
Proc., NRAC-2011

On the Use of Epistemic Ordering Functions as Decision Criteria
for Automated and Assisted Belief Revision in SNePS

(Preliminary Report)

Ari I. Fogel and Stuart C. Shapiro
University at Buffalo, The State University of New York, Buffalo, NY

{arifogel,shapiro}@buffalo.edu

Abstract

We implement belief revision in SNePS based on
a user-supplied epistemic ordering of propositions.
We provide a decision procedure that performs
revision completely automatically when given a
well preorder. We also provide a decision pro-
cedure for revision that, when given a total pre-
order, simulates a well preorder by making a min-
imal number of queries to the user when multi-
ple propositions within a minimally-inconsistent
set are minimally-epistemically-entrenched. The
first procedure usesOp|Σ|q units of space, and com-
pletes withinOp|Σ|2 ¨smaxq units of time, whereΣ is
the set of distinct minimally-inconsistent sets, and
smax is the number of propositions in the largest
minimally-inconsistent set. The second procedure
usesOp|Σ|2 ¨s2

maxq space andOp|Σ|2 ¨s2
maxq time. We

demonstrate how our changes generalize previous
techniques employed in SNePS.

1 Introduction
1.1 Belief Revision
Several varieties of belief revision have appeared in the
literature over the years. AGM revision typically refers to
the addition of a belief to a belief set, at the expense of
its negation and any other beliefs supporting its negation
[Alchourron et al., 1985]. Removal of a belief and beliefs
that support it is calledcontraction. Alternatively, revision
can refer to the process of resolving inconsistencies in a
contradictory knowledge base, or oneknown to be incon-
sistent[Martins and Shapiro, 1988]. This is accomplished
by removing one or more beliefs responsible for the in-
consistency, orculprits. This is the task with which we
are concerned. In particular, we have devised a means of
automatically resolving inconsistencies by discarding the
least-preferred beliefs in a belief base, according to some
epistemic ordering[Gärdenfors, 1988; Williams, 1994;
Gärdenfors and Rott, 1995].

The problem of belief revision is that logical con-
siderations alone do not tell you which beliefs

to give up, but this has to be decided by some
other means. What makes things more compli-
cated is that beliefs in a database have logical con-
sequences. So when giving up a belief you have to
decide as well which of itsconsequencesto retain
and which to retract...[Gärdenfors and Rott, 1995]

In later sections we will discuss in detail how to make a
choice of belief(s) to retract when presented with an incon-
sistent belief set.

AGM Paradigm
In [Gärdenfors, 1982; Alchourronet al., 1985], operators and
rationality postulates fortheory changeare discussed. In
general, any operator that satisfies those postulates may be
thought of as an AGM operation.

Let CnpAq refer to the closure under logical consequence
of a set of propositionsA. A theory is defined to be a set of
propositions closed under logical consequence. Thus for any
set of propositionsA, CnpAq is a theory. It is worth noting
that theories are infinite sets.[Alchourronet al., 1985] dis-
cusses operations that may be performed on theories.Partial
meet contraction and revision. defined in[Alchourronet al.,
1985], satisfy all of the postulates for a rational contraction
and revision operator, respectively.

Theory Change on Finite Bases
It is widely accepted that agents, because of their
limited resources, believe some but by no means all
of the logical consequences of their beliefs.[Lake-
meyer, 1991]

A major issue with the AGM paradigm ittends tooperate on
and produce infinite sets (theories). A more practical model
would include operations to be performed on finite belief
sets, orbelief bases. Such operators would be useful in sup-
porting computer-based implementations of revision systems
[Williams, 1994].

It has been argued that The AGM paradigm uses acoher-
entist approach1 [Gärdenfors, 1989], in that all beliefs re-
quire some sort of external justification. On the other hand,
finite-base systems are said to use a foundationalist approach,
wherein some beliefs indeed have their own epistemic stand-
ing, and others can be derived from them. SNePS, as we shall
see, uses the finite-base foundationalist approach.

