Efficient Implementation of Non-Standard Connectives and
Quantifiers in Deductive Reasoning Systems

Joongmin Choi and Stuart C. Shapiro
Department of Computer Science
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

A rule use information (RUI) siructure has been
proposed to implement non-standard connectives and
quantifiers thai genmeralize conjunction, disjunction,
smplication, universal quantifier, and eztstential quan-
tifier. The current implementation of the RUI struc-
ture in the SNePS Inference Package (SNIP) main-
tains a single RUI set for each rule, which causes
a combinatorial number of substitution compatibility
checks between RUIs as the number of antecedents in
a rule and their instances increase.

In this paper, the problem of efficient RUI handling
for deduction rules with non-standard connectives and
quantifiers is addressed. Two kinds of algorithms are
proposed, and methods of distributing RUIs over sev-
eral sets are discussed. Complezity analyses and test
results show that these schemes of RUI set distribution
keep the complexity of RUI set handling 1o polynomial
in terms of the number of RUIs and the number of
substitution compatibility tests.

1 Introduction

Non-standard connectives and quantifiers are gen-
eralizations of the common connectives and quanti-
fiers such as conjunction, disjunction, negation, impli-
cation, universal quantifier, and existential quantifier
[16]. They are designed to provide closeness to human
reasoning, structural simplicity, and expressibility in
the areas of natural language understanding, knowl-
edge representation, and reasoning [9, 14, 15]. Some of
the connectives and quantifiers are briefly introduced
below.

AND-OR is a single, parameterized connective which
generalizes logical-and, logical-or, exclusive-or, mnor,

nand etc., and is symbolized as n){;. The formula

oWl (A1, Az, ..., An) is true when at least ¢ and at
most j of the arguments are true. Two rules of infer-
ence for the AND-OR connective are, (1) if it is known
that exactly j of the arguments are true, then the re-
maining n — j arguments must be false, and (2) if it is
known that exactly n — i of the arguments are false,
then the remaining i arguments must be true. For
instance, the statement “there are four men, Peter,
John, Jason, and Bob, and exactly two of them are

teachers” can be represented by 42 (teacher(peter),
teacher(john), teacher(jason), teacher(bob)). If it is

0073-1129-1/92 $3.00 © 1992 I[EEE

381

known that Jason and Bob are not teachers, we can
conclude that Peter and John are teachers.
THRESH represented by ,,©7 is the dual of AND-OR,

and the formula ,0(4;, A2,..., A,) is true when ei-
ther fewer than i or more than j of the arguments are
true. If j is omitted, j is automatically set to n — 1.
THRESH is mainly used to represent the equivalence
relation by ,,01(A;, Az, ..., An) which indicates that
the arguments are either all true or all false.

Implication (—) is generalized by or-entailment
EV—») and and-entailment (&—). The formula

Ay, Ag, ..., Ap)V = (C1,C,...,Cp) means that
the disjunction of the antecedents implies the
conjunction of the consequents, and the formula
(Al,Az, ooy An &— (Cl, Cz, ey Cm) means that the
conjunction of the antecedents implies the conjunction
of the consequents.

Finally, numerical quantifiers represented by
n3] are defined to generalize the universal and existen-
tial quantifiers. The formula ,H Z(Py(Z),..., Pe(Z) :
Q(Z)), where Z is a sequence of variables, means that
there are n sequences of constants each of which when
substituted for Z will make Py(Z) & ... & Py(Z) true,
and at least i and at most j of these will also sat-
isfy Q(Z). By numerical quantifiers, we can repre-
sent a sentence like “everyone has exactly one mother”
by Vz [person(z) — 3}y (person(y) : mother(y,z))].
This kind of rule is especially used for reasoning by ex-
clusion, i.e. if everyone has exactly one mother, then
Mary can’t be John’s mother if it is already known
that Jane is John’s mother.

Non-standard connectives and quantifiers have dif-
ferent rules of inference that determine how many an-
tecedents must be consistently instantiated (by posi-
tive or negative instances) to derive the consequents.
For instance, and-entailment requires all the an-
tecedents be instantiated to deduce the consequents,
but only one antecedent instantiation is enough for
or-entailment to deduce the consequents. Also, the

AND-OR connective y, f has many different rules of in-
fergnce according to the values of the parameters n, i,
and j.

This paper presents uniform and efficient methods
of implementing non-standard connectives and quanti-
fiers. Various kinds of rules of inference are uniformly
manipulated by rule use information (RUI) set struc-

tures that keep the instance information including
variable substitutions and the number of antecedents
that are consistently instantiated by positive or nega-
tive instances. Section 2 describes the RUI set struc-
ture with its advantages and problems, and discusses
how the RUI set can uniformly handle different rules
of inference for non-standard connectives. For efficient
handling of the RUI set structure, we present two algo-
rithms that distribute RUIs over several places. Sec-
tion 3 describes the P-tree algorithm, and Section 4
describes the S-indexing algorithm. Test results are
shown in Section 5, and related works are compared
in Section 6.

2 Rule Use Information (RUI)

The RUI structure has been proposed and im-
lemented in the SNePS Inference Package (SNIP)
8, 10, 13] to save instance information of the an-
tecedents of a rule including variable substitutions and
the number of positive and negative instantiations,
and also to combine those instances that have consis-
tent bindings for shared variables. A rule is associated
with a set of RUIs called a “RUI set” that traces the
history of instance handling. The current implemen-
tation of SNIP maintains a RUI set for each rule.

