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PROCESSING, BOTTOM-UP AND TOP-DOWN

“Bottom-up” vs. “top-down,” “forward” vs. “backward,” and
“data-driven” vs. “goal-directed” are three pairs of modifiers
for terms such as “chaining,” “inference,” “parsing,” “process-

ing,” “reasoning,” and “search.” They express essentially the
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same distinction, their difference lying in different metaphors
drawn from different subareas of computer science and Al. The
bottom-up—top-down distinction comes from parsing (qv); the
forward—backward chaining distinction comes from rule-based
systems (qv); goal-directed comes from problem solving (qv)
and search (qv), and data-directed comes from discussions of
control structures (qv). Now, however, they are virtually inter-
changeable.

One general way to consider the distinction is from within
the paradigm of search. The basic issue of all search is to find a
way to get from where you are to where you want to be. If you
organize this by starting from where you are and search until
you find yourself where you want to be, you are doing forward,
data-directed, or bottom-up search. If you think about where
you want to be, and plan how to get there by working back-
ward to where you are now, you are doing backward, goal-
directed, or top-down search. Notice that, having found the
route during backward search, you still have to get to your
goal. Although you are now moving in the forward direction,
this is not forward search because all the search was already
done in the backward direction.

Another general way to consider the distinction is from
within the paradigm of rule-based systems (qv). A generic rule
can be thought of as having a set of antecedents and a set of
consequents. When the rule-based system notices that all the
antecedents of a rule are satisfied, the rule is triggered and
may fire (whether all triggered rules actually fire depends on
the specifics of the rule-based system). When the rule fires, the
consequent propositions are added to the knowledge base and
the consequent actions are performed. These steps of trigger-
ing and firing happen as just described regardless of whether
the rule-based system is using forward (or data-directed or
bottom-up) reasoning or backward (or goal-directed or top-
down) reasoning. To make the distinction, it is useful to isolate
the step of rule activation. Only activated rules are subject to
being triggered. In forward (or data-directed, or bottom-up)
reasoning, whenever new data is added to the system, the data
is matched against all antecedents of all rules (actual systems
are more efficient than this sounds). If the data matches an
antecedent of a rule, that rule is activated (if it is not already
activated), and if all antecedents of the rule are now satisfied,
the rule triggers. When a rule fires, the consequent proposi-
tions that are added to the knowledge base are treated like
new data, matched against antecedents, and may cause addi-
tional rules to be activated and to be triggered. In backward
(or goal-directed, or top-down) reasoning, rules are not acti-
vated when data is added. Rather, when a query is asked of the
system, or the system is asked to do something, the query (or
goal) is matched against all consequents of all rules (again,
actual systems are more efficient than this sounds). If the
query matches a consequent of a rule, the rule is activated, all
its antecedents are treated as new queries or goals (now called
subqueries, or subgoals), and may activate additional rules.
Whenever a query or subquery matches an unconditional
proposition in the knowledge base, it is answered, and if it
came from an antecedent, the antecedent is now known to be
satisfied. As soon as all antecedents of some rule are known to
be satisfied, the rule triggers and may fire. When a rule fires,
the queries that activated it are answered, and now other an-
tecedents may be known to be satisfied, and their rules might
be triggered. Notice that the triggering and firing of a rule
always seems to happen in a “forward” direction, due to the
significance of “antecedents” vs. “consequents,” but what dis-
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tinguishes forward from backward chaining is when the rule is
activated.

Some of the history of these terms is discussed below, fol-
lowed by explanations of the distinctions via examples of pars-
ing, rule-based systems, and search. Then there will be some
comparative comments and, finally, some discussion of mixed
strategies.

History of Terms

Bottom-Up versus Top-Down. The earliest published occur-
rence of the phrase “top-down vs. bottom-up” seems to have
been in a 1964 paper by Cheatham and Sattley (1), although
the term “top-down,” at least, seems to already have been in
use:

The Analyzer described in this paper is of the sort known as
“top down,” the appellation referring to the order in which the
Analyzer sets its goals. . . . The order in which a “bottom up”
Analyzer sets its goals is much more difficult to describe. . . .

