
Computer Science Department

Indiana University

Lindley Hall 101

Bloomington, Indiana 47401

Key Words and Phrases:

structured programming, control structures,

looping, while statement, until statement,

exit statement, flowchart, ease of programming.

CR Categories: 4.4.2, 4.4.9, 5.5.2

TECHNICAL REPORT do, 10

A CASE FOR WHILE-UNTIL

DANIEL P, FRIEDMAN

STUART C, SHAPIRO

APRIL 5., 1974

A CASE FOR WHILE-UNTIL

Daniel P. Friedman
Stuart C. Shapiro

Indiana University

Abstract

A new control structure construct, the while-until,

is introduced as a syntactic combination of the while and

the until. Examples are shown indicating that use of the

while-until can lead to structured programs that are con

ceptually more manageable than those attainable without

it. The while-until statement is then extended to a value

returning expression which is shown to be more powerful

than either the while or the until.

A major suggestion of structured programming is to

employ loop1ng control structures in order to break the

program down into conceptually manageable units. The pur

pose of this paper is to propose an additional looping

control structure construct (the while-until) that, in cer

tain instances, yields program loops that are closer to the

conceptual organizatiori of the segment than is possible

with the existing constructs. The while-until as a state

ment will be shown to be equivalent to the existing loop

ing control structures. The while-until as a value (Bool-

-2-

ean) returning expression will be shown to be a more power

ful control structure than the while or until structures

discussed by Dijkstra [1].

The existing constructs that we are concerned with are

while 8 repeats

and

repeats until S .

Dijkstra [1] presents these graphically as in Figures 1 and 2.

r-~--.
; I ~~F

. T

I -·~~-j .
I__ -e- ~--__! ej

,.
iT
i
!

L_ --e __ j_

t
Fig. 1 while 8 repeats Fig. 2 repeats until 8

The syntactic construct we are proposing is

while s1 repeats until s2
which is presented graphically in Figure 3.

-3-

r -;
I
I >

/y~ < 81 .>E_1
". I ._(,E I

:T I

v~ I
s

I , --- I

l~"----. 2 ,/
/

,/

T

L - - - - -- -'- t
Fig. 3 while s 1 repeat s until s 2

The while-until does not involve nesting, but is

some other combination [2] of the features of the while

and the until loops. The while-until may be replaced by

the until or the while as the only looping structure since

while 81 repeats until 82

is equivalent to

if s1 then repeat s until if (82 then true else, 61)

-4-

and also to

if S1 then begins; while if(S2 then false else s1) repeats end

If esca:ee (or break or exit) were employed, another equiv

alent form is

A: while s1 repeat

begins; if a2 then escape A end

end A

In those cases where Figure 3 is the desired control struc

ture it appears that the while-until yields clearer, more

understandable code than any of the above alternatives.

We can paraphrase the semantic content of the while-until

as: "while it is possible to try, keep trying until you

succeed.I? The while and the until loops can be defined

in terms of the while-until in the following way:

while S repeats =def while a repeats until false

and

repeats until S =def while true repeats until S

The while-until is a natural control structure for

searching, since every search terminates either by finding

the desired element or by determining that it is not pre

sent. As an example, we show its use for a binary search:

-5-

comment Find item A in table T[l:NJ ;

low :=O;

high := N + l;

while low< high - 1 repeat

try :=(low+ high)/ 2;

if T[try] < A then low := try else high .- try

until T[try] = A;

An appropriate application for the while-until occurs

whenever a loop includes two operations, one of which re

quiring a test prior to its execution and the other re

quiring a test which can only be performed after its execu

tion. An example of this is: copy a file up to and includ

ing the end-of-file mark onto an output file, however,

nothing may be written on the output file unless there is

enough space for a record.

comment Copy file INPUT onto the file OUTPUT;

while Spaceleft(OUTPUT) repeat

Inbuffer(INPUT, b);

Outbuffer(OUTPUT, b)

until Eof(INPUT);

In languages in which statements are expressions

having values, for example LISP [3], ALGOL 68 [4] and

BLISS [5], the while-until can be assigned a value in an

especially useful way. We define the value of the while

until expression to be the value of the last evaluated

-6-

Boolean. That is, the value of

while s1 repeats until B2

is false if and only if the loop terminates due to the evalu

ation of B1 (see Figure 4). A non-Boolean value could be

returned on certain termination conditions (e.g., exit

in BLISS or predicates in LISP).

r

!
.:Ea; i. . __ v ·~

(_ Return L

I __ t___ - -

Fig. 4 value returning while-until

-7-

There are two ways in which the loop may be terminated:

the programmer will want to ascertain which of the two

Booleans caused termination. This is precisely the infor

mation provided by the value of the while-until.

