SNePS as a Database Management System

Stuart C. Shapiro
Department of Computer Science
and Center for Cognitive Science

State University of New York at Buffalo
226 Bell Hall
Buffalo, NY 14260-2000
U.S.A.

shapiro@cs.buffalo.edu

July 29, 1994

SNePS can be used as a network version of a relational database system in which every element
of the relational database is represented by a base node, each row of each relation is represented by a
molecular node, and each column label (attribute) is represented by an arc label. Whenever a row r
of a relation R has an element ¢; in column c¢;, the molecular node representing r has an arc labeled
R to the special node relation, and an arc labelled ¢; pointing to the base node representing e;.
Table 1 shows two relations from the Supplier-Part-Project database of Date!, p. 114. Figure 1

Table 1: From Date’s Supplier-Part-Project Database

PROJECT
SUPPLIER J# | INAME | CITY
S# | SNAME | STATUS | CITY jl | sorter Paris
sl | Smith 20 London J2 | punch Rome
82 | Jones 10 Paris j3 | reader Athens
s3 | Blake 30 Paris J4 | console | Athens
s4 | Clark 20 London 15 | collator | London
sb | Adams 30 Athens j6 | terminal | Oslo

17 | tape London

shows a fragment of the SNePS network version of this database.

1 SNePS as a Relational Database

The three basic operations on relational databases are select, project, and join. The next three
subsections show how these operations may be expressed in SNePSUL.

1C. J. Date, An Introduction to Database Systems 3rd Edition (Reading, MA: Addison-Wesley) 1981.

project
project

w
**

() —<
supplier supplier
e — 8
jne
l: : 2 j#
ot @/
COLLAT
status status

sname _
city

city

sSname

Figure 1: Fragment of SNePS network for the Supplier-Part-Project Database

1.1 Project

Project is a database operation that, given one relation, produces another that has all the rows of the
first, but only specific columns. (Actually some of the rows might collapse if the only distinguishing
elements were in columns that were eliminated.) The SNePSUL dbproject function has been
designed for this purpose. For example, to show the STATUS and CITY of all suppliers, one can do

* (dbproject (find supplier relation) status city)
((STATUS (20) CITY (LONDON)) (STATUS (10) CITY (PARIS))
(STATUS (30) CITY (PARIS)) (STATUS (30) CITY (ATHENS)))
CPU time : 0.07

The dbproject function forms and returns a virtual relation, which is represented as a SNePS
data type called a set of flat cable sets. Compare the following two ways of getting complete details
of the SUPPLIER. relation. The first uses the SNePSUL describe function to print the details of
the nodes that make up the relation:

* (describe (find supplier relation))

(M1! (CITY LONDON) (S# S1) (SNAME SMITH) (STATUS 20) (SUPPLIER RELATION))
(M2! (CITY PARIS) (S# S2) (SNAME JONES) (STATUS 10) (SUPPLIER RELATION))
(M3! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER RELATION))
(M4! (CITY LONDON) (S# S4) (SNAME CLARK) (STATUS 20) (SUPPLIER RELATION))
(M5! (CITY ATHERS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER RELATION))
(M1! M2! M3! M4! M5!)

CPU time : 0.15

The second uses dbproject to display a virtual relation with the same information:

* (dbproject (find supplier relation) supplier s\# sname status city)
((SUPPLIER (RELATION) S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDOK))
(SUPPLIER (RELATION) S# (S2) SNAME (JONES) STATUS (10) CITY (PARIS))
(SUPPLIER (RELATION) S# (S3) SNAME (BLAKE) STATUS (30) CITY (PARIS))
(SUPPLIER (RELATION) S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON))
(SUPPLIER (RELATION) S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHEKS)))

CPU time : 0.12

Virtual relations are created without building any new SNePS network structure. To make
these relations permanent, use the SNePSUL dbAssertVirtual function. For example, to create a
CITYSTATUS relation that is a projection of the SUPPLIER relation down the CITY and STATUS
attributes, we would first define CITYSTATUS as a new SNePS relation:

* (define citystatus)
(CITYSTATUS)
CPU time : 0.03

Then we would do

* (describe (dbAssertVirtual (dbproject (find supplier relation) city status)
(citystatus relation)))

(M13! (CITY LONDON) (CITYSTATUS RELATION) (STATUS 20))

(M14! (CITY PARIS) (CITYSTATUS RELATION) (STATUS 10))

(M15' (CITY PARIS) (CITYSTATUS RELATION) (STATUS 30))

(M16! (CITY ATHENS) (CITYSTATUS RELATION) (STATUS 30))

(M13! M14! M15! Mi6!)

