
PLATO Lessons fo~ a Data Structures Course

by

Stuart C. Shapiro

Computer Science Department

Indiana University

Bloomington, Indiana

TECHNICAL REPORT No. 15
PLATO LESSONS FOR A DATA STRUCTURES COURSE

STUART C. SHAPIRO

AUGUST, 1974

This work was supported in part by the National Science

Foundation under Grant No. NSF EC-41511.

-1-

PLATO LESSONS FOR A DATA STRUCTURES COURSE

Stuart C. Shapiro

1. Introduction

This paper discusses some PLATO [2] lessons that have been

written for a course in data structures, the philosophy behind them

and ideas for cont:l.nued development, of Le s a on mat.e t-Lul t'c,r :1 d:1L:1_

s t r'uc t ure s c o ur-a e . 'I'he s e lessons are included .l.n t he Ln I'o r-nia t t on

Structures Area of a large collection of introductory computer uc:lcncc

lessons [6].

2. Philosophical Bases

The author has previously stated [7] that one of the best uses

of Computer Assisted Instruction (CAI) "is to present visually

to the student a process that he has some control over and which

he would not otherwise be able to observe." The algorithms used

to manipulate complex data structures are just such processes.

They are, therefore, appropriate material to be presented by PLATO

lessons. Conversely, the PLATO system excels at the presentation

of graphic and animated material. It allows for complete program

control of the results of a keystroke, including which character,

if any, appears on the screen. These features make the PLATO sys

tem particularly well suited to the implementation of student con

trolled and visually presented processes.

-2-

The lessons discussed in this paper were designed to be visual

simulations of student controlled processes. Within this framework,

various approaches were tried. As a result, I now feel that a good

CAI lesson should contain the following:*

1. A small amount of textual material to explain the lesson,

the diagrams used in it and the language the student will use.

2. An environment the student can manipulate by the use of some

language. The environment is displayed on the screen. When th0

st udo n t types in a sentence of' the language, the e nvLr-onmerrt crwng1-.:u

appropriately. Minimal time is spent in correcting or recovering

!'

from ungrammatical sentences. Grammatical but inappropriate sentences

result in reasonable but unintended (by the student) changes in the

environment. Only when necessary is an error message provided and

the student protected from the consequences of the error. The

difficulty of recovery from the error should be proportional to its

relevance to the concepts being taught.

3, Three levels of direction should be provided, with the stu

dent able to choose the desired level at any time:

3a. Undirected experimentation aliows the student to explore

the environment on his/her own. Hopefully, (s)he will attain a

facility with and discover the limits of the language/environment.

3b. Suggested experiments are listed by the lesson writer to

encourage the student to explore all the facilities provided and to

experience all the limitations. The student is not monitored to see

* Another good use of CAI is to present computer generated drills
and evaluate the student's answer, provided that an arbitrary num
ber of drills can be generated depending on the student's interest
or progress.

-3-

if (s)he carries out these experiments successfully.

3c. Monitored tasks are assigned which the student is to carry

out successfully. Help is provided when the student errs. Some

times each step is monitored, but it is preferable for the student

to monitor him/herself by observing the environment, although help

ful suggestions should still be made when desired.

4. Two modes should be provided for experimentation, and the

student should be required to carry out the monitored tasks in both.

4a. In the immediate mode each statement is executed when U1(:

student types it in .. The decision as to what should be done next

is made by the student while visually inspecting the environmenl.

This is the tietter mode for the initial learning of how to accom

plish the task.

4b. In the delayed mode the student uses the langu~ge, enhanced

if necessary with test and branch instructions, to write a program

which is executed step by step after it is finished. By observing

the successive changes in the Snvironment, the student can deter

mine if the program is correct. In this mode, it can be determined

if the student has consolidated what (s)he learned while in the

immediate mode.

3, Discussion of Lessons

I will now discuss the data structure lessons written so far.

None of them contains all the facilities outlined above, although

each facility is contained in at least one lesson. High priority

will be given to provide each lesson with all the facilities.

-4-

3.1 STACKS

3.1.1 Purpose

The purpose of the lesson, STACKS, is to teach the student what

the concept of a stack is and what a stack may profitably by used

for. The purpose is not to teach the student how to implement a

stack on a computer. The lesson is intended to be used when a

data structures course based on Knuth [5] would discuss Chapter

2.2.1, one based on Harrison [4], Chapter 2, and one b:wcrJ on P.(·t·

~tiss [l], Chapter 10. For these purposes, the major propertJ~8

of a stack were considered to be its Last In, First Out (LIFO)

character and the fact that only the top element is accessible.

The two main operations that can be performed on a stack are pushing

an element onto the top of the stack and popping an element off the

top. Also, the top element (and only the top element) may be accessed.

Figure 1 shows the title page of lesson STACKS and Figure 2 shows

the index to the three sections of the lesson. Section 1 contains

introductory material, allows the student undirected experimentation

with the stack and contains suggested experiments. Section 2 gives

monitored tasks dealing with evaluating Polish postfix expressions.

Section 3 provides an enhanced environment in which the student

may experiment with a more specific domain. These sections will

be discussed below.

3.1.2 The STACKS Environment

The STACK environment and language are introduced in Section 1

of the lesson (Figures 3-10). Figures 3-6 show the introductory

-5-

text. The basic environment contains an animated representation

of a stack and three variables. An empty stack is represented with

a raised platform (Figures 3-6). A non-empty stack has only the

top number visible (Figure 8). The process of pushing and popping

is animated. Popping an empty stack causes the platform to pop off

as shown in Figure 9. Since any real implementation of a stack

(certainly the implementation the lesson itself uses) must have

finite size, the student's stack has a finite, though changing,

size which is displayed prominently on the stack itself (see Figure

4). If the student attempts to push a number onto a full stack,

the number just slides off as shown in Figure 10.