A RUI consists of 4 elements as below,

<RUI> ::= (<sbst> <pos count> <neg count>

<flagged node set>)

where <sbst> represents variable substitutions from
instances of antecedents, <pos count> denotes the
number of antecedents known to be true, and <neg
count> denotes the number of antecedents known to
be false. The nodes of the <flagged node set> are
the antecedents of the rule and a flag associated with
each node indicates whether that node is known to be
true or false.

As an example, consider a knowledge based system
for reasoning about kinship facts. Such a system might
need to have an and-entailment deduction rule such
as Rule; for recognizing the husband relationship.

Rule;: Vx,y [man(x), woman(y), married(x,y)

&— husband(x,y)

Suppose we want to derive all of the husband relation-
ships from the following set of facts through backward
chaining.

man(john) man(fred) man(bob) man(steve)
woman(mary) woman(jane) woman(deb)
woman(ada) woman(sue)

married(steve, sue)

The pattern man(x) has 4 instances, voman(y) has 5
instances, and married(x,y) has 1 instance. The RUI
set of Rule; is initially empty, and is dynamically aug-
mented as new instances of antecedents are processed.
A resulting RUI set of Rule; after processing all the
above instances is

(
({john/x} 1 0 {P1:true})
({fred/x} 1 0 {P1:true})

ri
r2

382

r3
T4
b

({bob/x} 1 0 {P1:true})

({steve/x} 1 0 {Pi:true})

({mary/y} 1 0 {P2:true})

({john/x, mary/y} 2 0 {Pi:true, P2:true})
({fred/x, mary/y} 2 0 {Pi:truve, P2:true})
({bob/x, mary/y} 2 0 {P1i:true, P2:true})
({steve/x, mary/y} 2 0 {P1l:true, P2:true})
({jane/y} 1 0 {P2:true})

({john/x, jane/y} 2 0 {P1:true, P2:true})
({fred/x, jane/y} 2 0 {Pi:true, P2:true})
({bob/x, jane/y} 2 0 {Pi:true, P2:true})
({steve/x, jane/y} 2 0 {Pi:true, P2:true})
({deb/y} 1 0 {P2:true})

({john/x, deb/y} 2 0 {P1:true, P2:true})
({fred/x, deb/y} 2 0 {P1:true, P2:true})
({bob/x, deb/y} 2 O {P1:true, P2:true})

({steve/x, deb/y} 2 0 {P1:true, P2:true})
({ada/y} 1 0 {P2:true})

({john/x, ada/y} 2 0 {P1:true, P2:true})
({fred/x, ada/y} 2 0 {Pi:true, P2:true})
({bob/x, ada/y} 2 0 {P1:true, P2:true})

({steve/x, ada/y} 2 0 {Pl:true, P2:true})
({sue/y} 1 0 {P2:true})

({john/x, sue/y} 2 0 {Pi:true, P2:true})
({fred/x, sue/y} 2 0 {Pi:true, P2:true})
({bob/x, sue/y} 2 0 {Pi:true, P2:true})

({steve/x, sue/y} 2 0 {Pli:true, P2:true})
({steve/x, sue/y} 1 0 {P3:true})

r3t ({steve/x, sue/y} 2 0 {Pi:true, P3:true})
r32 ({steve/x, sue/y} 2 0 {P2:true, P3:true})
r33 ({steve/x, sue/y} 3 0 {P1:true,P2:true,P3:true})
)

7
r8

r10
ril
ri2
r13
ri4
rlb
rié
ri7
r18
r19
r20
r21
r22
r23
r24
r25
r26
r27
r28
r29
r30

Here, P1, P2, and P3 represent man(x), woman(y), and
married(x,y), respectively. Note that the same RUI
set, except for the order of RUISs, will result no matter
which instance is processed first.

Resolving binding conflicts of shared variables is
done by checking substitution compatibility between
RUIs. Two RUIs are said to be “compatible” when
the substitutions of the two RUIs are consistent, which
means that a common variable in both substitutions
is bound to the same value. For example, a RUI r4
is compatible with r30, but not compatible with r1.
Any two RUIs in a RUI set that have compatible sub-
stitutions and have disjoint <flagged node set>s are
combined to create a merged RUI. When two RUIs r,
and ry produce a merged RUI r,,, the value of <pos
count> of r,, can be obtained by the summation of
the values of <pos count>s of r, and rp. The value of
<neg count> is similarly calculated. Also the value of
<sbst> of r,, will be a union of the values of <sbst>s
of rg and ry. The value of <flagged node set> is
similarly obtained. For instance, ri, and r5 are com-
bined to produce r6, and r29 and r30 are merged
to get r33. Eventually, husband(steve,sue) is derived
from r33 whose <pos count> value is the same as the
number of antecedents of the rule.

2.1 Advantages of the RUI set

The advantages of employing the RUI set structure
in deductive problem solving can be described in 4
ways.