(2

It took a while, however, for these terms to become fully
accepted. In 1965 Griffiths and Petrick (3) used the terms “bot-
tom-to-top” and “top-to-bottom”:

There are many ways by which the typology of recognition algo-
rithms for [Context Free] grammars can be approached. For
example, one means of classification is related to the general
directions in which creation of a structural description tree pro-
ceeds: top-to-bottom, bottom-to-top, left-to-right and right-to-
left.

However, in 1968, they use the terms “bottom-up” and “top-
down” in a title (4).

Also in 1968, Knuth (5) used the term “bottom-up” to de-
scribe a function “which should be evaluated at the sons of a
node before it is evaluated at the node” and “top-down” to
describe a function f as “one in which the value of f at node x
depends only on x and the value of f at the father of x.” Knuth
encloses these terms in quotes.

By 1970 Early (6) used the phrase “the familiar top-down
algorithm” without attribution in the abstract of an article,
and by 1973 “The Top-down Parse” and “The Bottom-up
Parse” appear as section titles in a text (7).

Bottom-up and top-down parsing are referred to as the
“morsel” and the “target” strategies, respectively, in Ref. 8,
p. 87, where the Predictive Analyzer of Kuno and Oettinger (9)
is cited as an early example of the target strategy, and “the
algorithm due to John Cocke and used in Robinson’s PARSE
program (10) was the earliest published example of a program
using a morsel strategy.” Calingaert (11) cites Lucas (12) as
the first described use of recursive descent parsing, which is a
form of top-down parsing.

Forward versus Backward Chaining. The terms “forward
chaining” and “backward chaining” almost surely come from
Newell, Shaw, and Simon’s Logic Theory Machine (LT) paper,
first published in 1957 (13). They discuss four methods used by
LT to help find a proof of a formula in propositional calculus
(qv). The last two methods discussed are called “the chaining
methods”:

These methods use the transitivity of the relation of implication
to create a new subproblem which, if solved, will provide a proof

for the problem expression. Thus, if the problem expression is “a
implies c,” the method of forward chaining searches for an ax-
iom or theorem of the form “a implies b.” If one is found, “b
implies c” is set up as a new subproblem. Chaining backward
works analogously: it seeks a theorem of the form “b implies c,”
and if one is found, “a implies b” is set up as a new subproblem
14).

This is not exactly the characterization of forward and
backward chaining given above, but the essential idea is
there. In both methods if a certain theorem is found, an appro-
priate subproblem is set up. In forward chaining the theorem
is found by matching its antecedent, and its consequent is
involved in the new subproblem, whereas in backward chain-
ing the theorem is found by matching its consequent, and its
antecedent is involved in the new subproblem. Finding a theo-
rem is analogous to activating a rule in the characterization
described at the beginning of this entry.

The rule-based system version of forward and backward
chaining grew out of the LT version via the production system
architecture of problem-solving systems promulgated in Ref.
15. :

Goal-Directed Processing. The notion of goal-directed be-
havior surely comes from psychology. In a 1958 psychology
text the following description of problem solving occurs:

We may have a choice between starting with where we wish to
end, or starting with where we are at the moment. In the first
instance we start by analyzing the goal. We ask, “Suppose we
did achieve the goal, how would things be different—what sub-
problems would we have solved, etc.?” This in turn would de-
termine the sequence of problems, and we would work back to
the beginning. In the second instance we start by analyzing the
present situation, see the implications of the given conditions
and lay-out, and attack the various subproblems in a “forward
direction” (16).

Also, goals and subgoals are discussed in the section on moti-
vation:

The person perceives in his surroundings goals capable of re-
moving his needs and fulfilling his desires. . . . And there is
the important phenomenon of emergence of subgoals. The path-
ways to goals are often perceived as organized into a number of
subparts, each of which constitutes an intermediate subgoal to
be attained on the way to the ultimate goal. (17)

Cheatham and Sattley, who are mentioned above as pub-
lishing probably the first use of “bottom up vs. top down,” also
compared top-down parsing to goal-directed behavior:

In our opinion, the fundamental idea—perhaps “germinal”
would be a better word—which makes syntax-directed analysis
by computer possible is that of goals: a Syntactic Type is con-
strued as a goal for the Analyzer to achieve, and the Definiens of
a Defined Type is construed as a recipe for achieving the goal of
the Type it defines. . . . Needless to say, this use of the term
“goal” is not to be confused with the “goal-seeking behavior” of
“artificial intelligence” programs or “self-organizing systems”
(18).

