
1 understand that John believes that rich Lucy is old

{CASSIF assumes that John knows a different Lucy than she
knows, but she assumes that all John's belief's about “Lucy™ are
sbout the same l.uc_v.]

: John i1s s boy
{ understand that John is a boy

[This and the next two inputs are given to establish more of the
class hierarchy and to make it clear that when CASSIE answers
the last question of this session, she is doing both path-based rea-
soning and node-based reasoning at the same time)

: Bovs are people
I understand that boys are people

: Dogs are pets
i understand that dogs are pets

: Vor every p and d if pis a person and d is a pet then p loves d
1 understand that for every d and p, if p is & person and d is a pet
then p lovesd

[This node-based rule fits into the cluss hierarchy as node mS6.
This is, we believe, equivalent 10 the integrated THox Ao
mechanism propased for KRYPTON (Brachman et alb. 1983, Brach-
man et al. 1985)]

: Wha loves a pet

sweet voung Lucy loves vellow Rover and

John loves yvellow Rover .

{The question was answered using path-bfed inferencing o
deduce that Lucy and John are people and that Rover is a pet, and
node-based inferencing to conclude that, therefore, Lucy and John
love Rover.]

3.3. Syntax and Semantics of SNePS.

fn this section, we give the syntux and semantics of the nodes and
arcs used in the interaction. What we present here is our current
model: we make no claims to completeness of the representational
scheme. We begin with a few rough definitions. (Cf. Shapiro
1979, Sect. 2.1, for more precise ones.)

(Def. 1) A node dominates another node if there is a path of
directed arcs from the first node to the second node.

(Def.2) A pattern node is a node that dominates a variable node.
(Def. 3) An individual node is either a base node, a variable node,
or a structured constant or pattern individual node.

(Def. 4) A proposition node is either a structured : proposition
‘node or an atomic variable node representing an arbitrary proposi-
tion.
(Syn.1) If “w" is a(n English) word and "
previously used, then ’

- LEX
is a network, w is a sensory node, and { is a structured ind:i\:idual
node.

is an identifier not

(Sem.1) { is the objectum corresponding to the utterance of w.

(Syn.2) If cither *t « and “t," are identifiers not previously used,
or “t," is an identifier not pre\mutl_v used and ¢, is a temporal
nodc, then

BEFORE

is a network and f, and ¢, are temporal nodes, ie.
nodes representing times.

individuat

(Sem.2) ¢, and ¢, arc objcta corresponding to two times, the
former occurring before the latter.

(Syn.3) If i and j are individual nodes, and “m™ is an identifier
not previously used, then

EQUIV EQUIV

is 4 network and m is a structured proposition node.

(Sem.3) m is the objective corresponding to the proposition that
objecta i and j (arc believed by CASSIE to) correspond to the
same actual object. (This is not used in the conversation, but is
nceded for fully intensional representational systems; cf. Rapaport
1978, 1984b; Castarieda 1974; Maida & Shapiro 1982.)

(Syn.4) If i and j are individual nodes and “m ™~ is an identifier

not previously used, then
PROPERTY

is a network and m is a structured proposition node.

OBJECT

(Sem.4} m is the objective corresponding to the proposition that i
has the property j.

(Syn.5) i i and j are individual nodes and “m™ is an identifier
not previously used, then
PROPER-NAME OBJECT

is a network and m is a structured proposition node.

(Sem.5) m is the oljective corresponding to the proposition that
objectum i°s proper name is j. (j is the objectum that is i's prop-
er name; its expression in English is represerited by a node ut the
head of a LEX-arc emanating from j.)

(Syn6) If i and j are individual nodes and “m™ is an identifier

not previously used, then
CLASS MEMBER

is a network and m is a structured proposition node.

(Sem.6) m is the objective corresponding 10 the proposition that i
is a (member of class) j.

(Syn.7) if i and j are individual nodes and “m™ is an identifier
not previously used, then

SUPERCLASS SUBCLASS
is a network and m is a structured proposition node.

(Sem.7) m is the objective corresponding to the pri)poéition that
(the class of) is are (a subclass of the class of) js.

(Syn.8) ¥ i,.i,.i; are individual nodes, ¢, ,?, are temporal
nodes, and “m ™ is an identifier not previously used, then

COGNITIVE MODELLING AND EDUCATION / 281
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i» 2 network and m is a structured proposition node. {Nodes m40,

m-14 are examples of this for the mental act of believing; cf. Rapa-
port 1984b, Rapaport & Shapiro 1984. The ETIME and STIMI
arcs are optional and can be part of any proposition node; they are
a provisional technique for handling temporal information—cf.
Shapiro & Rapaport 1985.)