CPU time : 0.28

1.2 Select

Select is an operation that is given a relation and specific values for some of its attributes, and
yields the rows of the relations in which those attributes take on those values. A selection from
relation Ry in which attribute a); takes on value v;; is expressed in SNePSUL as

(find R, relation @11 Vi1 ...G1n Y1n)-

For example, to select rows of the SUPPLIER relation where the CITY is Paris or Athens and the
STATUS is 30, we could do:

* (describe (find supplier relation city (paris athens) status 30))

(M3! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER RELATION))
(M5! (CITY ATHENS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER RELATION))
(M3! M5!)

CPU time : 0.08

If we want a new permanent relation, say supplier2, to be this selection from the SUPPLIER
relation, we could do:

* (define supplier2)
(SUPPLIER2)
CPU time : 0.03

* (describe
(dbAssertVirtual
(dbproject (find supplier relation city (paris athens) status 30)
s\# sname status city)

(supplier2 relation)))
(M17! (CITY PARIS) (S# S3) (SNAME BLAKE) (STATUS 30) (SUPPLIER2 RELATION))
(M18! (CITY ATHENS) (S# S5) (SNAME ADAMS) (STATUS 30) (SUPPLIER2 RELATION))
(M17! M18!)
CPU time : 0.23

1.3 Join

Join is a database operation that, given two relations, R; and Ry, with attributes aj,...,a15
and asq,...,dsm, respectively, and an atttibute a = a); = ay; produces a relation with attributes
a1y .--,81n,a21,--.,325-1,82j+1, - - -, A2m, and every row, €y1,...,€1n,€21,-..,€25-1,€2541,---,€2m
where e11,...,€1n Was a row of R;, and ea,...,€2j-1,€1i,€2j41,- .-, €2m Was a row of Ry. For
example, Table 2 shows the join of the relations in Table 1 on the attribute CITY.

This join may be created and displayed by the SNePSUL dbjoin command, which, like dbproject
creates a virtual relation.

* (dbjoin city

(find supplier relation) (s\# sname status city)

(£ind project relation) (j\# jname))
(S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDON) J# (J7) JNAME (TAPE))
(S# (S1) SNAME (SMITH) STATUS (20) CITY (LONDON) J# (J5) JNAME (COLLATOR))
(S# (S2) SNAME (JORES) STATUS (10) CITY (PARIS) J# (J1) JNAME (SORTER))
(S# (S3) SNAME (BLAKE) STATUS (30) CITY (PARIS) J# (J1) JNAME (SORTER))
(S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON) J# (J7) JNAME (TAPE))
(S# (S4) SNAME (CLARK) STATUS (20) CITY (LONDON) J# (35) JNAME (COLLATOR))
(S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHENS) J# (J4) JNAME (CONSOLE))

Table 2: The join of SUPPLIER and PROJECT on CITY

S# | SNAME | STATUS | CITY J# | INAME
sl | Smith 20 London | j5 | collator
sl | Smith 20 London | j7 | tape

s2 | Jones 10 Paris i sorter

s3 | Blake 30 Paris j1 | sorter

s4 | Clark 20 London | j5 | collator
s4 | Clark 20 London | }7 | tape

s5 | Adams 30 Athens | j3 | reader
85 | Adams 30 Athens | j4 | console

(S# (S5) SNAME (ADAMS) STATUS (30) CITY (ATHEKS) J# (J3) JNAME (READER))
CPU time : 0.35

Again, to make the virtual relation permanent, dbAssertVirtual is used:

* (define supplierproject)
(SUPPLIERPROJECT)
CPU time : 0.03

* (describe
(dbAssertVirtual
(dbjoin city
(find supplier relation) (s\# sname status city)
(find project relation) (j\# jname))
(supplierproject relation)))

(M19! (CITY LONDON) (J# J7) (JINAME TAPE) (S# S1) (SNAME SMITH) (STATUS 20)
(SUPPLIERPROJECT RELATION))