1It has also been argued otherwise[Hansson and Olsson, 1999]

Epistemic Entrenchment
Let us assume that the decision on which beliefs to retract
from a belief base is made is based on the relative impor-
tance of each belief, which is called its degree ofepistemic
entrenchment[Gärdenfors, 1988]. Then we need an order-
ingď with which to compare the entrenchment of individual
beliefs. Beliefs that are less entrenched are preferentially dis-
carded during revision over beliefs that are more entrenched.
An epistemic entrenchment ordering is used to uniquely de-
termine the result of AGM contraction. Such an ordering is
a noncircular total preorder (that satisfies certain other postu-
lates) onall propositions.

Ensconcements
Ensconcements, introduced in[Williams, 1994], consist of a
set of forumlae together with a total preorder on that set. They
can be used to construct epistemic entrenchment orderings,
and determine theory base change operators.

Safe Contraction
In [Alchourron and Makinson, 1985], the operationsafe con-
traction is introduced. Letă be a non-circular relation over a
belief setA. An elementa of A is safewith respect tox iff a
is not a minimal element of any minimal subsetB of A such
thatxPCnpBq. Let A{x be the set of all elements ofA that are
safe with respect tox. Then the safe contraction ofA by x,
denotedA´sx, is defined to beAXCnpA{xq.

Assumption-based Truth Maintenance Systems
In an assumption-based truth maintenance system (ATMS),
the system keeps track of the assumptions (base beliefs) un-
derlying each belief[de Kleer, 1986]. One of the roles of an
conventional TMS is to keep the database contradiction-free.
In an assumption-based ATMS, contradictions are removed as
they are discovered. When a contradiction is detected in an
ATMS, then there will be one or more minimally-inconsistent
sets of assumptions underlying the contradiction. Such sets
are calledno-goods. [Martins and Shapiro, 1988] presented
SNeBR, an early implementation of an ATMS that uses the
logic of SNePS. In that paper, sets of assumptions supporting
a belief are calledorigin sets. They correspond toantecedents
of a justificationfrom [de Kleer, 1986]. The focus of this pa-
per is modifications to the modern version of SNeBR.

Kernel Contraction
In [Hansson, 1994], the operationkernel contractionis in-
troduced. Akernel set Aáα is defined to be the set of all
minimal subsets ofA that implyα. A kernel set is like a set
of origin setsfrom [Martins and Shapiro, 1988]. Let σ be an
incision functionfor A. Then for allα, σpAáαq Ď YpAáαq,
and ifH ‰ X P Aáα, thenXXσpAáαq ‰ H. The kernel
contractionof A by α based onσ , denotedA„σ α, is equal
to AzσpAáαq.

Prioritized Versus Non-Prioritized Belief Revision
In the AGM model of belief revision[Alchourron
et al., 1985] . . . the input sentence is always ac-
cepted. This is clearly an unrealistic feature, and
. . . several models of belief change have been pro-
posed in which no absolute priority is assigned to
the new information due to its novelty. . . . One

way to construct non-prioritized belief revision is
to base it on the following two-step process: First
we decide whether to accept or reject the input. Af-
ter that, if the input was accepted, it is incorporated
into the belief state[Hansson, 1999].

Hansson goes on to describe several other models of nonpri-
oritized belief revision, but they all have one unifiying fea-
ture distinguishing them from prioritized belief revision: the
input, i.e. the RHS argument to the revision operator, is not
always accepted. To reiterate:Prioritized belief revisionis
revision in which the proposition by which the set is revised
is always present in the result (as long as it is not a contradic-
tion). Non-prioritized belief revisionis revision in which the
RHS argument to the revision operator is not always present
in the result (even if it is not a contradiction).

The closest approximation from Hansson’s work to our
work is the operation ofsemi-revision[Hansson, 1997].
Semi-revision is a type of non-prioritized belief revision that
may be applied to belief bases.

1.2 SNePS

Description of the System
“SNePS is a logic-, frame-, and network- based knowledge
representation, reasoning, and acting system. Its logic is
based on Relevance Logic[Shapiro, 1992], a paraconsistent
logic (in which a contradiction does not imply anything what-
soever)[Shapiro and Johnson, 2000].”