3.1.3 The STACKS Language

The STACKS language is presented to the student as shown in

Figures 5 and 6. From then on, a summary of the syntax is displayed

in the corner of the screen whenever it is legal for the student

to type in an instruction. This is done because it is not the pur

pose of this lesson to teach the student this (or any) particular

language. For the same reason, the student is protected from even

typing a syntactically incorrect instruction. This is a basic

feature of the STACKS parser and depends on the PLATO feature that

allows a lesson program to intercept a student key press before any

character is displayed on the screen. More specifically, the parser

is a finite state automaton in which each state waits for a valid

character to be pressed by the student and only then displays and

processes the character. As shown in Figure 6, the STACKS language

contains only a push statement and a pop statement, begun by the

-6-

characters + and t , respectively. The pop arrow is followed

by the name of the variable into which the top number in the stack

is to be popped. The student can push onto the stack either the

contents of any of the three variables or an integer constant.

He can enter a positive or a negative integer or zero, but due to

the physical size of the displayed representation of the stack, he

is limited to a five-digit positiye integer and to a four-digit

negative integer. Since pushing an integer constant is the only

variable length instruct ion, it is the only one for wh i c h the NEX'J'

key is required to indicate the end of' the s t at.erno n t . 'I'hr: 1,:1rn:;1,:

key is specifically recognized by the parser which er·ases the Laut.

displayed character and returns to the appropriate previous state.

Section 1 ends by allowing the student unlimited time to experi

ment with the stack. The list of suggested experiments shown in

Figure 7 is available via the HELP key. Figures 8-10 show some

typical experimentation.

3.1.4 Evaluating Polish Postfix Expressions

Section 2 of STACKS contains a monitored task to use the stack

to evaluate arithmetic expressions written in Polish postfix nota

tion. The purpose of this task is to demonstrate to the student

a use of the LIFO regime. Figure 11 shows the introduction to this

section. Figures 12 and 13 show the introduction of a slightly

enhanced environment including an expression, a cursor that shows

progress in evaluating the expression and an area in which the

instructions are to be written. The student can then choose to see

the standard demonstration expression or randomly generated expressions.

-7-

Some stages in the evaluation of the standard expression are

shown in Figures 14-16. This expression, the stack instructions

used in evaluating it and the commentary made while the evaluation

proceeds are all programmed explicitly into the lesson. The stu

dent controls the pace of the demonstration by pressing the NEXT

key for each step. In this way (s)he has full opportunity to observe

and comprehend the process. When the demonstration is over (Figure

17), the student can ehoose to do undirected experimentation, to

return to the index or to continue on to the mon.l t.o ced tar; k.

In the second subsection of the expression evaluation sectioti,

postfix expressions are generated by the lesson program. A flow

chart of the generation algorithm is shown in Figure 18. The elements

of the expression are stored in the array expr; fexpr is an index

into that array; rexpr keeps track of the depth of the stack when

the part of the expression thus far generated will have been evaluated.

The generation algorithm is based on the following points:

1) For simplicity, the elements of the expression are single

characters -- one digit positive integers and the ope~ators +

' I , and *

2) The expression is to contain at least one operation.

3) The expression is to be a maximum of 11 characters long.

4) The expression cannot be complete unless rexpr = 1.

5) If rexpr = 1 and the expression is less than 11 characters

long, we stop with probability 1/3.

6) Just before adding the fexpr+lst element, fexpr + rexpr - 2

is the smallest number of characters a completed expression can

-8-

have, and .this minimum will be attained only if the rest of the

characters are operators. If an operand is added, the minimal

length will increase by 2. Therefore, once the minimal length

exceeds 9, only operators may be added.

7) If rexpr = 1, the next element must be an operand.

8) If there is no specific reason to add either an operator

or an operand, decide randomly with equal probability.

The constructed expression is both stored and displayed on the

screen. The student can evaluate the expression him/herself, or

have it evaluated automatically as (s)he repeatedly presses the

NEXT key (Figure 19). The lesson contains an evaluator capable of

evaluating any expression the generator is capable of generating.

The evaluator also displays the instructions it is using, as did

the demonstrator.

If the student evaluates the expression (Figures 20-23), (s)he

is monitored by two basic monitoring routines. One monitors what·

(s)he does with operators, the other monitors what (s)he does with

operands. Both compare the actual state of the environment after

each stack instruction with the correct state. · If the actual state

is correct, the cursor advances and the task continues. If the

state is incorrect, the monitor undoes the laBt operation, crosses

it off and writes an appropriate message. This rigorous monitoring

was chosen because it was felt that the results of a mistake would

not be obviously wrong to the student.

-9-

3.1.5 Traversing a Binary Tree

Section 3 of STACKS introduces a binary tree and asks the student

to traverse it. This material is more advanced that the rest of

STACKS, corresponding to Section 2.3.1 of Knuth [5] and Chapter 12

of Harrison [4], but is included because it also demonstrates the

LIFO character of a stack. The enhanced environment for this sec

tion is introduced as shown in Figure 24. It includes a binary

tree, null pointers, one pointer variable and two new expressions

for the STACKS language.

The student is presented with the environment as shown in Figure

25. There is one suggested task of trying to "visit" each node

of the tree. The student is also given two additional instructions.

