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1 Introduction

In this paper, T will discuss two aspects of SNePS propositional semantic networks [5, 8, 12, 17] that
distinguish them as formalisms for the representation of knowledge—cables and paths. I will also discuss
a kind of inference sanctioned by each one—reduction inference and path-based inference, respectively, and

the integration of these two kinds of inference into a kind of “subconscious” reasoning.

Informally, a semantic network is a labelled directed acyclic graph in which nodes represent entities and
labelled arcs represent binary relations between entities. A propositional semantic network i1s a semantic
network in which every proposition represented in the network is represented by a node, rather than by an
arc. We will refer to a node that represents a proposition as a propositional node. Isolated nodes are not
allowed in a semantic network, and since a semantic network is a variety of relational graph, it does not
make sense to have two arcs with the same label emanate from the same node and terminate at the same
node. However, there is no restriction forbidding several arcs with the same label from emanating from the
same node if they terminate in different nodes. Informally, we will call a set of such arcs a cable. (We will
formalize this below.) A propositional node, therefore, may have a set of cables emanating from it. FEach

cable represents an argument position of the proposition represented by the propositional node, the label

*This is a preliminary version of S. C. Shapiro, Cables, paths and “subconscious” reasoning in propositional semantic
networks, in J. Sowa, Ed. Principles of Semantic Networks: FEzplorations in the Representation of Knowledge. Morgan
Kaufmann, San Mateo, CA, 1991, 137-156. All quotes should be from, and all citations should be to that published version.
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Figure 1: A SNePS network representing the proposition that Bob, Joe, and Harry are brothers. The
proposition node M1! has two cables emanating from it, one consisting of the REL arc and the node it goes
to, the other consisting of the ARGUMENT arcs and the nodes they go to.

associated with each cable 1s the keyword that identifies the argument position, and the nodes of each label
are the arguments in that position. A proposition with multiple arguments in a single position i1s not a
situation that occurs in the standard syntax of predicate logic. For example, Figure 1 shows a diagram of a
SNePS network in which M1! is a propositional node from which emates two cables, a cable consisting of
one REL arc going to the node BROTHERS and a cable consisting of three ARGUMENT arcs going to the nodes
BOB, JOE, and HARRY. As discussed in [13], M1! is intended to represent the proposition that Bob, Joe,

> and “Harry” appear is entirely

and Harry are brothers. In this proposition, the order in which “Bob,” “Joe/’
arbitrary—they are really in the same argument position relative to the relation “are brothers,” and this is

captured by putting the nodes that represent them in the same cable from the node M1!.

Path-Based inference [11, 18] involves the inferring of an arc between two nodes from the existence of a
path of arcs between the same two nodes. Since this inference ignores the other arcs emanating from the
starting node, it corresponds to an inference rule that ignores the arity of the atomic propositions. This,

also, is not a situation that can occur in the standard syntax of predicate logic.

We might consider the labels of semantic network arcs to be binary predicates and the nodes to be
individual constants. Then an arc in the network corresponds to a ground atomic formula in which the
label-predicate is applied to the two node-individual constants. A cable is then just the set of all such atomic
formulas for which the predicate and the first argument are the same. The semantics of a network 1s then

derived by taking all the atomic formulae conjunctively, and path-based inference rules are straight-forward



conditionals. This translation actually gives us a model of the network, rather than another syntax for the

same network. The differences include:

e In the atomic predicate version, there is nothing to prevent the situation from occurring in which there
are two individual constants, ny and ng such that V(P, z)[P(n1,2) < P(na, x)]. As we shall see below,
this conflicts with the Uniqueness Principle, and cannot occur in a SNePS network the way SNePS

networks are defined in this paper.

e In the atomic predicate version, there is nothing to prevent one from adding a new formula P(ny,ns)
to the database at any time even though there are already formulae whose first arguments are ni. As

we shall see below, this is severly restricted in SNePS.