First, non-standard rules of inference can be uni-
formly implemented. Uniformity in manipulating

various different kinds of rules of inference can be
achieved by exploiting <pos count>, <neg count>,
and <flagged node set> fields of the RUI struc-
ture. For example, an and-entailment rule can de-
duce the consequents if there is a RUI whose <pos
count> value equals the number of antecedents in the
rule. Also, two rules of inference for the AND-OR rule
n%"-(Al, Agz,...,Ap) can be stated as, (1) if there is a
RUY whose <pos count> value is equal to j, those ar-
guments that are not in its <flagged node set> field
are proved to be false, and (2) if there is a RUI whose
<neg count> value is equal to n — i, those arguments
not in its <flagged node set> fields are proved to
be true. In the same fashion, expressions like “exactly
two of n arguments”, “not all of n arguments”, or “at
least 3 of n arguments” can also be expressed easily.
Second, we can reuse previous traces of rule han-
dling steps saved in the RUI set for subsequent de-
ductions on the same rule. Duplicate rule activation
steps, including pattern matchings and binding con-
flict resolutions, are avoided. For example, suppose a
new fact married(john,mary) is added to the knowl-
edge base to find more husband relationships. All we
have to do now is to create a new RUI r34 for the
instance married(john,mary), and check substitution
compatibility between r34 and each of RUIs in the RUI
set of Rule; to produce the following merged RUIs.

r34 ({john/x, mary/y} 1 0 {P3:true})

r35 ({john/x, mary/y} 2 0 {Pi:true,P3:true})

r36 ({john/x, mary/y} 2 O {P2:true,P3:true})

r37 ({john/x, mary/y} 3 O {P1:true,P2:true,P3:true})

r34 is combined with r1, r6, and r6 to generate r35,
r36, and r37, respectively. r37 contributes to the
derivation of husband(john,mary). This reusability
enables the system to learn from experience [1, 2].

Third, the RUI set structure facilitates a full-degree
of AND-parallelism. A major issue in the AND-
parallel computation of a conjunctive rule is the over-
head of resolving binding conflicts of shared variables.
By maintaining a separate process for a rule that
maintains a RUI set structure, processes correspond-
ing to its antecedent patterns just save instances that
are pattern matched and send them to the rule pro-
cess without worrying about checking compatibilities
of shared variables which is later performed at the rule
process. There is no need to order antecedent patterns
according to variable specifications [4], and no need to
have complex communication mechanisms among an-
tecedents.

Fourth, the RUI set structure is also used to fa-
cilitate the implementation of bi-directional inference
which combines backward and forward chaining [17],
and the implementation of recursive rule inference
that does not cause infinite loops [10].

2.2 Efficient RUI Set Handling

One problem of maintaining the RUI set is effi-
ciency, which resulted from the single RUI set man-
agement that keeps one sequential RUI set for each
rule. In general, reasoning by maintaining a single

383

RUI set for each rule is intractable due to the combi-
natorial number of substitution compatibility checks
between RUIs. The number of RUIs in a set also be-
comes large as the application problem size increases.
Furthermore, many unnecessary RUIs are merged be-
tween patterns that shares no common variables, such
as man(x) and woman(y), because the compatibility
checks between RUIs of these patterns always succeed.
It is recognized that updating a single RUI set has an
exponential complexity, in average, in terms of the
numb;r of antecedents in a rule. (Details are in Sec-
tion 3).

In this paper, techniques for distributing RUIs are
presented for fast reasoning with non-standard con-
nectives and quantifiers. Two algorithms are given
for efficient RUI handling in this distributed RUI set
scheme.

The first algorithm, using a P-tree, is designed for
conjunctive deductions rules. A conjunctive deduction
rule has conjunctions of two or more clauses in the rule
premise which should be satisfied simultaneously with
consistent variable bindings for shared variables to de-
rive the consequents. Rules with and-entailment and
numerical guantifiers belong to this category.

The second algorithm is designed for those connec-
tives in which not all the antecedents are required to
be instantiated to derive the consequents. For these
non-conjunctive connectives, we present a scheme of
S-indexing (S stands for ‘substitution’) in which
RUIs are distributed by bound values for free vari-
ables. This scheme is applied to AND-OR, THRESH,
and or-entailment connectives.

3 P-tree Algorithm

This section presents a technique for efficient RUI
handling for conjunctive deduction rules expressed by
and-entailment or numerical quantifiers. A bi-
nary pattern tree called a P-tree is compiled from a
set of antecedents of a rule and RUIs are distributed
over the nodes of the P-tree. A P-tree of a rule is
defined as a binary tree in which, (1) a leaf node cor-
responds to an antecedent pattern, (2) a parent node
is a conjunction of its children, and (3) the root node
represents the whole conjunctions of the rule premise.

A P-tree is compiled by considering variable spec-
ification of each pattern in order to arrange those pat-
terns with common variables to be adjacent in the tree.
The algorithm takes a list of pattern-variable specifi-
cations as its input and produces a tree of patterns as
its output.

As an example, consider an and-entailment rule

Ruley: Vv1,v2,v3,v4,v5 [A(v1,v2), B(v3,v4),
62v3,v5;, D(v1,v3), E(v2,v5), F(v2,v3),

G(v1,v4) &— H(v1,v2,v3,v4,v5)]

The pattern-variable specification of a pattern
P(x1, ..., Xp) is defined as a list (P x; --- x,). So,
the pattern-variable list of the above rule will be

* £(2L vv31) \zg)v(ll!v\f;)ﬂ) (c v3 v5) (D v1 v3) (E v2 v5)

The P-tree compilation algorithm is divided into

A(v1,v2) D(v1,v3)
G(vl,v4)

E(v2,v5) B(v3,v4)
F(v2,v3) I—C(v3,v5)
|

|
Figure 1: A P-tree for Rule,

3 procedures. The first procedure PatVar-to-VarPat
converts a pattern-variable list into a variable-pattern
list. A variable-pattern specification has the form of (v
Py --- Pp,), where v is a variable and each P; is an an-
tecedent pattern that contains v. PatVar-to-VarPat
generates the following variable-pattern list.

