
Computer Science Department

Indiana University

Lindley Hall 101

Bloomington, Indiana 47401

Key Words and Phrases:

structured programming, control structures,

looping, while statement, until statement,

exit statement, flowchart, ease of programming.

CR Categories: 4.4.2, 4.4.9, 5.5.2

TECHNICAL REPORT do, 10

A CASE FOR WHILE-UNTIL

DANIEL P, FRIEDMAN

STUART C, SHAPIRO

APRIL 5., 1974

A CASE FOR WHILE-UNTIL

Daniel P. Friedman
Stuart C. Shapiro

Indiana University

Abstract

A new control structure construct, the while-until,

is introduced as a syntactic combination of the while and

the until. Examples are shown indicating that use of the

while-until can lead to structured programs that are con­

ceptually more manageable than those attainable without

it. The while-until statement is then extended to a value

returning expression which is shown to be more powerful

than either the while or the until.

A major suggestion of structured programming is to

employ loop1ng control structures in order to break the

program down into conceptually manageable units. The pur­

pose of this paper is to propose an additional looping

control structure construct (the while-until) that, in cer­

tain instances, yields program loops that are closer to the

conceptual organizatiori of the segment than is possible

with the existing constructs. The while-until as a state­

ment will be shown to be equivalent to the existing loop­

ing control structures. The while-until as a value (Bool-

-2-

ean) returning expression will be shown to be a more power­

ful control structure than the while or until structures

discussed by Dijkstra [1].

The existing constructs that we are concerned with are

while 8 repeats

and

repeats until S .

Dijkstra [1] presents these graphically as in Figures 1 and 2.

r-~--.
; I ~~F

. T

I -·~~-j .
I__ -e- ~--__! ej

,.
iT
i
!

L_ --e __ j_

t
Fig. 1 while 8 repeats Fig. 2 repeats until 8

The syntactic construct we are proposing is

while s1 repeats until s2
which is presented graphically in Figure 3.

-3-

r -;
I
I >

/y~ < 81 .>E_1
". I ._(,E I

:T I

v~ I
s

I , --- I

l~"----. 2 ,/
/

,/

T

L - - - - -- -'- t
Fig. 3 while s 1 repeat s until s 2

The while-until does not involve nesting, but is

some other combination [2] of the features of the while

and the until loops. The while-until may be replaced by

the until or the while as the only looping structure since

while 81 repeats until 82

is equivalent to

if s1 then repeat s until if (82 then true else, 61)

-4-

and also to

if S1 then begins; while if(S2 then false else s1) repeats end

If esca:ee (or break or exit) were employed, another equiv­

alent form is

A: while s1 repeat

begins; if a2 then escape A end

end A

In those cases where Figure 3 is the desired control struc­

ture it appears that the while-until yields clearer, more

understandable code than any of the above alternatives.

We can paraphrase the semantic content of the while-until

as: "while it is possible to try, keep trying until you

succeed.I? The while and the until loops can be defined

in terms of the while-until in the following way:

while S repeats =def while a repeats until false

and

repeats until S =def while true repeats until S

The while-until is a natural control structure for

searching, since every search terminates either by finding

the desired element or by determining that it is not pre­

sent. As an example, we show its use for a binary search:

-5-

comment Find item A in table T[l:NJ ;

low :=O;

high := N + l;

while low< high - 1 repeat

try :=(low+ high)/ 2;

if T[try] < A then low := try else high .- try

until T[try] = A;

An appropriate application for the while-until occurs

whenever a loop includes two operations, one of which re­

quiring a test prior to its execution and the other re­

quiring a test which can only be performed after its execu­

tion. An example of this is: copy a file up to and includ­

ing the end-of-file mark onto an output file, however,

nothing may be written on the output file unless there is

enough space for a record.

comment Copy file INPUT onto the file OUTPUT;

while Spaceleft(OUTPUT) repeat

Inbuffer(INPUT, b);

Outbuffer(OUTPUT, b)

until Eof(INPUT);

In languages in which statements are expressions

having values, for example LISP [3], ALGOL 68 [4] and

BLISS [5], the while-until can be assigned a value in an

especially useful way. We define the value of the while­

until expression to be the value of the last evaluated

-6-

Boolean. That is, the value of

while s1 repeats until B2

is false if and only if the loop terminates due to the evalu­

ation of B1 (see Figure 4). A non-Boolean value could be

returned on certain termination conditions (e.g., exit

in BLISS or predicates in LISP).

r

!
.:Ea; i. . __ v ·~

(_ Return L

I __ t___ - -

Fig. 4 value returning while-until

-7-

There are two ways in which the loop may be terminated:

the programmer will want to ascertain which of the two

Booleans caused termination. This is precisely the infor­

mation provided by the value of the while-until.