Pressing "v" causes the node pointed to by£ to be checked as having

been visited (see Figure 26). The student can press "t" to start

all over with an empty stack and£ pointing to the root. As can

be seen from Figures 25-28, the only node whose contents is visible

is the one currently being pointed to. The purpose of this and

other features of this environment is to force the student to use

the stack as his/her only memory. The student has full freedom

to enter any instruction of the enhanced STACKS language at any

time. Popping a number into the variable£ causes£ to be moved

appropriately. If the number of the address of a node of the tree,

£ is changed to point to that node (Figure 26). If zero is popped

..

into£, the result is as shown in Figure 27. If any other number

is popped into£, the result is as shown in Figure 28.

Although internally, the nodes are addressed consecutively

1-13, these addresses are disguised for the student to prevent

-10-

his/her learning them. The formula for the student address is

i 0
if ta = 0

sa =
a*ta+c if ta t- 0

where ta is the true address, a is a random number between 1

and 60, and c is a random number between 100 and 200. Whenever

the student starts over by pressing "t,11 a and c are chosen

anew.

No additional error messages are provided, as it is obvious

when a node becomes unreachable, and the student can then start

over at the root.

3.2 LISTER*

3.2.1 Purpose

The purpose of the LISTER lesson is to introduce linked list

proces~ing and the pointer concept. This is done by representing

pointers both as addresses within an array and as arrows. This

lesson presentation corresponds to Sections 2.1 and 2.2.3 of Knuth

[5] an~ Section lOd of Berztiss [l]. The lesson allows undirected

experimentation in the environment using a language designed to be

executed in the delayed mode. The title page is shown in Figure 29.

3.2.2 The LISTER Environment

The LISTER environment is introduced to the student as shown

in Figure 30. It consists of six variables and 25 words of list

space. Each word of list space contains an information field and

a next field. The contents of the variable, the information fields

•

* The initial design and programming of this lesson was done by
Stephen F. Ziegler.

-11-

and the next fields are shown as numbers. An arrow is drawn from

each next field to the word whose address is contained in that

field (see Figure 34).

3,2,3 The LISTER Language

The LISTER language is defined in Figures 31 and 32. It is

a very simple language, but rich enough to write interesting pro

grams for the LISTER environment. The parser is designed the same

way as the STACKS parser described above, so it is impossible for

the student to enter a syntactically illegal statement. Since the

language is designed for delayed mode execution, each statement

is stored in the student's lesson memory and can be accessed by the

processor via an array indexed by the statement step numbers . . .
Since the environment is not cleared between programs, the student

can get the effect of immediate execution by writing a series of

one-line programs.

A typical initialization program is shown in Figure 33 just

after eritry of the stop statement. An arrow points to the next

statement to be executed, which is done when the student presses

the NEXT key. The student can observe the effect of each state~

ment as it is executed and thereby learn how the envi~onment works

and also discover any mistakes (s)he has made. The results of

executing the program in Figure 33 are shown in Figure 34.

Generality in drawing the arrows is attained while preserving

readability by establishing a series of "lanes" to the right of

the list space and storing which lanes are in use and where. This

information is used to pick a clear lane for each new arrow.

-12-

3.3 NODER

3.3.1 Purpose

The NODER lesson allows students to gain experience manipulating

singly-linked lists using the representation most common in texts

and class lectures. Nodes are shown as rectangles divided into two

fields, only one of which (the Next field) is currently used in

NODER. A pointer is shown as an arrow, pointing from the Next field

of one node to another node. The student can build any data struc

ture that it is possible to construct with single-linked list struc

tures. Rather than attempting to solve the general problem of how

to draw any such list structure for best readability, the student

is provided with the ability to move any node anywhere on the screen

most convenient f6r himself. The title page of NODER is shown in

Figure 35.

3.3.2 The NODER Environment

The NODER environment consists of 31 nodes and three pointer

variables. Nodes in available space are not displayed, neither

are pointer variables whose values are the null pointer. Nodes in

use are displayed on the screen and each pointer variable is written

above the node it points to. The ground symbol or an arrow pointing

to another node emanates from the Next field of each node. If the

Next field of a node points to a node in available space, the arrow

points off the screen. Moving nodes around can cause other nodes

to be partially or completely erased. To recover from this condition

the student can ask for the entire display to be redrawn. Although

-13-

the student is responsible for returning unneeded nodes to available

space, the situation may arise where there are unreachable nodes on

the screen. To recover from this situation, the student may call

on an animated garbage collector.

The internal address of each node is an integer between 1 and

31. The null pointer is equal to 0. To manage the NODER environment

.th the following data are stored for the 1 node, lsis31:

locx(i) and locy(i) are the x,y coordinates of the position of

node ion the screen.

nxt(i) is the address of the node pointed to from the Next

field of node i.

nvbl(i) is a 3 bit number indicating which of the three pointer

variables point to node i.

prev(i,j),lsjs31, is one bit which is on if node j points to

node i.

availnd(i) is one bit which is on if node i is in available

space.

3,3,3 The NODER Language

The NODER language, executed in the immediate mode, is described

in Figures 36 and 37, A summary of the language is visible while

the student is in the environment and (s)he is able to review the

detailed description at any time by pressing the HELP key.