(M20! (CITY LONDON) (J# J5) (JNAME COLLATOR) (S# S1) (SNAME SMITH) (STATUS 20)
(SUPPLIERPROJECT RELATION))

(M21! (CITY PARIS) (J# J1) (JNAME SORTER) (S# S2) (SNAME JONES) (STATUS 10)
(SUPPLIERPROJECT RELATION))

(M22! (CITY PARIS) (J# J1) (JNAME SORTER) (S# S3) (SNAME BLAKE) (STATUS 30)
(SUPPLIERPROJECT RELATION))

(M23! (CITY LONDON) (J# J7) (JNAME TAPE) (S# S4) (SNAME CLARK) (STATUS 20)
(SUPPLIERPROJECT RELATION))

(M24! (CITY LONDON) (J# J5) (JNAME COLLATOR) (S# S4) (SNAME CLARK) (STATUS 20)
(SUPPLIERPROJECT RELATION))

(M25! (CITY ATHENS) (J# J4) (JNAME CONSOLE) (S# S5) (SNAME ADAMS) (STATUS 30)
(SUPPLIERPROJECT RELATION))

(M26! (CITY ATHENS) (J# J3) (JNAME READER) (S# S5) (SNAME ADAMS) (STATUS 30)
(SUPPLIERPROJECT RELATION))

(M19! M20! M21! M22! M23! M24! M25! M26!)

CPU time : 0.92

2 SNePS as a Network Database

Although SNePS can be treated as a relational database, as shown in the previous section, it is more
naturally a network database. For example, to find the names of suppliers with the same status

as suppliers in the same city as the sorter project using relational database techniques, one would

Join the SUPPLIER and PROJECT relations on CITY, join the result with SUPPLIER again on

STATUS, select rows where PROJECT is sorter, and project the result on the SNAME attribute.
However, in SNePSUL, one could just do

* (find (sname- status status— city city- jname) sorter)
(ADAMS BLAKE JONES)
CPU time : 0.02

Additional examples of these techniques may be found in the SNePS DBMS demonstration.

3 Database Functions

Functions specifically supplied for treating SNePS as a Database Management System are docu-
mented in this section. Additional ones may be created using the functions documented in Chapter
4 of the SNePS 2.1 User’s Manual. Note also innet and outnet, documented in Section 2.4 of the
Manual, for saving the database across runs.

(dbAssertVirtual virtualezp [(Lrelation nodeset]*)])

Evaluates virtualezp, which must return a virtual relation (set of flat cable sets), appends the list
(Lrelation nodeset]*) to each flat cable set, asserts each resulting flat cable set as a SNePS molecular
node, and returns the set of asserted nodes.

(dbcount nodesetezp)
Evaluates the SNePSUL nodeset expression, nodesetezp, and returns a node whose identifier looks
like the number which is the number of nodes in the resulting set.

(dbjoin relation nodesetezp! relationsl nodesetexp? relations2)

A virtual relation (a set of flat cable sets) is created and returned. The virtual relation is formed by
taking the nodes returned by the SNePSUL node set expression, nodesetezpl and the nodes returned
by the SNePSUL node set expression, nodesetezp2, joining these two relations on the attribute
relation, and then projecting the result down the relations! attributes from the first nodeset and
the relations2 attributes from the second nodeset. Note that relations1 and relations?2 is each a
list of relations.

(dbmax nodesetezp)

Evaluates the SNePSUL nodeset expression, nodesetezp, which must evaluate to a set of nodes all
of whose identifiers look like numbers, and returns the node whose identifier looks like the biggest
of the numbers.

(dbmin nodesetezp)

Evaluates the SNePSUL nodeset expression, nodesetezp, which must evaluate to a set of nodes all
of whose identifiers look like numbers, and returns the node whose identifier looks like the smallest
of the numbers.

(dbproject nodeseterp relations)

A virtual relation (a set of flat cable sets) is created and returned. The virtual relation is formed by
taking the nodes returned by the SNePSUL node set expression, nodesetezp, and projecting down
the SNePSUL relations included in the sequence, relations.

(dbtot nodesetezp)
Evaluates the SNePSUL nodeset expression, nodeseterp, which must evaluate to a set of nodes all

of whose identifiers look like numbers, and returns a node whose identifier looks like the sum of the

numbers.