Nevertheless, the atomic predicate model does suggest that a cable, as a conjunction of formulae, should
imply a proper subset of itself. So, for example, node M1! of Figure 1 implies that Bob and Harry are
brothers, that Bob and Joe are brothers, and that Harry and Joe are brothers'. We will adopt a version
of this kind of inference, calling it reduction inference, in such a way that it does not conflict with the
Uniqueness Principle. Reduction inference may involve a kind of arity reduction, and so, is intimately tied

up with path-based inference.

2 A Motivating Example

Figure 2 shows a small SNePS network containing the information that Rover is a dog, and that dogs are

animals. What each node is supposed to represent is shown in the following table:

ROVER | Rover

DOG the class of dogs

ANIMAL | the class of animals

M1! the proposition that Rover is a dog

M2! the proposition that dogs are animals

If we want inheritance of classes to be handled by path-based inference, we could give SNePS a path-based
inference rule that would sanction the inference of a CLASS arc from M1! to ANIMAL. This past sentence,

however, is informal. The attempt to formalize path-based inference raises the following issues and questions:

1For the reason that it does not imply that Bob and Bob, Harry and Harry, and Joe and Joe are brothers, see [13].
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Figure 2: A SNePS network containing the information that Rover is a dog, and that dogs are animals.

e We would want the system whose “knowledge base” 1s shown in Figure 2 to act as if it had already
stored the information that Rover is an animal. I.e., the network shown in Figure 2 already contains

that information. In what way is this so?

e SNePS does not allow a user to add a new arc coming out of an existing node, because that would
change the entity represented by the node into another entity. Is this not being done by the inference

of a new CLASS arc emanating from M1!7

e One might answer the previous question “No” because that arc (in some sense to be determined by
answering the first point above) already exists in the network. But that raises the question of what

the structure of node M1! actually is, and what the relationship is among the following three nodes?:

Node | with MEMBER arc to | and with CLASS arc to

M1, | ROVER DOG
M1, | ROVER ANIMAL
M1; | ROVER {DOG, ANIMAL}

By the Uniqueness Principle, they should be different nodes, and should represent different entities.

So which one appears in Figure 2, and what is the relationship among them?

In this paper, we will develop the following answers:

?The name of a propositional node is of the form Mn, where n is some integer. A “!” is appended to the name to indicate

that the proposition represented by the node is asserted (taken to be true) in the network. However, the “!” does not affect
the identity of the node, nor the proposition it represents.
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Figure 3: A SNePS network expressing the node-based inference rule that every woman is either under 30
or over 30.

e M1y, M1, and M1s are different nodes, and represent different entities.
e M1, and M1, are reductions of Mls, and are implied by 1t by reduction inference.

e The network of Figure 2 contains M1; explicitly, and, given the path-based inference rule, “virtually”

contains M1, and M1s.

3 Node-Based Inference

It should not be inferred from anything in this paper that the only kinds of inference SNePS supports are
reduction inference and path-based inference, although those are the only two that will be discussed here in
any detail. SNePS also suppports node-based inference [11]. Figure 3 shows a SNePS network expressing
the node-based inference rule that every woman is either under 30 or over 30, taken from the presentation
in [6] of the logic puzzle, “The Woman Freeman Will Marry” from [19, p. 6]. What the principal nodes of

Figure 3 are intended to represent are shown in the following table:



V1 | An arbitrary woman, vg.

P1 | The proposition that v; is a woman.

P2 | The age of v;.

P3 | The proposition that vy is under 30 years old.

P4 | The proposition that v; 1s over 30 years old.

P5 | The proposition that vy is either under 30 or over 30 (not both).

M1! | The rule that every woman is either under 30 or over 30.

The logic that SNePS supports for node-based inference is discussed in [6].

4 The Agent

I will present the semantics of SNePS networks in terms of an “agent.” The agent has beliefs and performs

actions (see [9]). Such an agent is (a model of) a cognitive agent [17].

Among the actions the agent can perform is the new believing of a previously not believed proposition.
Rather than having the agent be logically omniscient [3] (i.e., believe all the logical consequents of its beliefs),
at any time, the agent will believe only those logical consequents of its beliefs that it has come to believe
by “consciously” performing the act of believing them, or those it has come to believe by thinking of them

after already “subconsciously” believing them.