Using the value of the while-until, we may easily

incorporate the above search routine into an insertion.

comment T[1 :M] is a table containing N < M active

elements. Insert A in T if it is not already

present;

low := O;

high:= N + l;

if (while low< high - 1 repeat

try := (low+ high) / 2

if T[try] < A then low := try else high .- try

until T[try] = A)

then Insertafter(A,T,low);

The previously presented copy routine can be incorporated

into an algorithm that uses up to N output r11es, depend

ing on the length of the input file:

comment Place one copy of file INPU'r onto OUTPUT[1 :NJ

as needed;

i : = 1;

while i ~ N repeat

Open(OUTPUT[i])

if (... while Spaceleft(Output [1]) repeat

-8-

Inbuffer(INPUT, b);

Outbuffer(OUTPUT[i], b)

until Eof(INPUT))

then Close(OUTPUT[i]); 1 := i + 1

until Eof(INPUT);

Earlier, we showed that the while-until statement

is definable in terms of just the while or just the until.

This is not true, however, for the while-until expression.

Peterson, Kasami, and Tokura [6], p. 506, have shown that

11There exist flowcharts that cannot be translated into

[if and until] programs with single-level exits, even if

node splitting is allowed.11 Their example of such a flow

chart is shown in Figure 5.

The following program using value-returning while-until and

if expression is a translation of this flowchart.

s; it:_ A then begin a1;

if (while (while B repeat b1

until (while -, C repeat c2 until true))

repeat c1

until ~(while (while D repeat a1
until -, (while "" A repeat a2 until true))

repeat a1 until true))

then a2 else b2
end

else begin a2;

if (while (while D repeat ct1

until -, (while -, A repeat a2 until true))

repeat a1

until ~(while (while B repeat b1

until -, (while -, B repeat_ c2 until true))

repeat c1 until true))

then b2 else ct2
end

I
\.0
I

-10-

1--s]

<, ,, r--- ... --·-i '',,,, .. .,.

I a1 i I -1
I J / a2 /
~ ,... J r·

r-_F_ ">_!_I
,,. " ./ __ y_

i T "--.,,._ F
,--- ,._ C .. >-
1 '. / --i ,---~IV . "-,,/ ~

i : l I c2 ~
'---- J

Fig. 5 Flowchart from Peterson, Kasami, and Tokura [6].

-11-

Similarly, Ashcroft and Manna [7] have exhibited a flow

chart, shown in Figure 6, which cannot be translated into

an if and while program. The following while-until pro

gram, due to M. Wand and D. Wise, is a translation of

this flowchart.

if (while (if (while P repeat h until false) then true

else Q)

repeat h

until ~(while (if (while Q repeat g until false) then true

else P)

repeat g until true))

then g else h

We have introduced the while-until as an additional

control structure for structured programming. We have

demonstrated cases in which use of the while-until results

in more readable programs and allows programmers to pro

gram closer to the way they think. Although the while

until statement can be defined in terms of the while or

the until, we have shown that the while-until expression

is a stronger control structure than either.

-12-

..
w

F T

,_,,
F T

i h
'-/

T

~
T

Fig. 6 Flowchart from Ashcroft and Manna [7].

-13-

References

1. Dijkstra, E. W., "Notes on structured pr-ogr-ammrng ;"

Structured Programming, Academic Press, London, 1972,

pp. 1-82.

2. Friedman, D. P. , Shapiro, S. C. , 11 String union as an

operation for control structure generation,n (in progress).

3. McCarthy, J. , et al. , LISP 1.5 Prograrrnners Manual, MIT

Press, Cambridge, Mass., 1962.

4. van Wijngaarden, A. ' Mailloux, B. J. ' Peck, J. F. L. '

Koster, c. H. A. ' Reeort of the Algorithmic Language

ALGOL 68, ACM, New York, 1969.

5. Wulf, W. A., Russell, D. B., Habermann, A. N., "BLISS: a

language for systems programming," CACM 14, 12 (Dec. 1971),

pp. 780-790,

6. Peterson, W. W., Kasarni, T., Tokura, N., "On the capa

bilities of while, repeat and exit statements," CACM 16,8,

(Aug. 1973), pp.503-512.

7, Ashcroft, E., Manna, z., "The translation of 'go to'

programs to 'while' programs," Information Processing 71,

North-Holland Publishing Co., 1972, pp. 250-255.