(viADG)(V2ZAEF)(v3B CD F)(v4B G) (v5
C E))

The second procedure VarPat-to-PatSeq builds a
linear sequence of patterns from a variable-pattern list.
This procedure arranges those patterns that have com-
mon variables to be close in the sequence. From the
above variable-pattern list, VarPat-to-PatSeq works
as follows. Initially, a pattern sequence is set to
(A D G) since the first variable-pattern specification
18 (vl A D G), and v1 is marked as processed. The
union of variables of these patterns is SVI v2 v3 v4).
Now v2 is the first unprocessed variable, so (A E F)
is the next candidate to be included in the sequence,
but only E and F are inserted since A is already in
the sequence. The resulting sequence is (A D G E F)
with (v1 v2 v3 v4 v5) as the union of variables. Now
v3 is the next unprocessed variable, so (B C D F) is
the candidate to be included in the sequence, and B
and C are inserted to make the final pattern sequence
(A D G E F B C). Note that the order of the sequence
is important.

The third procedure PatSeq-to-PTree builds a P-
tree from a pattern sequence. A main step of this
procedure is to extract the first two patterns from the
sequence to make them adjacent in the tree if they
share a common variable. Otherwise the first pattern
is combined with the last pattern in the tree built so
far. A P-tree for the above pattern sequence will
be (((((A D) &) (E F)) (B C))). Figure 1 depicts
this tree graphically.

The P-tree algorithm has reasonable complexity.
Suppose p is the number of antecedent patterns in
a rule and v is the average number of variables in
a pattern. Then, PatVar-to-VarPat has the com-
plexity of O(p - v), VarPat~to-PatSeq has O(UP, and
PatSeq-to-PTree has O(p). Hence, the overall com-
plexity of the P-tree algorithm is O(p - v).

Distribution of RUIs is enabled by assigning a RUI
set to each node in the P-tree. A RUI set of a leaf
node is a set of RUIs directly built from the instances
of the corresponding antecedent pattern. A RUI set of
a non-leaf node is a set of RUIs successfully combined

384

woman(y)

man(x)

man(x) & Tan'ied(x,y)

married(x,y)

man(x) & man‘iecli(x,y) & woman(y)

Figure 2: A P-tree for Rule;

et 0 ey
({y/deb} 1 0 {P2:true})
({y/ada} 1 0 {P2:true})
({y/sue} 1 0 {P2:true}))

(({x/steve, y/sue} 1 0 {P3:true}))

(({x/iohn} 1 0 {P1:true})
x/fred} 1 0 {P1:true
gx/bob} 10 <{Pl:t.rueli))

x/steve} 1 0 {P1:true

(({x/steve, y/llme} 2 0 {P1:true, P3:true}))

T
(({x/steve, y/sue} 3 0 {P1:true, P2:true, P3:true}))

Figure 3: Distribution of RUIs over the P-tree nodes

from RUISs of its children nodes through substitution
compatibility tests for shared variables. RUIs in the
RUI set of the root node contribute to the detivation
of the consequents when the value of <pos count> is
equal to the number of antecedents.

As an example, a P-tree for the rule Rule; is drawn
in Figure 2, and the distribution of RUIs over the
nodes of this P-tree is shown in Figure 3. By dis-
tributing RUIs over P-tree nodes, the overall num-
ber of compatibility tests is drastically decreased, not
to mention the total number of RUIs in the rule. As
shown in Section 2, 33 RUIs and 49 compatibility tests
are made by the single RUI set method, whereas the
distributed RUI set method using P-tree needs only
12 RUIs and 9 compatibility tests. The differences of
these measures will be significant as the problem size
increases.

In Table 1, the complexity of handling the RUI set
for conjunctive rules is compared between the single
RUI set scheme and the distributed RUI set scheme.
Two metrics in these performance measures are; (1)
the number of total RUIs in the rule, and (2) the
number of compatibility tests between RUIs during
the inference. We assume that there are, in average,
n antecedents in a rule and each antecedent has m in-
stances. Notice that the average complexity is reduced
from exponential to polynomial in terms of n.

Two application problems that have conjunctive
rules with a large number of antecedents are shown
here. Knowledge bases are suggested, and P-trees
for conjunctive rules are compiled. Execution time
comparisons are given in Section 5.

Map coloring problem: Coloring a given planar

The single RUI
set scheme
Cases || number of RUIs | number of tests
Best O(m-n O(m? - n?) |
Worst O(m" o(m"
Average O(m-2") O(m*-2"
The distributed
RUI set scheme
Cases || number of RUIs | number of tests
Best O(m-n O(m* - n)
Worst o(m" Oo(m"™)
Average O(m - n) O(m* - n)

n: avg. no. of antecedents in a rule
m: avg. no. of instances for each antecedent

Table 1: Performance comparison of RUI handling for
conjunctive rules

map with four colors (e.g. red, blue, green, and yellow)
so that adjacent regions have different colors. Suppose
we have the following planar map with 5 regions.

=]

r2

r3

r5

r4

A way of expressing this map coloring problem is spec-
ifying a rule such that

V rl,r2,r3,r4,r5
[next(rl,r2), next(r2,r3), next(r2,r4),
next(r2,r5), next(r3,r4),
next£r3,r5g, next€r4,r5

&— colormap(rl,r2,r3,r4,15)]

where given facts are

next(red,blue) next(red,greeng
next(red,yellow) next(blue,re B
next(blue,green) mnext(blue,yellow)
next(green,red) next(green,blue)
next(green,yellow) next(yellow,red)
next(yellow,blue) next(yellow,green)

There are 7 patterns in a rule, and each pattern is
matched with all 12 facts. Hence, it is easy to expect
that the number of RUIs and the number of substi-
tution compatibility tests to find all 72 possible color-
ings from this knowledge base will be exponential by a
naive method, even though the size of the knowledge
base is quite small.