Needless to say, the several uses of “goal” indeed have much in
common.



Data-Driven Processing. The term “data-driven” seems to
have been introduced by Bobrow and Norman in a paper on
the processing of memory schemata:

Consider the human information processing system. Sensory
data arrive through the sense organs to be processed. Low-level
computational structures perform the first stages of analysis
and then the results are passed to other processing structures.
. . . The processing system can be driven either conceptually
or by events. Conceptually driven processing tends to be top-
down, driven by motives and goals, and fitting input to expecta-
tions; event driven processing tends to be bottom-up, finding
structures in which to embed the input (19).

They go on to use “conceptually driven” and “top-down” as
synonymous and “event-driven,” and “data-driven” inter-
changeably and synonymously with “bottom-up.”

Examples

Parsing. The simple grammar of Figure 1 and the sentence
“They are flying planes” will be used to illustrate and explain
the difference between top-down and bottom-up parsing. The
grammar is presented as a set of rules, numbered for the pur-
poses of this discussion. The direction of the arrows is tradi-
tionally shown as if the grammar were being used for genera-
tion of sentences. For parsing, the rules are backward—the
antecedents on the right side and the consequent on the left
side, as in PROLOG (see Logic programming). For example,
rule 1 can be read “If a string consists of a noun phrase (NP)
followed by a verb phrase (VP), then the string is a sentence
(S).”

Top-down parsing begins with S, the initial symbol, which
will be the root of the parse tree. This is equivalent to estab-
lishing the goal of finding that the string of words is a sen-
tence. Rule 1 says that every sentence will consist of a noun
phrase (NP) followed by a verb phrase (VP). Whenever there is
a choice, the lowest numbered rule is tried first, and the rule is
expanded left to right. Therefore, the next subgoal generated
is that of finding an initial string of the sentence that is a NP.
Rule 2 is activated, followed by rule 8. This situation is shown
in Figure 2a. Since “planes” does not match “they,” the algo-
rithm backs up, and in place of rule 2, rule 3 is activated
followed by rule 9, which succeeds. Next, the algorithm re-
turns to rule 1 and generates the subgoal of finding a VP.
Rules 5, 6, and 12 are activated, and rule 12 succeeds. This
stage is shown in Figure 2b. The rest of the top-down parse is
shown in stages in the rest of Figure 2.

Bottom-up parsing begins with the words in the sentence.

S— NP VP
NP - N

NP — PRO
NP —- ADJ N
VP — VT NP
VI -V

VT - AUX V
. N — planes

. PRO — they
10. ADJ — flying
11. AUX — are
12. V— are

13. V — flying

Figure 1. An example grammar.
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Again, additional ordering decisions must be made, so the left-
most possibility is tried first, as is the lowest numbered rule
when there is a choice. So, the first thing that happens is that
the first word of the sentence, “they,” matches the antecedent
of rule 9, which fires, analyzing “they” as a pronoun (PRO).
Then rule 3 fires, analyzing “they” as a NP. NP matches ante-
cedents in rules 1 and 5, but neither of these is triggered yet,
and the parse moves on to “are.” This causes rule 11 to fire.
(Although rule 12 is also triggered, it does not fire due to the
ordering rules.) Then rule 10 fires, followed by rules 8 and 2.
This stage is shown in Figure 3a. At this point, nothing more
can be done with the string NP+AUX+ADJ+NP, so there is
backtracking (qv) to the most recently triggered but unfired
rule, which is rule 4. Nothing can be done with the string
NP+AUX+NP, so again the most recently triggered unfired
rule fires, which now is rule 13, which analyzes “flying” asa V.
Then rule 6 fires, followed by rule 5. This is shown in Figure
3c. Nothing can be done with the string NP+AUX+VP, so
rule 7 fires, analyzing “are flying” as a single VT. Then rule 5
fires again, followed by rule 1, and the parse, shown in Figure
3d, is complete.