5 The Domain of Interpretation

SNePS nodes are terms of a formal language. The interpretation of a node is an object in the domain of
interpretation, D. In this paper, the members of D will be called “entities”: “A being; esp., a thing which
has reality and distinctness of being either in fact or for thought” [7, p. 275]. Every SNePS node denotes an

entity. If n is a SNePS node, [n] will denote the entity represented by n.

In our recent work with SNePS, we distinguish four types of entities: individuals, propositions, acts, and
rules. Propositions are characterized by being the kind of entities an agent may or may not believe. Acts (see

[15, 16]) are characterized by being the kind of enities an agent may or may not intend to perform. Rules

”

are, in some ways, like both propositions and acts. In order for a rule to “fire,” it must be believed, the agent



must intended to apply it, and its (appropriate) antecedents must be believed. When a rule fires, the agent
forms the intention of believing its consequents. Intending to apply a rule 1s what is called “activating” a

rule in [14].

Individuals include everything that is neither a proposition nor an act, z.e. that is neither the kind of
entity that can be believed, nor the kind of entity that an agent could intend to perform. Thus, individuals

include not only traditional individuals, but also classes, properties, relations, etc.

SNePS nodes are typed according to the type of entities they represent. Thus, there are four types of
nodes—individual nodes, proposition nodes, act nodes, and rule nodes. As research proceeds, there may be
a need to distinguish other types of entities, but at this time propositions, acts, rules, and individuals are

the only types we have found a need for.

In this paper, I will only discuss individual and proposition nodes. When the need arises, I will refer to

SNePS restricted to individual and proposition nodes as SNePSp (for propositional SNePS).

6 Meta-Predicates

In formalizing SNePS, we need a set of meta-predicates. These will not necessarily be represented in SNePS,
although if the agent, itself, were engaged in the appropriate philosophical reflection, it could conceive of
them. The meta-predicates we will need include Conceive, Believe, and =. Others will be introduced

subsequently.

Letting n, n1, and ns be meta-variables ranging over nodes, and p be a meta-variable ranging over

proposition nodes, the semantics of the meta-predicates listed above are:

Conceive(n) means that the node n is actually constructed in the SNePs network, and that the agent has
conceived of, or thought of, or thought about [n]. Conceive is similar to, but different from Fagin and
Halpern’s awareness functions [2]. They gloss A;¢ as, “‘7 is aware of ¢,” ‘¢ is able to figure out the
truth of ¢,” or even (when reasoning about knowledge bases) ‘i is able to compute the truth of ¢ within

time T.”” Here, Conceive(n) may be true without the agent’s being able to figure out the truth of [n].

Believe(p) means that the agent believes the proposition [p]. (In which case, we say that p is an asserted

node.)

ni = ny means that ny; and ny are the same, identical, node.



Only conceived of entities may be believed. This is captured in the following Axiom:

Axiom 1 Believe(p) = Conceive(p)

7 Arcs and Relations

SNePS nodes are connected to each other by labelled, directed arcs. The labels are drawn from the set of
SNePS Relations, which can be added to by the user of SNePS in the design of a particular agent. Isolated

nodes cannot be constructed in SNePS; neither can cycles of arcs.

8 Types of Nodes

Besides the categorization of nodes into individual nodes and proposition nodes, nodes can also be categorized
into base nodes and molecular nodes. The two categorizations of nodes are orthogonal, so there are four
types of nodes. As a heuristic aid to understanding, base nodes approximately correspond to individual
constants in a standard Predicate Logic and molecular nodes to sentences and functional terms. However,

remember that all nodes are terms in SNePS.

8.1 Base Nodes

Base nodes have no arcs emanating from them. Each base node represents some entity of the appropriate
type. An individual base node represents an individual entity and a propositional base node represents a
proposition. No two base nodes represent the same entity. This is the Uniqueness Principle of [5] for base

nodes.