A P-tree for the rule is shown below. $Here, 1
corresponds to the first antecedent pattern of the rule,

385

(a) input

(b) output

Figure 4: A sample scene

i.e. next(rl,r2), and p2 corresponds to the second, i.e.
next(r2,r3), and so on).
p5 pé p7

‘iiprs’flLlTJ

Scene analysis problem: Given a scene de-
scribed in terms of its edges that can be positive, neg-
ative, or vertical according to their slopes, the task 1s
to produce an interpretation of the scene in terms of
face descriptions that may be left, right, or horizontal.
An example input scene is given in Figure 4iai (this

scene is an abbreviated version of the scene in [3], page
67), and an interpretation is given in Figure 4(b).
A rule for defining this scene is

V r1,r2,r3,r4,r5,16
[pedge(bg,rl),nedge%‘l,b ,vedge%ﬁ,b ,
pedge(r6,bg), nedge(g,r2%, vedge(g,r2%,
nedge(r2,r1), pedge(rl,r3), nedge(r5,rl),
pedge(rl,r6), vedge(r2,r3), nedge(r2,r4),
pedge(r4,r6), vedge(r5,r6), pedge(r3,rd),
vedge(r3,r5), nedge(r4,r5), vedge(r2,ré
&— interpret(rl,r2,r3,r4 ,r5,r(5]

Here, ‘bg’ stands for background. Each antecedent
pattern corresponds to an edge of the scene. For ex-
ample, the edge el has positive slope and separates a
face r1 from the background, so the first antecedent is
represent by pedge(bg,rl). Also e3 is a vertical edge
that separates r6 from the background, so the third
antecedent is represented by vedge(r6,bg). Other edge
descriptions are similarly eﬁneg.

A set of interpretation rules characterizing the dif-
ferent kinds of edges are

vedge(L,R) vedge(R,L)
vedge(R,bg) vedge(bg,L)
pedge H,Ré pedge(R,H)
pedge(bg,H) pedge(R,bg)

nedge(L,H) nedge(H,L)
nedgeEH,bg) nedge(bg,L)

Here, L, R, and H stand for left, right, and hori-
zontal, respectively. Edges are characterized in terms
of convexity or concavity of the adjoining regions. For
example, e16 becomes vedge since its two adjoining
faces are R and L. From this knowledge base, the an-
swer interpret(H, L, R, H, L, R) can be obtained, as
shown in Figure 4(b).

A P-tree for the rule is shown below. (Here again,
P1 corresponds to the first antecedent pattern of the
rule, i.e. pedge(bg,r1), and p2 corresponds to the sec-
ond, i.e. nedge(rl,bg), and so on).

1 p7 5 piil 18 16

p[jzpljs 119_;1'10 Pljsp |52 P |_ﬁ“p

LJ L
4 S-Indexing Algorithm

This section describes a method of efficient RUI
set handling for non-conjunctive connectives includ-
ing AND-OR, THRESH, and or-entailment. Non-
conjunctive connectives are characterized by the fact
that the number of antecedents that should be in-
stantiated to derive the consequents is not always
the same as the number of antecedents, but rather
it varies depending on the connective’s rules of infer-
ence. The P-tree method is not applicable to these
non-conjunctive connectives, because the root node of
a P-tree, which solely contributes to the derivation of
the consequents, can only be reached by conjunctively
instantiating all of the antecedents.

For non-conjunctive connectives, we now propose a
scheme of S-indexing that distributes RUIs by bound
values of variables in a rule. An index key is gen-
erated from the variable substitution of an instance
in such a way that an instance with a variable sub-
stitution {b1/v1,b2/vs,...,bn/vm} produces an index
key of (b1,ba,...,b,). Each rule manages an index
key table so that a RUI can be accessed and modified
by a corresponding index key from the table. Two
instances with an 1dentical variable substitution will
have the same index key, and eventually will access
the same RUI. When a new instance is processed, the
system retrieves the corresponding RUI via the index
key, changes the values of <pos count>, <neg count>,
and <flagged node set> properly, and replaces the
old RUI by the changed one. A benefit from this idea
of indexing is that there is no need for checking binding
conflicts between RUIs since different bindings lead
to different RUISs, and consequently it is sufficient to
maintain a single RUI for each different variable sub-
stitution. A schematic of the S-indexing mechanism
is given in Figure 5.

As an example, consider an AND-OR rule

4”2 { Pl(z,y)y Pz(Z,y), P3(.’l:,y), P4(Z,y)}

3 p1
P 4P %15

[

17

T

386

index
key
generator

— index key

—

instance

index key table

—1— RUI
—— RUI
——— RUI
—— RUI

Figure 5: Overview of S-indexing mechanism

and some facts

) b] b - b, b,
figf'(c,)d) ”18%2(2, o) ”i‘psfi, d)P4(P421, d)

Here, we use — as the negation symbol that is just

an abbreviation of 1ﬂg. There are two variables in
the AND-OR rule representation, so an index key will
have the form of (b, b,), where b; is a bound value
for and b3 is a bound value for y. When Pj(a,b
is processed, a RUI ({a/2,b/y} 1 0 {P1 : true}
is built and a new index key (a,b) 1s created in
the table that will be used to access this RUI. The
next instance P,(a,b) produces the same index key,
so the previous RUI is retrieved and replaced by
({a/z,b/y} 2 0 {P1 : true, P2 : true}). The third
instance —P;3(b, ¢) produces a different index key, re-
sulting in the creation of a new key (b,c) and a cor-
responding RUI {{b/z,c/yg 01 {P3: false}}. Other
instances are processed in the same way, and the result
of RUI distribution after all instances are processed is
shown below.

index keys RUIs

a,b a/z,b/y} 20 {P1:true, P2:true})
éb,cg gb/z,c/y} 12 {P2: false, P3 : false,
P4:t

:true
gfz’,% %ii//?,‘fi//‘;lyl}ol 11 {{1;13 :: {fc:zllss?e, P4 : true})

Note that the rule of inference for AND-OR is applied
to make P (b, c) true for the index of (b, c), since the
inference rule says at least 2 of 4 arguments should be
true but 2 arguments are already known to be false
(<neg count> is 2).