The purpose of this example was to compare top-down with
bottom-up parsing. The use of left-to-right order, numerical
order of the rules, and chronological backtracking was merely
to keep the two algorithms as similar as possible although
causing them to result in different parses.

Rule-Based Systems. Forward vs. backward chaining and
data-directed vs. goal-directed processing will be compared us-
ing some made-up rules for how to spend the evening. These
are shown in Figure 4 in the usual rule order, with the ante-
cedents to the left of the arrow and the consequent to the right.
For example, rule 1 says that if there is a good movie on TV
and I have no early appointment the next morning, then I
enter “Late-Movie-Mode.”

For the examples of forward and backward chaining, it is
assumed that all triggered rules fire and that processing is in
parallel. '

Suppose a forward-chaining system with these rules is first
told that I have no early appointment. Rules 1 and 2 are acti-
vated. Suppose the system is then told that I need to work.
Rule 3 is activated, and rule 2 is triggered and fired, conclud-
ing that I am in Late-Work-Mode. This activates, triggers, and
fires rules 5 and 6, concluding that I should return to the office
and stay up late.

To do the same problem using backward chaining, suppose
that the system was first told that I had no early appointment
and had work to do and then was asked whether I should
return to the office. This query would activate rules 6 and 7,
which would generate the subgoals Late-Work-Mode? and
Work-at-Office-Mode? These would activate rules 2 and 3, gen-
erating the subgoals No-Early-Appointment?, Need-to-Work?,
and Need-References? The first two would be satisfied, result-
ing in rule 2 triggering and firing. This would cause Late-
Work-Mode to be satisfied, triggering and firing rule 6, and
concluding that I should return to the office.

Notice that in forward inference more conclusions are gen-
erated, whereas in backward inference more subgoals are gen-
erated. Since the data were the same for the two examples, the
same rules were fired, but different rules were activated.

Search. Forward and backward search can be illustrated
with a water-jug problem. For this problem there are two jugs,
one capable of holding 3 gallons and one capable of holding 4
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Good-Movie-on-TV & No-Early-Appointment — Late-Movie-Mode
. No-Early-Appointment & Need-to-Work — Late-Work-Mode
Need-to-Work & Need-References — Work-at-Office-Mode
Late-Movie-Mode — Stay-Up-Late

. Late-Work-Mode — Stay-Up-Late

. Late-Work-Mode — Return-to-Office

. Work-at-Office-Mode — Return-to-Office

N A WD

Figure 4. Rules for the evening.

gallons. The legal operations are filling the 3-gallon jug from a
water tap (symbolized as f3); filling the 4-gallon jug from the
water tap (f4); emptying the 3-gallon jug by pouring out all its
contents (e3); emptying the 4-gallon jug by pouring out all its
contents (e4); pouring the contents of the 3-gallon jug into the
4-gallon jug until either the 3-gallon jug is empty or the 4-
gallon jug is full, whichever happens first (p34); or pouring the
contents of the 4-gallon jug into the 3-gallon jug until either
the 4-gallon jug is empty or the 3-gallon jug is full, whichever
happens first (p43). Each state of the problem is represented by
a pair of integers showing the contents of the 3-gallon jug and
then the contents of the 4-gallon jug. For example, (1, 4) repre-
sents the state in which there is 1 gallon in the 3-gallon jug
and 4 gallons in the 4-gallon jug. If operator p43 is applied to
this state, the resulting state is (3, 2). The particular problem
under consideration is that of getting from state (0, 0) to state
{0, 2).
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Figure 5 shows the state-space representation of this prob-
lem, assuming a parallel breadth-first search that stops as
soon as the goal is found. No operator is shown that would
move from a state to a state at the same or an earlier level of
the search tree. For example, from state (3, 1) operator f4
would go to state (3, 4), but that is on the same level as (3, 1),
and operator e4 would go to state (3, 0), but that is on an
earlier level. What level a state is on, of course, depends on
where the search started.