Axiom 2 (Contrapositive of Uniqueness Principle) n; # ny = [n(] # [n2]?

3Note that “=" is overloaded to represent both identity of nodes and of entities.



8.2 Molecular Nodes

Informally, a molecular node has one or more labelled, directed arcs emanating from it, each labelled by a
relation in the set of SNePS Relations, and each going to another node. Two or more arcs may go from one

node to one other node, as long as each arc is labelled with a different label.

In this paper, we will formally define molecular nodes using the cableset approach of [8].

Definition 1 A wire is an ordered pair (r,n), where r is a SNePS relation, and n is a SNePS node. We

will let the meta-variables w,wy, ws, ... range over wires.

Definition 2 A cable is an ordered pair (r,ns), where v is a SNePS relation, and ns is a non-emply set

of SNePS node. We will let the meta-variables c,c1,co, ... range over cables.
Definition 3 A cableset is a non-empty set of cables, {{r1,ns1),..., {(ry,nsg)}, such that ry =r; < i=j.
We will let the meta-variables cs,csy,csa, ... range over cablesets.

Definition 4 Every cableset is a SNePS node. Every SNePSp node is either a base node or a cableset®.

Definition 5 A molecular node ¢s a cableset.

Definition 6 We will overload the membership relation “€” so that @ € s holds just under the following

conditions:

If x is any object and s is a set of such objects, then € has its usual meaning. (Note that this situation

obtains if ® is a cable and s is a cableset.)

If © is a wire, {r1,n), and s is a cable, (ra,ns), then t € s & ry =ra An € ns.

If © is a wire and s is a cableset, then x € s < I(c)[c € sAx € ¢].

If  is a wire or a cable and s is a base node, then x & s.

Definition 7 An nrn-path from the node ny to the node npy1 is a sequence, ny,r1, ..., N, 'y, Npy1 Wwhere
the n; are nodes, the r; are SNePS Relations, and for each ¢, {(r;,niy1) is a wire in n;. We say that the

nrn-path ny,r1, ..., Mg, Tk, NE41 goes through n; 1 <0 <k.

4Full SNePS also contains variable nodes.



Definition 8 A node n; dominates a node no just in case there is an nra-path from ny to no.

The use of sets of cables and sets of nodes is significant, e.g.,

Uri, {n1, nat), (r2, {ns, na}) b = {(r2, {na, n3}), (r1, {n2,m })}.

However, a node and a proper subset of it are different nodes, and if two nodes differ only in that one
contains the cable {r,ns;) while the other contains the cable (r, nsa) and the sets ns; and nss are different,
then the two nodes are non-identical nodes. Notice that this means that it makes no sense to add a new arc
emanating from an existing node (i.e., a new wire to a node, while having it remain the same node). Also

notice that a node is determined by the arcs emanating from it, not by the arcs pointing into it.

8.2.1 Examples
M1! in Figure 1 is the cableset {(REL, {BROTHERS}), (ARGUMENT, {BOB, HARRY, JOE})}, one of whose wires is
(ARGUMENT, HARRY).

In Figure 2, M1!  is the cableset {(MEMBER, {ROVER}), (CLASS,{D0OG}}}, and M2! is the cableset

{(SUBCLASS, {D0G}), (SUPERCLASS, {ANIMAL})}.

M1;, M1, and Mi3 of Section 2 are the cablesets shown in the following table:

NodeName Clableset
M1, {(MEMBER, {ROVER}), (CLASS, {D0G})}
M1, {(MEMBER, {ROVER}), (CLASS, {ANIMAL})}
Mis {(MEMBER, {ROVER}), (CLASS, {DOG, ANTMAL})}

It is, therefore, clear that they are different nodes, and represent different entities.

8.3 Reduction

The relation between a node and a proper subset of it is captured by the Reduce meta-predicate:

Reduce(esy, cs2) means that the set of wires in ¢sy is a subset of the set of wires in ¢sy. If Reduce(esy, esa),

we will say that css 1s a reduction of ¢sy.