We now provide an application problem that uses
nox{]—c?)njunctive connectives (this problem is described
in [20]).

Job puzzle problem:

“There are four people: Roberta, Thelma, Steve,
and Pete. Among them, they hold eight different jobs.
Each holds ezactly two jobs. The jobs are: chef, guard,
nurse, ielephone operator, police officer (gender not
implied), teacher, actor, and bozer. The job of nurse
is held by a male. The husband of the chef is the tele-
phone operator. Roberia is not a bozer. Pete has no
education past the ninth grade. Roberta, the chef, and
the police officer went golfing together. Now the ques-
tion is : Who holds which jobs? ”

There are some hidden information in this descrip-
tion of puzzle. For instance, Pete can’t hold the job of
teacher, police officer, or nurse since those jobs require
high-level education. Also there are some general lin-
guistic information such that an actor is recognized
as a male by its suffix -or, and some common knowl-
edge that Roberta and Thelma are female names and
Steve and Pete are male names, and so on. A knowl-
edge base for this puzzle are shown below including all
extra information discussed above.

person(roberta) person(thelma)
person(steve) person(pete)
female(roberta) female(thelma)

male(steve) male(pete
job! (&Jef))job(gugrd))
job(nurse) job(operator)
job(police) job(teacher)
job(actor) job(boxer)

R;: Vp [person(p) v—
s (hold(p,chef), hold(p,guard), hold(p,nurse),
hold(p,operator), hold(p,police), hold(p,teacher),
holdgp,a,ctor), hold(p,boxer))]
Ra: Vj [job(j) v—
aYXi (hold(roberta,j), hold(thelma,j),
hold(steve,j), hold(pete,j))]
Ra: Vp [temale(p) V—
3”3 (hold(p,nurse), hold(p,actor),
hold(p,operator))]
Ry: Vp [male(p) V— 1 Y5 (Rold(p,chef))]
Rs: 1))g (hold(roberta,boxer))
Re: 3”3 (hold(pete,nurse), hold(pete,police),
hold(pete,teacher))
Ry 2”8 (hold(roberta,chef), hold(roberta,police))
Rs: Vp [person(p) v—
2X(s (Bold(p,chef), hold(p,police))]

question: hold(x,y)?

Let us see how S-indexing distributes RUIs for
this job puzzle problem. For brevity of explanation,
we only consider the manipulation of the AND-OR rule
of Rl

gﬂg (hold(p,chef), hold(p,guard), hold(p,nurse),
hold(p,operator), hold(p,police), hold(p,teacher),
hold(p,actor), hold(p,boxer))

We name the first argument as P1, and the second
argument as P2, and so on. Since there is one variable
p in this rule, each index key will be a bound value for
p. It is inferred from Ry that Roberta is not a boxer,
and this provides a negative instance information to
hold(p,boxer) of the rule that is named P8, resulting
in the creation of the following RUI with a new index
key (roberta).

({roberta/p} 0 1 {P8:false})

Then, it is inferred from R7 that Roberta is neither
a chef nor a police officer. These instances have the
same index key (roberta) as before, so the previous
RUI is retrieved and replaced by

({roberta/p} 0 3 {P1:false, P5:false, P8:false})

Since Roberta is a female, it can also be inferred
from Rg that Roberta is neither a nurse, an actor, nor
an operator. So the RUI for the index key (roberta)
is replaced again by

({roberta/p} 0 6 {P1:false, P3:false, P4:false,
P5:false, P7:false, P8:false})

At this point, the rule of inference for AND-OR is
applied to derive that Roberta is both a guard and a
teacher. Eventually, we will get the following answer
at the end of the processing.

hold(roberta,teacher)
hold(roberta,guard)
hold(thelma,chef)
hold(thelma,boxer)
hold(steve,nurse)
hold(steve,police)
hold(pete,actor)
hold(pete,operator)

The distribution of RUIs is shown in Figure 6(a)
for the AND-OR rule of Ry, and in Figure 6(b) for the
AND-OR rule of Rs.

In Table 2, the complexity of handling the RUI
set for non-conjunctive rules is compared between the
single RUI set scheme and the distributed RUI set
scheme. The same assumptions and measures men-
tioned in the previous section are used. You can no-
tice in this table that the substitution compatibility
tests are unnecessary in the S-indexing method.

5 Test Results

SNIP [8] was modified to employ the P-tree algo-
rithm and the S-indexing scheme, implemented in
COMMON-LISP. We ran the original and the modi-
fied versions of SNIP on the three examples described
in the previous sections on a TI-Explorer lisp machine.
(SNePS representations are not shown here). The map
coloring and the scene analysis problems use the P-
tree algorithm, and the S-indexing is applied to the
job puzzle problem. Table 3 compares the test results
between the single RUI set scheme and the distributed
RUI set scheme in terms of execution time, the num-
ber of RUIs, and the number of compatibility checks
for these three problems.