Figure 5a shows a forward search from (0, 0) until (0, 2) is
found. Figure 5b shows a backward search from (0, 2) to (0, 0).
Notice that, in this example, the same states are explored, but
in a slightly different order. Notice also the difference between
searching backward to find a way of getting from (0, 0) to (0, 2)
and searching forward to find a way of getting from (0, 2) to
(0, 0). In the latter case, one operator, namely e4, would suf-
fice.

Comparisons

Efficiency. Whether bottom-up (or forward, or data-driven)
processing is more efficient than top-down (or backward, or
goal-directed) processing depends on the way the search space
branches. If the average state has more successors than prede-
cessors, backward search will be more efficient. If it has more
predecessors than successors, forward search will be more effi-
cient. To consider an extreme, if the search space forms a tree
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Figure 5. (a) Forward search. (b) Backward search.
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rooted in the start state, a forward search will have to search a
large part of the tree, whereas a backward search will only
have to search up a linear branch.

Pattern Matching and Unification. In rule-based systems or
reasoning systems, the choice of forward vs. backward chain-
ing affects the difficulty of the required pattern-matching (qv)
routines. In forward chaining, or data-driven reasoning, one is
always. asserting new facts to the system, and these have no
free variables. Similarly, when rules fire, the newly inferred
facts have no free variables. Therefore, one is always matching
antecedents that may have variables against facts with no
variables. Pattern matching two symbol structures when only
one might have variables is a fairly simple routine.

On the other hand, in backward-chaining systems one often
asks “wh” questions, such as “What shall I do this evening?” or
“What organism is infecting this patient?” If the rules are
represented in predicate logic (qv) rather than in propositional
logic (qv), this involves matching a question with a variable
against consequents with variables. Subgoals may also have
variables, so in general, back-chaining systems must be writ-
ten to match two symbol structures, both of which may have
variables, and this requires the unification algorithm, which is
considerably more involved than simple pattern matching.

Mixed Strategies

Bidirectional Search. If it is not clear whether forward or
backward search would be better for a particular application,
bidirectional search (qv) is probably appropriate. Essentially,
bidirectional search starts from both the start state and the
goal state and searches from both ends toward the middle.

“Predictive syntactic analysis” is described in Ref. 20,
where the first computer implementation is ascribed to Ref.
21. The bidirectional nature of this technique may be inferred
from Bobrow’s description that “an initial prediction is made
that the string to be scanned is a sentence. From this predic-
tion and the initial word in the sentence . . . . more detailed
predictions are made of the expected sentence structure” (22).

Bidirectional Inference. Another kind of bidirectional pro-
cessing uses the initial data to activate rules that then trigger
backward chaining through their other antecedents (23). Sub-
goals that match neither consequents nor data can remain as
demons (qv) to be satisfied by new, later data. The system can
be designed so that data that satisfy demons (antecedents of
activated rules) do not activate additional inactive rules, thus
focusing future forward inference on rules that take previous
context into account.

Left-Corner and Expectation-Based Parsing. When the bidi-
rectional style of inference is applied to parsing, one gets what
is called left-corner parsing. In terms of the parsing example of
the section Parsing, the system would first look at “they,” find
rule 9 as the only rule to account for it, then find rule 3 to be
the only way to account for a PRO, and then find rule 1 as the
only rule with a consequent side that starts with a NP. Next
the system would try to parse “are flying planes” as a VP top-
down. This is also very similar to expectation-driven parsing
(qv) since ‘the rules activated top-down form expectations of
what will be in the rest of the sentence based on what actually
occurred earlier in the sentence.

Conclusions

The control structure of an AI system that does reasoning,
parsing, problem solving, or search is often organized into one
of two basic approaches. One approach is called bottom-up,
forward, or data-driven. The other is called top-down, back-
ward, or goal-directed. The distinction is most easily under-
stood as whether search is from goal to start or if rules are
activated by their consequents or their antecedents.

Issues of efficiency or ease of implementation may decide
which approach to take in a particular application, but mixed
strategies are also possible.
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