Although the parser could have been implemented in the same way

as the S'rACKS and LISTER parsers, the TUTOR arrow and judging commands

were used to compare the techniques. For this purpose the three

"words," "p," "q," and "r" were defined to be synonymous, as

-14-

were the words consisting of from one to eight "n"s.

are, therefore, the "understandable" sentences:

The following

1. replot 6. p <= p

2. sweep 7. p <== A

3, move p 8 . p <= np

4. p <= avail 9. np <= p

5 . avail <= p 10. np <= A

11. np <= np

My current thoughts on the results of this comparison are that for

small languages such as those used in STACKS, LISTER and NODER, thP.

ease with which the parser can be implemented is about the same

using each technique. Using the parsing automaton, the student

can be prevented from entering a syntactically meaningless state~

ment. Incorrect keypresses are ignored. Using the TUTOR judging

commands, meaningless commands can be entered and the quality of

the error message depends on whether or not the particular error

was forseen by the lesson writer. It would seem that there is more

danger of being distracted by irrelevant language errors when using

the TUTOR judging commands than when using a specially designed

parsing automaton. This conclusion might not generalize to lessons

that do not deal mainly with manipulation of an environment.

Figure 39 shows the NODER environment just after the student's

first instruction has been executed. The student is immediately

placed in the move mode since that is almost invariably what (s)he

would want to do next. In Figure 40, a small list structure has

-15-

been built. In Figure 41, a circular list has been added, but there

are now two garbage nodes on the screen.

Figure 41 shows the garbage collector in progress. The garbage

collection algorithm is shown in Figure 38. The student can see

this by pressing the HELP key while on the second page of the lan

guage description. Although it is not the purpose of this lesson

to teach garbage collection, the student is allowed to observe it.

Nodes on the screen that are reachable from pointer variables are

checked in the proper order at the rate of approximately one every

0.5 seconds. Then the "sweeper" (thanks to the art work of W.J.

Hansen) sweeps up the garbage nodes in the o r-dor- of t.hot r- iriLr·t·11:t·1

addresses. Finally the screen is replotted.

4. Future Development

Additional work on the three lessons described above, STACKS,

LISTER and NODER, would be beneficial. Experience with them has

resulted in definite ideas about how the PLATO system can be used

to construct interactive environments to teach data structures.

These ideas are crystallized in the points made in Section 2 above.

Additional data structures lessons will be written based on these

ideas. Needless to say, extens~ve student experience on these lessons

is needed before any final evaluation can be made.

Below, I briefly discuss some planned modifications to existing

lessons and some planned additional lessons.

4.1 STACKS

STACKS is useable as it is. The most beneficial additions would

be the ability to execute programs in delayed mode. Additional tasks

-16-

might also be useful. The Polish postfix task needs some introduc

tory material on the Polish postfix notation. This could develop

into an independent lesson covering prefix and infix notations as

well. The tree section will be the basis of an independent lesson

on binary trees (see below).

4.2 LISTER

LISTER needs some work before it is useable, as it is still

possible for the student to cause execution errors in the lesson.

An editor for the LISTER language is also needed. In addition,

there should be some suggested and some monitorPd tasks.

4.3 NODER

NODER is useable as it is: Some suggested and some monitored

tasks should be added. Also, the ability to execute programs in

delayed mode should be added.

4.4 Sequential Allocation

The environment would be a linear array on which the student

could carry out the operatioris for manipulating deques, queues and

stacks as discussed in Section 2.2.2 of Knuth [5],

4.5 Strings

A lesson on strings, written by Silas Warner for the Indiana

University Computer Science Department is a good start on a lesson

teaching how character strings can be represented and manipulated.

4.6 Structures with Two Links per Node

The techniques of NODER can be extended to an environment with

two links per node. The most useful approach would be to implement

the SLIP or LISP structures.

-17-

4.7 Sparse Matrices

The use of orthogonal list to represent sparse matrices is

particularly difficult to explain in a static medium. A PLATO

lesson demonstrating this technique would be useful.

4.8 Polynomials

A lesson on using lists to represent polynomials can also be

written along the lines of NODER. The data structures of a lan

guage like SAC-1 [3] should be implemented.

4.9 Trees

The tree section of STACKS can be developed into an independent

lesson on trees. Monitored tasks involving various traversal algo

rithms and tree building can be included. Generality can be attained

by using the techniques of NODER on nodes with two link fields and

one information field.

4.10 Graphs

The techniques of NODER can easily be generalized to arbitrary

graphs, showing vertices as circles connected by directed or undi

rected edges. Graph theory, graph manipulation algorithms and appli

cations of graphs can be taught in this way.

4.11 Garbage Collection

The environment would be a list space containing randomly gener

ated lists and garbage. The student would have to find and collect

the garbage using only the storage provided.

-18-

~.12 Dynamic Storage Allocation

The environment would be a large array of words, blank for

unused, colored for in use. Several allocation schemes would be

pre-programmed and the student would be allowed to write his own.

The student could also provide a request sequence or use a lesson

generated one.

5. Conclusion

Several lessons have been written on the PLATO system to tea~h

data structures by providing the student with an interactive environ

ment. Techniques and approaches developed while writir1g these

lessons are readily applicable to other lessons on data structures

and hopefully to other material as well.

· -19-

References

1. Berztiss, A.T. Data Structures Theory and Practice, Academic

Press, New York, 1971.

2. Bitzer, D.L.; Sherwood, B.A.; and Tenczar, P. Computer-based

science education, CERL Rep6rt X-37, University of Illinois,

1972.