Index table for p

instances

(roberta)

_—

— | (thelma)

instances

—_—

/

(steve)

———

(pete)

({roberta/p} 2 6 {P1:false, P2:true, P3:false, P4:false,
P5:false, P6:true, P7:false, P8:false})

({thelma/p} 2 6 {P1l:true, P2:false, P3:false, P4:false,
P5:false, P6:false, P7:false, P8:true})

({steve/p} 2 6 {P1:false, P2:false, P3:true, P4:false,
P5:true, P6:false, P7:false, P8:false})

({pete/p} 2 6 {P1:false, P2:false, P3:false, P4:true,
P5:false, P6:false, P7:true, P8:false})

(a) S-indexing for the AND-OR rule of R;

Index table for j

(chef) -
(quard)y [——
(nurse) ~ f—
(operator) ——
(police) [
(teacher) [——
(actor)y ~ [—
(bozer) ~ [—

({chef/j} 13 {P1:false, P2:true, P3:false, P4:false})
({guard/j} 1 3 {P1:true, P2:false, P3:false, P4:false})
({nurse/j} 1 3 {P1:false, P2:false, P3:true, P4:false})
({operator/j} 1 3 {P1:false, P2:false, P3:false, P4:true})
({police/j} 1 3 {P1:false, P2:false, P3:true, P4:false})
({teacher/j}) 1 3 {P1:true, P2:false, P3:false, P4:false})

({actor/j} 1 3 {P1:false, P2:false, P3:faise, P4:true})

({boxer/j} 1 3 {P1:false, P2:true, P3:false, P4:false})

(b) S-indexing for the AND~OR rule of R,

Figure 6: Distribution of RUIs by S-indexing

388

The single RUI
set scheme
Cases || number of RUIs | number of tests
Best O(m - n) O(m? - n?) |
Worst O(m-2") O(m?.2")
Average O(m - n?) O(m*. 2"
The distributed
RUI set scheme
Cases || number of RUIs | number of tests
Best O(m) o1
Worst O(m - n) o(1
verage O(m - n) o

n: avg. no. of antecedents in a rule
m: avg. no. of instances for each antecedent

Table 2: Performance comparison of RUI handling for
non-conjunctive rules

Notice from the table that the P-tree method is
much more effective for the scene analysis problem
than for the map coloring problem. The main reason
is that the number of antecedents of the scene analysis
rule is much bigger than that of the map coloring rule.
This phenomenon can be verified by the complexity
analysis in Table 1 in which the number of antecedents
is denoted by n, and the P-tree method reduces the
average complexity of processing the RUI set from 2"
to n. From this observation, it can be said that the
effect of the P-tree method will be severe especially
for a rule with a large number of antecedents.

For the job puzzle problem, the single RUI set
method was very inefficient, and it even didn’t fin-
ish after more than 5 hours of running, as seen in the
table. The S-indexing method significantly improves
the performance by eliminating compatibility tests.

6 Related Work

The P-tree algorithm can be compared with the
RETE algorithm [6] that was developed to reduce
the overhead of pattern matching costs when many
patterns and objects are in the system. Both meth-
ods focus on the control of rule execution by build-
ing a tree (or network) structure from antecedents of
a rule (or productions), and then by feeding the in-
stances (or working memory elements) into the struc-
ture to produce combined instance information that
has consistent variable bindings. In production sys-
tems, this combined information consists of the ‘con-
flict set’. Each node of the structure saves its instances
as a way of avoiding duplicate processing, and also
checking the compatibility of bindings is performed
for shared variables between two adjacent nodes (in
RETE, this process is called ‘join’).

However, there are some differences between the
two approaches. The RETE algorithm is basically de-
signed for production systems [5, 11] that employ only
forward rule chaining. Therefore, in every cycle of the

389

The single RUI
sel scheme
CPU time [number ol | number of
Problems (in sec.) RUIs tests
[Coloring 4563 18276 321212
Scene 9130 64372 454386
Puzzle 5 hrs 3608 189779

The distributed

RUI set scheme
CPU time | number of | number of
Problems | (in sec.) RUIs tests
oloring 99 612 9936
Scene 17 84 103
Puzzle 146 88 0

Table 3: Test results comparison

interpreter, all patterns in the production memory are
compared to all elements in working memory to deter-
mine which productions can be triggered. In fact, this
characteristic of all-patterns vs. all-objects match en-
ables the system to compile a single RETE network
from entire patterns. The RETE algorithm, however,
is not applicable to backward chaining in which pat-
tern matches are normally performed only for those
patterns of a rule that is currently being triggered,
and also only those facts that are pattern matched
will send information to the requesting patterns. The
P-tree algorithm is mainly applied to backward rea-
soning systems, although it can also be extended to
handle forward chaining. There will be as many P-
trees as the number of rules in the knowledge base,
whereas the RETE algorithm will compile a single net-
work for entire productions. A consequence from this
fact is that a RETE network has to be re-compiled
when a new production is added to the production
memory, so no dynamic addition of productions is as-
sumed in the RETE algorithm.