10



This definition 1s formalized in:

Axiom 3 Reduce(csy, csz) < V(w)[w € ¢ss = w € ¢s1]

Recall that a node, even a cableset, may not actually be built in the SNePS network, so it is possible that
there is some node n for which Conceive(n) is false. However, a cableset cannot be in the network unless

every node it dominates is in the network.

Axiom 4 (r,n) € cs A Conceive(cs) = Conceive(n)

Molecular nodes may represent either individuals or propositions. Which one a given node represents
depends on, and is determined by, the set of relations in the node.> Propositional molecular nodes roughly
correspond to formulae in standard Predicate Logic, while individual molecular nodes (which we sometimes
call “structured individuals”) roughly correspond to functional terms. (Since propositional molecular nodes
are also terms, they both roughly correspond to functional terms.) Like their counterparts, nodes get their
semantics from the user—the person who designs a particular SNePS agent. The semantics also depends
on the set of relations in the node, which, therefore roughly corresponds to a predicate or function. The
Uniqueness Principle for molecular nodes is enforced in virtue of the fact that different nodes are different

nodes and represent different entities.

As examples we will use in the rest of this paper, in SNePS/CASSIE [17], member, class, subclass,
and superclass are SNePS Relations, and the semantics given for SNePS/CASSIE nodes include® (para-

phrased):

e a node of the form {(member, {i;}), (class, {i2})} represents the proposition that the entity [¢1] is a

member of the class [iz].

e anode of the form {(subclass, {is}), (superclass, {is})} represents the proposition that the class [[és]

is a subclass of the class [i4].

5SNePS, as currently implemented, does not actually type nodes as representing individuals or propositions, but a node can
be so characterized, as stated, as long as the user supplies a consistent semantics to various sets of relations.

6 This representation of classification hierarchies is simplistic, but will serve the purposes of the present paper. For a more
sophisticated representation of classification hierarchies, see [10].

11



9 Path-Based Inference and Virtual Belief

Although different nodes represent different entities, an asserted node may give rise to several beliefs de-

pending on the rest of the network it is connected with.

Informally, path-based inference [11, 18] is a means of inferring a virtual arc from a node n to a node m

when there is a certain path from n to m.

For example, using the relations mentioned above, we may specify the inheritance of class membership

with the SNePS User Language (SNePSUL) command,

(define-path class (compose class (kstar (compose subclass- ! superclass))))

Informally, this says that a virtual class arc may be inferred from a node n to a node m whenever a
path of arcs consisting of a class arc, followed by zero or more occurrences of the path consisting of
a subclass arc (followed backwards) followed by a superclass arc goes from n to m, as long as each
superclass arc emanates from an asserted node (one representing a believed proposition). There are twelve
path formation operators like compose and kstar in SNePSUL including converse, kplus, or, and and.
Path-based reasoning was described in [11] as being a kind of “subconscious” reasoning. This is captured in

the formalization of path-based reasoning which follows.

In the remainder of this section, meta-variables: r will range over SNePS relations; w will range over
wires; p will range over paths; m,my, mso, ... will range over propositional molecular nodes; n,ny, ns, ... will

range over nodes. Additional meta-predicates we will need are:

Pbr(r,p) means that the path based inference rule (define-path r p) has been entered into the system.

HavePath(m, p,n) means that the path p is in the network going from m to n, both of which are built in
the network. See Appendix A for a formal definition of the syntax of paths and a formal, inductive

definition of HavelPath.

Vbelieve(m) means that the agent acts as if it believes [m], although Conceive(m) is not necessarily true.
Vbelieve (for Virtual belief) is a kind of subconscious belief that captures the notion of the agent’s

believing a proposition [p] even though p is not constructed in the network.”

"Vbelieve is a kind of implicit belief, but it is not as powerful as Levesque's implicit belief predicate L [4]. Lo is true
whenever o logically follows from the agent’s explicit or implicit beliefs, but as will be seen, Vbelieve(m) is true only when m
follows from explicitly believed propositions, conceived of entities, and explicitly entered path-based inference rules.