3, Collins, G.E. Computer algebra of polynomials and rational

functions. Arn. Math. M. 80, 7 (August-September, 1973), 725-

755,

4. Harrison, Malcolm C. Data Structures and Programming, Scott,

Foresman and Co., Glenview, Illinois, 1973,

5, Knuth, Donald E. The Art of Computer Programming Vol. 1/Funda

rnental Algorithms, Second Edition, Addison-Wesley, Reading,

Massachusetts, 1973,

6. Nievergelt, Jurg; Reingold, Edward M.; and Wilcox, Thomas R.

The automation of introductory computer science courses. Inter

national Computing Symposium 1973, Davos, Switzerland, Septem

ber, 1973,

7. Shapiro, Stuart C., and Witmer, Douglas P. Interactive visual

simulators for beginning programming students, Fourth Symposium

on Computer Science Education, SIGCSE Bulletin 6, 1 (February,

1974), 11-14.

-20-

s
T
A
C
i<
s

Stuart C. Shapiro
Computer Science Department

Indiana University
Bloomington, Indiana 47401

(821) 337-1233

Some exercises on using a stack

press (t~E~T)

F1p;ure 1

..

-21-

Press the number of the section you want.

ulhen mJ(8fi:f) i e a.ct i ve , it can be used +o
skip introductory text.

When you are finished with the lesson,
press C!!m1:sr.2!:).

•

1) Introduction to stacks.

2) Use of a stack to evaluate arithmetic
expressions in Polish postfix notation .

3) Traversing a binary tree using a stack.

Figure 2

..

-22-

STACKS
Conceptually, a STACK is a linear arrangement

of things such that only one end may be accessed.

That is, everything enters and leaves the
stack at th~ same end, whicr 1s called the iOP
of the stack.

The other end is called the BOTTOM.

Since the Last thing In is the rirst
thing Out, a stack is also called a LirO list.

We say you. PUSH somethi l1g on a stack
and POP it off.

pre~.5 (r-10:r)
or rnt!mQ1~~!.)

Figure 3

.. ... • ..

-23-

STACKS
-we will U5e this to represen~ a STACK.

Si nee any r-ee 1 stack can ho 1 d on 1 y eo many
things, our stacks will be labelled with their
capacity.

This particular stack can hold at most 5 numbers.

/

/
,/

,;

press (t~ExT)
or mm~@

Fic;ure 4
... .. .I

-24-

STACKS
Besides the stack, we will use 3 variables:

D L] r

D
You will need to use the keys with the vertical
arrows, t and+ on them.

press (tiEXT)
or mm)(tffXT)

.. F'i gure 5

-25-

To PUSH a number on the etack, enter+, followed
by the number , f o 1 1 owed by (NEXT).
Or enter + fol lowed by p,r o , or r.

To POP the stack, enter t and either p, q, or r.
You· may use (rn,m) to erase a character you have j u:::,t written.
Now you may experiment with the stack.
I f you need some suggest i ons, press frm .. P).
When you are finished experimenting, press (EIACK),

< •
Figure 6 ..

+<number>~~
+<p, q1 or r>
t<p, q, or r>
(BACK) for index

-some Suggestions for Experim~ting with the Stack
'.)

1) How many numbers can you push onto the stack?

2) What happens i f you try to push more than that on?

3) What happens i f you pop an empty stack?

4) Can you ue.e p, q and r to store numbers?

5) Be sure to tr>'i the (ERft5E) key.

Figure 7

-26-

+ 1
+2
+3
tp
tq

Figure 8
"

-27-

+ < number > (NEXT)
,Hp, q, or r>
t<p, q, or r>
(BACK) for index

I

+ 1
+2
.3
tp
tq
tr
tp

..

ll(!fll

LH~DERFLOW

-28-

r

Cu

+ < number > (NEXT)
+<p, q, or r>
t<p, q, or r>
(BACK) for index

Figure 9 ..

+ 1
+2
-!-3
tp
tq
tr
tp
+p •
+q

- +r
+r
+q
+p

..
Figure 10

-29-

r

uJ

r-t~,E,iF-L l J l) ·,/ - f"'~:. l) ... ,

+ < number > (NEXT)
+<p~ q, or r>
t<p, q, or r>
(BACK) for index

.. ..

-30-

Using a STACK to evaluate POLISH POSTrIX Expressions

In th 1· e c: """'+ 1· on '· -ou w 1· 1 1 LI·=,,.-. .,,... ,,,.,t ,~ ,.·,}·· to ' ,_J - ,._..,., ... • .. ,, ,,,,, ··-' '),. ""' ··- ~

evaluate Polish Postfix expressions.

The section is organized as follows:

1) A standard expression is evaluated for you
with commentary, so you can see how it is done.

2) Expressions are generated using random number
generators. You have two choices with each expression:

2a) You can have the expression evaluated for
you to review the technique. No commentary is
provided.

2b) You can enter the necessary instruction
to evaluate the expression. PLATO will catch
any mistakes you make and try to get you ba~k
on the right track.

Since this is a lesson on stacks, only1the
push and pop instructions will be nec~ssary.
All other needed Of~erations will be done for vou. . ~

Not ice hoi» the LIF'O cherac+er- of the sta-ck~
1s intimately connected to tl,_~-~~o-n_e~pass evaluat-ion
of a Polish Postfix expressi~,1

press ~~!)

Fic;ure 11

-31-

Using a STACK to evaluate POLISH POSTrIX Expressions

FIRST
OPERAND OPERFlTOF;'

SECOND
OPERAND

D D-

Figure 12

RESULT
r

D

-32-

,,.-~ ~ .. ~·.,~--···- .

Using a STACK to evaluate POLISH FOSTrIX Expressions

FIRST SECOND
OPERAND OPERAT0~ OPERAND

L] D L]
This is the expression:
8 2 3 + X 4 /
t

RESULT
r

D
If you've seen this already,
press ~ otherwise pre~.:s (t{ExT)

STACI<
INSTRUCT I or-JS

\
--

Figure 13 ..