(Sem.8) m is the objctive corresponding to the proposition that
agent i, performs act i, with respect to i3 starting at time ¢, and
ending at time {5, Where ¢, is before £ >

Rule nodes have been described more fully in Shapiro 1979,
and a full syntax and semantics for them is presented in Shapiro
and Rapaport 1985. llere, we present the syntax and semantics
only for the node-based inference rule used in the conversation
with CASSIE (Fig. 2, node mS6):

(Syn9) If @y, ..., 84,Cp.--.Cjoand dy, ..., d, ave proposition
nodes (n, j, k 2 0), and “r” is an identifier not previously used,
then

is a network, and r is a rule node.

(Sem.9) r is the objective corresponding to the proposition that
the conjunction of the propusitions a,,....a, relevantly implies
each ¢, (1 =1 < j) and relevantly implies esch d¢ (1 S¢ < &) for
which there is not a better reason to believe it is false. (The d,
ate de fault consequences: each is implied only &f it is neither the
case that CASSIE already believes not d; nor that not d; follows
from non-default rules.)

(Syn.10) Il r is a rule node, and r dominates variable nodes
Yi.....v.. and, in addition, arcs labeled “AVB” go from r to euch
v;. then r is a quantified rule node.

(Sem.10) r is the objctive corresponding to the proposition that
the rule that would be expressed by r without the AVE arcs
holds after replacing each v; by any object in its range.

4. SNcPS AND CASSIE AS SEMANTIC NETWORKS.

We conclude by looking at "SNePS. from the perspective of
Brachman's discussions of structured inheritance networks and

hierarchies of semantic-network formalisms (Brachman 1977,
1979). Brachman offers six criteria for semantic networks:
A semantic network must have a uniform notation. SNePS

provides :some uniform notation with its built-in arc labels:for
rules, and it provides a uniform procedure for users to choose their
own notition.

A semantic network must have an algorithm for encoding
in formation. “This is provided for by the interfaces to SNePS, eg.,
the parser component of our ATN parsex-gcnemtot inputs English
sentences and outputs SNePS networks.

A semantic network must have an “assimilation™ mechanism
for building new information in terms of stored information.’

© $NePS provides for this by the Uniqueness Principle, which
enforces node sharing during network building. The assimilation
is demonstrated by the generator component of our ATN parser-
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generator, which takes SNePS nodes as input and produces English
output expressing those nodes: In our conversation with CASSIE,
the node. built to. represent the new fact, ‘Lucy is sweet’, was
expressed in terms of the already existing node for Lucy (who had
previously been described as young) by “young Lucy is sweet’.

A semantic network should be neutral with respect to net-
work formalisms-at higher levels in the Bruchman. hierarchy.
SNePS is a semantic network at the “logical™ Jevel, and CASSIE is
(perhups) at the “conceptual™ level. SNePS is neutral in the
relevant sense; it is not so clear whether CASSIE is. But a more
important issue than neutrality is the reasons why one formalism
should be chosen over another. Several possible criteria that a
rescarcher might consider are: e fliciency (including the euse of
interfacing with other modules; e.g., our ATN parser-generator has
been designed for direct interfacing with SNePS), psycholoozcal
adequacy (irrelevant for SNePS, but precisely what CASSIE
being designed for), ontological adequacy (discussed below), loglcul
adequacy (guaranteed for SNePS, because of its inference package).
and natural-language adequacy (a feature of $NePS's interface
with the ATN grammar).

A semantic network should be adequate for any higher-level
network formalism. SNePS meets this nicely: KL-ONE <in be
implemented in SNePS (Tranchelt 1982).

A semantic network should have a semantics. We presented
that in Sect. 3.3. But there are at least two sorts of semantics.
$NelS nodes have a meaning within the system in terms of their
links 10 other nodes; they have a2 meuning for users as provided
by nodes at the heads of LEX arcs. Arcs, on the other hand, oniy
have meaning within the system, provided by node- and path-
based inference rules (which can be thought of as procedures that
operate on the arcs). In both cases, there is an “internal”, system'’s
semantics that is holistic and structural: the meaning of the nwles
and arcs are not given in isolation, but in terms of the entire net-
work. This sort of “syntactic” semantics differs from a semantics
that provides links to an external interpreting svstem, such as a
user or the “world™—ie. links between the network’s way of
Tepresenting information and the user’s way. it is the latter sort
of semantics that we “provided for (CASSIE with respect to an
ontology of Meinongian ubjects, which are not o be taken ax
representing things in the world. CASSIs ontology s an
epistemological ontology (Rapaport 198571986} of the purely
intensional items that enable a cognitive sgent ta have teliefs
about the world. It is a theory of what there must be in wrder tor
a cognitive agent 1o have beliefs about whit there is.
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