Using the value of the while-until, we may easily

incorporate the above search routine into an insertion.

comment T[1 :M] is a table containing N < M active

elements. Insert A in T if it is not already

present;

low := O;

high:= N + l;

if (while low< high - 1 repeat

try := (low+ high) / 2

if T[try] < A then low := try else high .- try

until T[try] = A)

then Insertafter(A,T,low);

The previously presented copy routine can be incorporated

into an algorithm that uses up to N output r11es, depend­

ing on the length of the input file:

comment Place one copy of file INPU'r onto OUTPUT[1 :NJ

as needed;

i : = 1;

while i ~ N repeat

Open(OUTPUT[i])

if (... while Spaceleft(Output [1]) repeat

-8-

Inbuffer(INPUT, b);

Outbuffer(OUTPUT[i], b)

until Eof(INPUT))

then Close(OUTPUT[i]); 1 := i + 1

until Eof(INPUT);

Earlier, we showed that the while-until statement

is definable in terms of just the while or just the until.

This is not true, however, for the while-until expression.

Peterson, Kasami, and Tokura [6], p. 506, have shown that

11There exist flowcharts that cannot be translated into

[if and until] programs with single-level exits, even if

node splitting is allowed.11 Their example of such a flow­

chart is shown in Figure 5.

The following program using value-returning while-until and

if expression is a translation of this flowchart.

s; it:_ A then begin a1;

if (while (while B repeat b1

until (while -, C repeat c2 until true))

repeat c1

until ~(while (while D repeat a1
until -, (while "" A repeat a2 until true))

repeat a1 until true))

then a2 else b2
end

else begin a2;

if (while (while D repeat ct1

until -, (while -, A repeat a2 until true))

repeat a1

until ~(while (while B repeat b1

until -, (while -, B repeat_ c2 until true))

repeat c1 until true))

then b2 else ct2
end

I
\.0
I

-10-

1--s]

<, ,, r--- ... --·-i '',,,, .. .,.

I a1 i I -1
I J / a2 /
~ ,... J r·

r-_F_ ">_!_I
,,. " ./ __ y_

i T "--.,,._ F
,--- ,._ C .. >-
1 '. / --i ,---~IV . "-,,/ ~

i : l I c2 ~
'---- J

Fig. 5 Flowchart from Peterson, Kasami, and Tokura [6].

-11-

Similarly, Ashcroft and Manna [7] have exhibited a flow­

chart, shown in Figure 6, which cannot be translated into

an if and while program. The following while-until pro­

gram, due to M. Wand and D. Wise, is a translation of

this flowchart.

if (while (if (while P repeat h until false) then true

else Q)

repeat h

until ~(while (if (while Q repeat g until false) then true

else P)

repeat g until true))

then g else h

We have introduced the while-until as an additional

control structure for structured programming. We have

demonstrated cases in which use of the while-until results

in more readable programs and allows programmers to pro­

gram closer to the way they think. Although the while­

until statement can be defined in terms of the while or

the until, we have shown that the while-until expression

is a stronger control structure than either.

-12-

..
w

F T

,_,,
F T

i h
'-/

T

~
T

Fig. 6 Flowchart from Ashcroft and Manna [7].

-13-

References

1. Dijkstra, E. W., "Notes on structured pr-ogr-ammrng ;"

Structured Programming, Academic Press, London, 1972,

pp. 1-82.

2. Friedman, D. P. , Shapiro, S. C. , 11 String union as an

operation for control structure generation,n (in progress).

3. McCarthy, J. , et al. , LISP 1.5 Prograrrnners Manual, MIT

Press, Cambridge, Mass., 1962.

4. van Wijngaarden, A. ' Mailloux, B. J. ' Peck, J. F. L. '

Koster, c. H. A. ' Reeort of the Algorithmic Language

ALGOL 68, ACM, New York, 1969.

5. Wulf, W. A., Russell, D. B., Habermann, A. N., "BLISS: a

language for systems programming," CACM 14, 12 (Dec. 1971),

pp. 780-790,

6. Peterson, W. W., Kasarni, T., Tokura, N., "On the capa­

bilities of while, repeat and exit statements," CACM 16,8,

(Aug. 1973), pp.503-512.

7, Ashcroft, E., Manna, z., "The translation of 'go to'

programs to 'while' programs," Information Processing 71,

North-Holland Publishing Co., 1972, pp. 250-255.