This

-33-

Using a STACK to evaluate POLISH POSTrIX Expressions

FIRST
OPERAt··,JD

D
1s the expression:
3 + x 4 /

t

STAO<
INSTRUCTIONS

\.

.. .l

+8
+2
+3
tq

SECOND
OPERATOR OPERAND RESULT

Q r

GJ - D -
Now the top 1 e the 15~ operand.

press (HEXT)

Figure l4 ...

-34-

Using a STACK to evaluate POLIS:~ POSTF"IX Expressions

FIRST
OPERAND OPERATOR

SECOND
OPERAND RESULT

r

D
This is the expression:
8 2 3 + X 4 /

t

The ls~ oper~nd was t~e 1~\ one
stacked; We're now ready for it.

+8
+2
+3
tq
tp
+5
tq

STACK
INSTRUCTIONS

... j -·
Figure 15 !

"' J

-35-

Using a STACK to evaluate POLISH POSTfIX Expressions

FIRST
OPERAND

This is. the expression:
8 2 3 + X 4 /

t

STACK
INSTRUCTIONS

..

+8
+2
+3
tq
tp
+5
tq
tp
+ 4.0·
+4
tq
tp
+lH

OPERATOR
SECOND

OPERAND

Q-
RESULT
r

UQ]
I o

We are now finished.
The top of the stack 1s the result1

Figure 16
" . ..

pr-ee.e (tiEXT)

.. ..

-36-

Using a STACK to evaluate POLISH POSTrIX Expressions

FIRST
OPEF!AND

This is the expression:

r.'. I
. .

STACK
INSTRUCTIO~~S

. i

+8
+2
+3
tq
tp
+5
tq
tp
+4H
+4
tq
tp
+1.0'

OPERATOR
SECOND

OPERAND

GJ-
RESULT
r

[ii]
t • • • •

Press (NEXT) for a not her expression
~ to play with the stack
[BACK) . for index

Figure 17
...

Build a
Postfix Expression -37-

rexpr-c--· 0

randint(l)

randint(2)

for fexpr +- 3 to 11

Yes
>-----4i arg2 +- fexpr + rexpr - 2

for fexpr +- fexpr to arg2

I / randopifexpr) j I
randop(fexpr) randint(fexpr)

Stop

randint(fexpr)

1/9

rexpr+- rexpr-1 ~-~·Return rexpr+- rexpr+l -- Return

' r

Figure 18

-38-

Using a STACK to evaluate POLISH POSTrIX Expressions

FIRST
OPERAND

This is the expression:
1 2 8 X 1 5 - / + 7 /
t-

STACK
INSfRUCTIONS

\
'

... J.

+8
+2
+3
tq
tp
+5
tq
tp
"'4.0'
+4
tq
tp
+ 1.0'

(SECOt\lD
OPERATOR OPERAND RESULT

r

[ii]
I I f I

Press ffi) to do this one yourself
Press ~~Ex~ and I'll do it.

Figure 19
j

-39-

i
• i

l

Using a STACK to evaluate POLISH POSTrIX Expressions

FIRST
OPERF1ND

This is the expression:
1 2 8 X 1 5 - / + 7 /

.,.

STACK
INSTRUCTIONS

• .J, ...

+8
+2
+3
tq
tp
+5
tq
tp
.. 4.0'
+4
tq
tp
+ 1 ff
+ 1
tp

SECOND
OPERATOR OPERAND RESULT

Q r

[J -
~ -

. • I I I

Push the number above the t·

+ < number > (NEXT)
+<p, q, or r>
t<p, q, or r>
(B!~~) for index

.. Fi1.:urc 20 .. J

-40-

Using a STACf< to evaluate POLISH POSTF'I>< Expressions

FIPST SECOND
OPERAt··JD OPE RAT OF? OF'ERf~ND RESULT

ctl ct] r

[] - D -
This 1s the ex)ress1on: ·--·-·

1 2 8 X l 5 - / + 7 /
t

tq

• tp
.+r
+ 1
+5
tq
tq

+ < number > (t;E)-:T)
+<p, q, or r>
t<p, q, or r>
(BACK) for index

STACK
INSTRUCTIONS

F:ie;ure 21
., .,,

-41-

Using a STACK to evaluate POLISH POSTfIX Expressions

f--IRST
OPERFlND

This 1 s. the expre:55 ion:
1 2 8 X 1 5 - / + 7 /

t

•

STACK
INSTRUCTIONS

' .

tq
tp
+r
+1
+5
tq
tq
tp
+r
tq
tp
+r
tq
tp
:;7

\

OPERATOR

GJ
SECOND

OPERf,t\JD

GJ-
RESULT
r

uJ
I t I t I t

No, push the result on the stack.

Figure 22 ..

+ < number > (t,EH)
+<p, q , or r>
t<p, q, or r>
(BACK) for index

-42-

Using a STACK to eve. I ue t e POLISH P0~3TFIX Expre5s i C>ns

FIR::iT
OPERF1t··JD

STACK
INSTRUCTIONS

\

,;

tp
+r

I

Or1ERATOF!
SECOND

OF'EF!nND RESULT

f-',·e.:::.b ~it:ifU t 01 e.nc t, f 1,.;::r e: .. pret::.51011

[Ei;J to play i,).J i th t r1c.:': stack
@T!£0 f or i nde x

Figure 23
"

-43-

Using a STACK to Traverse a BINARY TREE

A BINARY TREE is either EMPTY,

or consists of a ROOT NODE and two binary SUB-TREES.

We wil, use this to re~resent a NODE.