Studies on the control of backward inference mainly
emphasize the selection of a rule among possibly
many applicable rules at each branch in the infer-
ence tree. Smith [18] suggested an algorithm for find-
ing optimal inference path in non-redundant knowl-
edge base. Greiner’s work [7] extends Smith’s work
using explanation-based learning [12] to find an op-
timal inference strategy for a redundant knowledge
base. Greiner actually proves that finding an opti-
mal path from a general redundant knowledge base
is NP-complete, so his method makes a redundant
knowledge base irredundant by removing some exist-
ing rules, and then applies Smith’s algorithm. Also
a method of choosing backward or forward directions
during an inference is suggested in [19]. All of these
approaches concentrate on the selection of a proper
rule or choosing a direction for efficiency, but the is-
sue of the overhead for executing the selected rule itself
is largely ignored. We hope that more efficient infer-

ence engines can be built by combining the above rule
selection algorithms with our rule activation methods.

Conclusion

We have presented methods for the efficient imple-
mentation of rules with non-standard connectives and
quantifiers. Our main objective is to manage a uni-
form way of handling a variety of connectives, and at
the same time to have a reasonably good performance
for controlling rule activations with these connectives.
A uniform manipulation of different connectives and
quantifiers is achieved by keeping the RUI set struc-
ture for each rule. The RUI set structure provides a
way of avoiding duplicate pattern matches and binding
conflict resolutions of shared variables by saving the
history of rule activations. For efficient handling of
the RUI set, the P-tree and S-indexing algorithms
have been designed and implemented. By using these
algorithms, the complexity of processing the RUI set
becomes polynomial in terms of the average number
of antecedents in a rule and the average number of
instances for each antecedent.

References

[1] Joongmin Choi and Stuart C. Shapiro. Expe-
rience based deductive learning. In The Third
International Conference on Tools for Artificial
Intelligence, San Jose, CA, 1991. IEEE. forth-
coming.

[2] Joongmin Choi and Stuart C. Shapiro. Learning
in deduction by knowledge migration and shad-
owing. In AAAIL-91 Workshop on Knowledge Ac-
quisition: From Science to Technology to Tools,
Anaheim, CA, 1991. AAAIL

[3] H. Coelho, J. C. Cotta, and L. M. Pereira, ed-
itors. How to Solve it with PROLOG. Labo-
ratério Nacional de Engenharia Civil, Ministério
da Habitagio e Obras Piiblicas, 3 edition, 1982.

[4] John S. Conery and Dennis F. Kibler. AND par-
allelism in logic programs. In Proceedings of In-
ternational Joint Conference on Artificial Intelli-
gence, pages 539-543, Karlsruhe, Germany, Au-
gust 1983. William Kaufmann, Los Altos.

[5] Charles L. Forgy. On the Efficient Implementa-
tion of Production Systems. PhD thesis, Dept. of
Computer Science, Carnegie-Mellon University,
1979.

[6] Charles L. Forgy. RETE: A fast algorithm for
the many pattern / many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982.

[7] Russell Greiner. Finding optimal derivation
strategies in redundant knowledge bases. Arti-
ficial Intelligence, 50:95-115, 1991.

[8] Richard G. Hull. A new design for SNIP the
SNePS Inference Package. SNeRG Technical
Note 14, Dept. of Computer Science, State Uni-
versity of New York at Buffalo, 1986.

390

[9] Jodo P. Martins and Stuart C. Shapiro. A model
for belief revision. Artificial Intelligence, 35:25-
79, 1988.

Donald P. McKay and Stuart C. Shapiro. Us-
ing active connection graphs for reasoning with
recursive rules. In Proceedings of International
Joint Conference on Artificial Intelligence, pages
368-374, Vancouver, Canada, August 1981.

Daniel P. Miranker. TREAT: A better match al-
gorithm for AI production systems. In Proceed-
ings of National Conference on Artificial Intelli-
gence, pages 42-47, Seattle, WA, July 1987. Mor-
gan Kaufmann, Los Altos.

[12] Tom M. Mitchell, Richard M. Keller, and
Smadar T. Kedar-Cabelli. Explanation-based
generalization: A unifying view. Machine Learn-
ing, 1:47-80, 1986.

Stuart C. Shapiro. Compiling deduction rules
from a semantic network into a set of processes.
In Abstracts of Workshop on Automatic Deduc-
tion, MIT, Cambridge, MA, 1977.

Stuart. C. Shapiro. Numerical quantifiers and
their use in reasoning with negative information.
In Proceedings of International Joint Conference
on Artificial Intelligence, pages 791-796, Tokyo,
Japan, August 1979.

(10]

[11]

(13]

(14]

(15] Stuart C. Shapiro. SNePS semantic network pro-
cessing system. In N.V. Findler, editor, Asso-
ciative Networks : Representation and Use of
Knowledge by Computers, pages 179-203. Aca-
demic Press, New York, 1979.

[16] Stuart. C. Shapiro. Using non-standard con-
nectives and quantifiers for representing deduc-
tion rules in a semantic network. Invited paper
presented at Current Aspects of AI Research, a
seminar held at the Electrotechnical Laboratory,
Tokyo, 1979.

[17] Stuart C. Shapiro, Jodo Martins, and Donald P.
McKay. Bi-directional inference. In Proceedings
of the Fourth Annual Meeting of the Cognitive
Science Society, pages 90-93, Ann Arbor, MI,
1982.

(18] David E. Smith. Controlling backward inference.
Artificial Intelligence, 39:145-208, 1989.

[19] Richard Treitel and Michael R. Genesereth.
Choosing directions for rules. Journal of Auto-
mated Reasoning, 3:395-431, 1987.

[20] Larry Wos, Ross Overbeek, Ewing Lusk, and
Jim Boyle. Automated Reasoning: Introduction
and Applications. Prentice-hall, Inc., Englewood
Cliffs, NJ, 1984.