12



Definition 9 We will extend the notion of U so that for a node c¢s and a wire w, cs Uw will be the node

that contains all wires that c¢s contains, plus w also.

The following axioms specify when Vbelieve(m) holds:

First, a proposition that is believed is also subconsciously believed.

Axiom 5 Believe(m) = Vbelieve(m)

Second, if a virtual r arc may be inferred as going from a node m, denoting a subconsciously believed
proposition, to a node n from a path-based inference rule entered into the system, then the proposition

[(m U {r,n))] is subconsciously believed, even though its node is not necessarily in the network.

Axiom 6 Vbelicve(m) A Pbr(r,p) A Have Path(m,p,n) = Vbelieve(m U (r, n})

Third, the agent subconsciously believes propositions denoted by reductions of nodes that denote sub-

consciously believed nodes.

Axiom 7 V Believe(my) A Reduce(my, ma) = Vbelicve(msa)

A subconscious belief in some proposition can lead to a conscious belief in the proposition if the agent

conceives of the proposition:

Axiom 8 Vbelicve(m) A Conceive(m) = Believe(m)

Let Pbelosure(n, m) mean that n contains all the wires in m and all the virtual wires that can be inferred

to be in m by virtue of path-based inference rules:

Axiom 9

Pbelosure(my, ma) <  Reduce(imy, ms)
AY(r, p)[Pbr(r,p) A HavePath(ma, p, ms) = (r, ms) € mq]

AY(w)[w € my = w € ma V 3(r, p)[Pbr(r,p) A Have Path(ma, p,mz) A w = {r, ms)]

If the agent believes (at least subconsciously) a proposition, it will subconsciously believe the proposition

represented by the Pbclosure of the node that represents that proposition.

13



Lemma 1 Vbelieve(my) A Pbelosure(ma, my) = Vbelicve(ma)

Proof: Follows by induction from Axioms 6 and 9.

If the agent conceives of a proposition represented by a reduction of the Pbclosure of an asserted node,

the agent will believe that proposition:

Theorem 1 Believe(my) A Pbclosure(ma, my) A Reduce(msz, m3) A Conceive(mg) = Believe(ms)

Proof: Follows from Axiom 5, Lemma 1, Axiom 7, and Axiom 8.

This theorem captures the notion of subconscious reasoning in SNePS. Propositions that are derived
on the basis of reduction and path-based inference are essentially “already” represented in the network
“embedded” in the nodes that have been explicitly built and asserted. This subconscious reasoning contrasts
with the “conscious” reasoning performed on the basis of node-based inference rules[11]. For an up-to-date

presentation of node-based inference in SNePS, see [6].

As an example of subconscious reasoning, assume again the SNePS Relationsmember, class, subclass,

and superclass, and the path-based inference rule shown above. Then,

{(member, {rover, snoopy}), (class, {dog, male})}

represents  the proposition that [rover] and [snoopy] are [dog]s and [male]s, and
{(subclass, {dog}), (superclass, {animal})} represents the proposition that [dog]s are [animal]s. In that

case, belief in the two propositions:

[{{member, {rover, snoopy}), (class, {dog,male})}]

[{{subclass, {dog}), (superclass, {animal})}]

entails belief in any of the following (different) propositions that the agent conceives of:

[{{member, {rover}), (class, {dog})}],

[{{member, {rover}), (class, {male})}],
[{{member, {rover}), (class, {animal}}}],
[{{member, {snoopy}), (class, {dog}}}],

[{{member, {snoopy}), (class, {male})}],

14



[{{member, {snoopy}), (class, {animal})}].

Example Run

The following is the output of an interaction with SNePS 2.0, edited only to eliminate extra blank lines
and the list of nodes returned by the describe command, and to add comments (in italics). The SNePSUL

“*” . build is the command to construct a node in the network, and thereby to make the agent

prompt is
conceive of the entity represented by the built node. assert builds a node and makes it asserted, thereby
causing the agent to believe the proposition represented by the node. describe is a command to print a
Lisp-like description of a node, so the reader can see its cableset. Symbols of the form Mn, where n is an
integer, are the names of the nodes. SNePS prints the names of asserted nodes with “!” appended, and does

not append “!” to the names of unasserted nodes. The fact that a previously unbuilt node is asserted as

soon as 1t 1s built shows that it was already Vbelieved before it was Conceived of.