This field will contain
some INFORMATION . This field~ ...__ _ __.___,,.--,

will point to the root
of the LEFT sub-tree. This field will point to

the root of the RIGHT sub-tree.

This will represent a pointer to the empty tree.
J_

We w i 11 u.se p as a. pointer variable.

Lp IJJill refer to the Left subtree of p.

Rp ().Ji 1 1 refer to the Right subtree of p.

press ~,EXT)

.. ..

-44-

Using a STACK to Traverse a BINARY TREE

Try to move p 50 it "vi5its"
each ric-de ,

Pop a pointer into p to move it.
Press II II t • -t • . t v o reg1s:er a v1s1 .

"t II to restart e.t the r-oo t .
or other options at right.

Fic;urc 25
...
'

.,. . ..

.: , , ,
/ I LI

V
I/
I/
II
II

') C, ~
L..- -·· j

J

j

)

• < number > IFi::~:rJ
+ <p, q, or r >
-.<L or R>p
t<p, q, or r>
(BACK) · for i nde-::-·:

..

-45-

Using a STACK to Traverse a BINARY TREE

'

Try to move p so it "v i ei ts"
each node.

Pop a pointer into p to move it.
Press " v " to re,g i ::st er a. v i ::s i t .

"t" to restart at the root.
or other options at right.

Figur_p 2G

+ < number- > ft~o:r)
+<p, q, or r>
+<Lor R>p
t<p, q, or r>
(BACK) for index

..

-46-

U5ing a STACK to Traverse a BINARY TREE

-- ---

Try to move p so it "visits"
each node ,

Pop a pointer into p to move it.
Press "v" to register a visit.

"t" to restart at the root.~~~
or other options at right.

... • .. Figure 27
*

+ < number > (t~EXT]
+<p, q, or r>
+<Lor R>p
t<p, q, or r>
[BACK) for index

.. .l

-47-

'·

Using a STACK to Traverse a !INARY TREE

. '

THAT DOES NOT.POINT TO
A NODE OF THIS·TREE!

Try :to move p so it "visits"
each node.

Pop a pointer into p to· ir,ove·1 t.
Press "v " t: o reg i st er a. v i s it ~ ·.

"t" to restart a+ the root. --
or other options at right.

&! ..

+ < number > (ti EXT}
+<p,. q , or r-»
+<Lor R>p
t<p, q, or r>
(BACK} for i ndex

Fie;ure 28
• .. J ..

-48-

Stuart C. Shapiro
Computer Science Department

Lndi e.ne Uni ver-e i t>',
Bloomington, Indiana 47401

(821) 337-1233

I

A singly linked list processing language.
You can write programs and observe their execution.
Pointers a re s hov . m a.s both numer- i ca 1 a.ddresse5 and arrow~ ..

pre~.s ~•EXT} or m]DfuEX!) to ~:==.k j n i n+ ro

.. .. Figure 29 • • "' .. ' ..

-49-

... .,.,,......-r-~·,.. -..-... .. _, .,-~~--,· .

LISTE:R

- You ,.,.,i 11 be eb 1 ~= to ~·Jr i te erne 11 programs 1 n
a simple liet proce~s1ng language.

There are six variables:
U V W X y Z

Each variable can contain a non-negative integer
up to eight digits long (.0' - 99999999) •

There are 25 words of List Space with numerical
addresses 1 - 25.

Each word of List Space has two fields:
an Information field and a Next field.

The Informati.on field can hold numerical information.
The Next field can hold an integer in the range 0 to 25.

The word·mav be considered as a whole bv referrine
1' ~ ~

to its Contents field.
;
i.

press {tc-:r) or mt}(t4EXT) to skip intro

... .. FiGure 30

· -50-

The LISTER Language

There are j u.2,t 3 t~)pes of statement:::: . 1 n LISTER:

1) The Replacement Statement

2) The Transfer Statement

3) The Stop Statement

Plus, each statement is labelled with a Step number
(which will be written for you).

There can be at most 16 statements in a program,
and the last must be a Stop statement,
but you will be able to write an arbitrary number
of programs without clearing memory in between.

press &iEXT] or Cli!l)(~~~T) to ek i p intro

' .4 I<'igur_.e 31

-51-

'!

The LISTER Language

1) The Replacement Statement: ref¢ exp [+ exp]

2) The Tranefer St~tement: t exp> exp. etep

·:
i

3) The Stop Statement:

where ref 1s: i) a variable: u, v, w, x, y or z
ii) a~field reference: c exp

1 exp
or n exp

and exp 1 :::, : i) a non-negative integer
i i) ref

press {t•ExT)

Figure 32
J

-52-

VARIABLES LOCATION ·MEMORY

info n..:ovt - ._, ...
u. I (

2
V I 3

4
w I 5

6
X I 7

8

• y I 9
1 .0'

z 11
12

~ 1) W*l 13
2) i1*2 14
3) rn.oJ ,:,: vJ + 1 15
4) lt..1¢:tJJ+ 1 16
5) i W¢=l1J+W 1 7
6) t5>t.AJ.3 18
7) ·rn,~4::.0' 19
8) n2Ef,:=2.0· 2.0'
9) n25¢=15 21
1.0) 5 22

· 23
24

' 25

press ~~E:w:r)

Ficurc 33

-5}-

VARIABLES LOCATION

- ·-] 1 u
2

vi =1 3
4

w [_ 5 5
6

xi 7
8

y 9
1 .0'

z I 11
12

1) 13
14
15
16
1 7
18
19

.• 2.0·
.· 21

22
23
24
25

Figure 34

MEMOR\'

info next r-;-·---- -
' 2

~)
. ~

4 3 -.,
6 4 ...

I+)
8 5 -· +.I
1 ff 0 t'!,

·-

+

2.H ""·, -·

15 .._.

-54-

Stuart C. Shapiro
Computer Science Department

Indiana University
Bloomington, Indiana 47401

(ti 2 1) 3 3 7 - 123 3

A singly linked list p~ocessing language.
List nodes are shown as boxes, pointers are shown
as arrows. N~rlPs mav be r~laced where desired for ,·

ea.se o f v 1 evJ 1 ng .

press (NEXT) or 0lm~E:-:T) to skip intro .

•
Figure 35

-55-

(page. 1 J

< p, q, r > ¢ <=1.V,::1. i I]
•

To get a new node. It will be pointed to by the
variable p, q, or r. There are 31 nodes available.
Each node appears on the screen at the same place
move it before gettirg another one.

I avai 1 ,:=, <p, q, r>

To return a node to AVAILable space.

' l

[move <p, q, r>

To move the node pointed to by p, q, or r.
Use the eight arrow keys to move the node.
Shifted arrow kevs will move it 8 times as far. ,,•

F're:::,:::, (E;AO::'i 1,,t.Jhen the nodE': 15 l n the de::, ired po:::, it i err.

[replot .I
To erase and redraw the display if it gets too
messy from rnov i ng: nc,ck::::s a.round.

press (MEXT) or ei!D])ftiExT) to ek i o intro.

Figure.36

-56-

T_r_1"'_ . ..::_~JODER La .. n_=g_u_a.=g;...e __ _;.i.(p_a_.;:gc:::..e_z_-·)~

To move a pointer or change the next field of a
node.
n* means n may appear zero or more times
(pre~ently 8 is the naximum).
Examples: p¢q np¢nnr nnnnnq¢r

l n, f~ ·"'j l- .. ·,, .~ ,':ii . .,.. ····-' ' '·:1 ' •

' I

To set a pointer variable or some next field to
the nu.11 1:::,o inter. To t:,..-pe >,., pre:::.s ~·1ci::1:il, then 1 •

. To call 1n the garbage collector.
If, by chance, you wind up with nodes on the
screen that are not reachable from any pointer
variable, you will not be able to return them
to AVAIL. In that case, you may ask the garbage
co 11 i;:'.ctor t,:, ":::,1,.1 . .1eep ,::1.1 .. ,,,a~)" your garb,=1.g:e.
For details of the garbage collection algorithm,
pre:s5 IHELP:1

press ~4EXT)

... .. Figure 37
. .. - -···· ..•. ·-· ... ··" ..

-57-
~ ... ,.,,,, .. ~· '. ·-·----·· ... _,

CC'! IEE"O "'··1
._J). '" ,:::!.:.__,I

mark] ... ·----··--- --- .. --···--------
for o 1 ,~ f), (·1, r -~ritjill _ co 11 ect

for :, 1 .,~ 1

,e:5 ' .,

10

,, ·" .. ,•'

\...te:~
,·

'• ...

u nmar-k •, ,,.

[rnark node ,:: 1
f o-:--· _.1 ¢: l, to 3 1 b•,.• 1
....---'-----l i

.. ,,'

. ,,•

(
......

~;TOF')
press (un:T)

Figure 38
. ,J ' ,;

-58-

"
' .;: ' ,-·- - .. < • • ·:- ·~- ·

MANIPULATING SINGLY-LINKED LISrS

p rn
,,

) pe ave i 1
You can now_ move +h i e node. Press (BACK) when done.
Options: <p, q, r> -~ a.vai 1 avai 1 ¢: <p, q, r>

n* <p, q, r> * n* <p, q, r> replot
n * < p , q , r > ¢:).. ((MICRo)l for)..) sweep

~move < p , q, r > 1 1 etter abrev. a l ioaye a 11 Ol.1.1ed
(HELP) for more details .

•

- .l
Figure 39 ...

-59-

,.
'-"'P"" ,. .•• ,-·-~···~ ,.- ... -- ~ ... , ··-

MANIPULATING SINGLY-LIN~<ED LISTS

Options: cp , q , r> ¢: a.vai 1 ·• avai 1 ¢: <p, q, r>
n* <p, q, r> ¢: n* <p, q, r> replot
n * < p , q , r > ¢:).. ((t11cRo) 1 for)..) sweep
mq_ve < p, q , r > 1 1 etter a.brev. a l uraye ,3. l l 01..oJed
(HELP] for more deta i ls.

Figure 4o ..

..
-60-

'4 -- -· ·~~v·-.~,.~~-- ~ ,..., ~--· . ,. .. _,,... _,. . ..,.., .. ···--·.

MANIPULATING SINGLY-LINKED LISTS

Options: <p, q, r> * avail
n* <p, q, r> * n* <p, q, r>
n* <p, q, r> *).. ((r11cRo}l for
move <p, q , r> 1 letter
(HELP) for more deta i 1 e .

avail• <p, q, r>
replot

)..) s1.lJeep
abrev. always allowed

Figure 41

. -

-61-

.. '

MANIPULATING SINGLY-LINKED LISIS

) s1,.1Jeep

Options: <p, q, r> ·¢: a.va i 1
n* <p, r> * * q, n
n* <p, q, r> * ~.

avail* <p, q, r>
<p, q, r> replot
(~1rn~l for A) sweep

m6ve <p, q, r> 1 letter abrev. always allowed
(HELP) for more details.

"'J' rur c Ji-" .r -L .L1:: c:

" j .I