*(define member class subclass superclass) declare the relations to be used.
(MEMBER CLASS SUBCLASS SUPERCLASS)
CPU time : 0.25

*(define-path class (compose class (kstar (compose subclass- ! superclass))))
CLASS implied by the path (COMPOSE CLASS (KSTAR (COMPOSE SUBCLASS- ! SUPERCLASS)))
CLASS- implied by the path (COMPOSE (KSTAR (COMPOSE SUPERCLASS- ! SUBCLASS)) CLASS-)

CPU time : 0.30

*(describe (build subclass dog superclass animal))
(M1 (SUBCLASS DOG) (SUPERCLASS ANIMAL)) ; M1 is built, but not asserted.
CPU time : 0.10

*(describe (assert superclass animal subclass dog)) ; order of cables doesn’t matter.
(M1! (SUBCLASS DOG) (SUPERCLASS ANIMAL)) ; This is M1 again, now asserted.
CPU time : 0.10

*(describe (assert member (rover snoopy) class (dog male)))
(M2! (CLASS DOG MALE) (MEMBER ROVER SNOOPY)) , bu:lt and asserted.
CPU time : 0.12

*(describe (build member rover class dog))
(M3! (CLASS DOG) (MEMBER ROVER)) ; A restriction of M2!, therefore asserted
CPU time : 0.05

*(describe (build member rover class male))
(M4! (CLASS MALE) (MEMBER ROVER)) ; A restriction of M2!, therefore asserted
CPU time : 0.07

*(describe (build member rover class animal))
(M5! (CLASS ANIMAL) (MEMBER ROVER)) ; restriction of Pbclosure of M2!, therefore asserted
CPU time : 0.07

15



*(describe (build member snoopy class dog))
(M6! (CLASS DOG) (MEMBER SNOOPY))
CPU time : 0.10

*(describe (build member snoopy class male))
(M7' (CLASS MALE) (MEMBER SNOOPY))
CPU time : 0.08

*(describe (build member snoopy class animal))
(M8! (CLASS ANIMAL) (MEMBER SNOOPY))
CPU time : 0.08

10 Concluding Remarks

The definition of SNePS molecular nodes as cablesets captures the notion that a new arc (wire) cannot be
added as emanating from an already existing node. It makes it clear that that would amount to changing
the denotation of the node. Instead, a new wire joined to an old node makes a new node that is related
to the old one by the reduction relation. Similarly, if one contemplates a node without one or more of its
wires, one 1s contemplating a new node that is a reduction of the old one. The propositions denoted by a
node and a reduction of it are related by reduction inference, which is one kind of “subconscious” inference
supported by SNePS. Path-based inference is another kind of “subconscious” inference that justifies belief
in a proposition when a reduction is already believed and the “extra” wires can be inferred from path-based
inference rules and paths in the network. The set of propositions subconsciously believed by the SNePS
agent is the set denoted by the set of nodes that could be gotten by path-based-closure of asserted nodes
followed by reduction. These nodes are “virtually” or “implicitly” in the net, and need be made explicit

only when there is a specific reason (such as the user asks about one, or explicitly builds one).

Although analogues of reduction inference and path-based inference could be defined on knowledge rep-
resentation formalisms other than propositional semantic networks, they most naturally arose from, and are

most easily understood in terms of these networks.
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A Formal Syntax of Paths

Below is a formal syntax of all the paths available in SNePS, and a formal, inductive definition of the
HavePathL meta-predicate. In the axioms for HavePathL, meta-variables: r will range over SNePS re-
lations; w will range over wires; p, p1, ps, . .. will range over paths; m, my, ms, ... will range over cablesets;
n,ni, Ny, ... will range over nodes; ¢,141,¢2, ... will range over non-negative integers. HavePathL is related

to HavePath as shown by the following axiom:
Axiom 10 HavePath(m,p,n) < I(i)HavePathL(m,p,n,i)

The syntax of paths with the axioms for HavePathl are:

unitpath .= relation

If the wire {r,n) is in the cableset m, then r is a unitpath from m to n.

unitpath .= relation—

If the wire {r,n) is in the cableset m, then r— is a unitpath from n to m.
path ::= unitpath
(r,n) € m A Conceive(m) < HavePathL(m,r,n,1)

(r,n) € m A Conceive(m) < HavePathL(n,r—,m,1)

path ::= (converse path)

HavePathL(m,p,n, i) < HavePathL(n, (converse p), m, )
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path ::= (compose path ['] path*)

A(ma)[Have PathL(my, p1, ma,i1) A HavePathL(ms, pa, ms, i2)]

< HavePathL(my, (compose py pa), mg, i1 + i2)

A(ma)[Have PathL(my, p1, ma, i1) A Believe(ma) A Have PathL(ms, pa, ma, ia)]

< HavePathL(my, (compose py ! pa), mg, i1 + i2)

A(me)[Have PathL(my, p1,ma,i1) A HavePathL(ms, (composeps . ..py), M3, i2)]

< HavePathL(my, (composepy pa...pk), M3, i1 + i2)

A(me)[Have PathL(my, p1,ma,i1) A Believe(ms) A Have PathL(ms, (compose ps...pp), M3, iz)]

& HavePathL(my, (composepy !pa...pi), ma, i1 + i)

path ::= (kstar path)
HavePathL(my, (kstar p), my,0)
A(me)[Have PathL(my, p, ma, i1) A HavePathL(ma, (kstar p), ma, ia)]

& HavePathL(my, (kstar p), mg, i1 + i2)

path := (kplus path)
HavePathL(my,p, ma,i) < HavePathL(my, (kplus p), ma, )
A(me)[Have PathL(my, p, ma, i) A HavePathL(ma, (kplus p), ma,iz)]

< HavePathL(my, (kplus p), mg, i1 + i2)

path ::= (or {path}*)
HavePathL(my, p1,ma, 1)V Have PathL(my, pa, ma, is) < HavePathL(my, (or p1 p2), ma, min(iy, i2))
HavePathL(my,p1,ma, 1)V HavePathL(my, (ox pa ...pp), Mo, iz)]

& HavePathL(my, (ox p1 pa...pr), ma, min(éy, iz))

path ::= (and {path}*)
HavePathL(my,p1,ma,i1) A Have PathL(my, pa, ma, is) < HavePathL(my, (and p1 p2), ma, max(iy, i2))
HavePathL(my,p1,ma,i1) A Have PathL(my, (and ps ... pr), ma, i2)]

< HavePathL(my, (and p1 pa .. .pr), Ma, max(iy, i2))

path ::= (not path)

- HavePath(my,p, ms) < HavePathL(my, (not p), ms,0)
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path ::== (relative-complement path path)
HavePathL(my,p1, ma, i) A—~HavePath(my, pa, ma)

< HavePathL(my, (relative — complement py ps), ma, )

path ::= (irreflexive-restrict path)

HavePathL(my,p,ma,i) Amy # mq < HavePathL(m,,(irreflexive — restrict p), mao, i)

path ::= (domain-restrict (path node) path)
HavePath(my,p1,m2) A Have PathL(my, pa, ms, ©)

< HavePathL(my, (domain — restrict(p; ma)pa), ms, )

path ::= (range-restrict path (path node))
HavePathL(my, p1, ma, 1) A HavePath(ma, p2, ms)

& HavePathL(my, (range — restrict py (p2 ms)), ma, )
path ::== (exception path path)

HavePathL(my, p1,ma,i1) A —3(i2)[iz < i3 A HavePathL(my,pa, ma, i2)]

& HavePathL(my, (exceptionp; pa), ma, 1)
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