SNeRE, the SNePS Rational Engine, provides an acting
system for SNePS-based agents, whose beliefs must change
to keep up with a changing world. Of particular interest is
thebelieveaction, which is used to introduce beliefs that take
priority over all other beliefs at the time of their introduction.

Belief Change in SNePS
Every belief in a SNePS knowledge base (which consists
of a belief base and all currently-known derived propostions
therefrom) has one or moresupport sets, each of which con-
sists of anorigin tag and anorigin set. The origin tag will
identify a belief as either being introduced as a hypothesis, or
derived (note that it is possible for a belief to be both intro-
duced as a hypothesis and derived from other beliefs). The
origin set contains thosehypothesesthat were used to derive
the belief. In the case of the origin tag denoting a hypoth-
esis, the corresponding origin set would be a singleton set
containing only the belief itself. The contents of the origin
set of a derived belief are computed by the implemented rules
of inference at the time the inference is drawn[Martins and
Shapiro, 1988; Shapiro, 1992].

The representation of beliefs in SNePS lends itself well to
the creation of processes for contraction and revision. Specif-
ically, in order to contract a belief, one must merely remove
at least one hypothesis from each of its origin sets. Similarly,
prioritized revision by a beliefb (where␣b is already be-
lieved) is accomplished by removing at least one belief from
each origin set of␣b. Non-prioritized belief revision under
this paradigm is a bit more complicated. We discuss both
types of revision in more detail in§2.

SNeBR
SNeBR, The SNePS Belief Revision subsystem, is respon-
sible for resolving inconsistencies in the knowledge base as
they are discovered. In the current release of SNePS (version
2.7.1), SNeBR is able toautomaticallyresolve contradictions
under a limited variety of circumstances[Shapiro and The
SNePS Implementation Group, 2010, 76]. Otherwise “as-
sisted culprit choosing” is performed, where the user must
manually select culprits for removal. After belief revision
is performed, the knowledge base might still be inconsistent,
but everyknownderivation of an inconsistency has been elim-
inated.

2 New Belief Revision Algorithms
2.1 Problem Statement
Nonprioritized Belief Revision
Suppose we have a knowledge base that is not known to be
inconsistent, and suppose that at some point we add a contra-
dictory belief to that knowledge base. Either that new belief
directly contradicts an existing belief, or we derive a belief
that directly contradicts an existing one as a result of per-
forming forward and/or backward inference on the new be-
lief. Now the knowledge base is known to be inconsistent.
We will refer to the contradictory beliefs asp and␣p

Since SNePS tags each belief with one or more origin sets,
or sets of supporting hypotheses, we can identify the underly-
ing beliefs that support each of the two contradictory beliefs.
In the case wherep and␣p each have one origin set,OSp
andOS␣p respectively, we may resolve the contradiction by
removing at least one hypothesis fromOSpYOS␣p. We shall
refer to such a union as ano-good. If there arem origin sets
for p, andnorigin sets for␣p, then there will be at mostmˆn
distinct no-goods (some unions may be duplicates of others).
To resolve a contradiction in this case, we must retract at least
one hypothesis from each no-good (Sufficiency).

We wish to devise an algorithm that will select the hypothe-
ses for removal from the set of no-goods. The first prior-
ity will be that the hypotheses selected should be minimally-
epistemically-entrenched (Minimal Entrenchment) according
to some total preorderď. Note that we are not referring
strictly to an AGM entrenchment order, but to a total pre-
order on the set of hypotheses, without regard to the AGM
postulates. The second priority will be not to remove any
more hypotheses than are necessary in order to resolve the
contradiction (Information Preservation), while still satisfy-
ing priority one.

Prioritized Belief Revision
The process of Prioritized Belief Revision in SNePS occurs
when a contradiction is discovered after a belief is asserted
explicitly using thebelieveact of SNeRE. The major differ-
ence here is that a subtle change is made to the entrenchment
orderingď. If ďnonpri is the ordering used for nonprioritized
belief revision, then for prioritized belief revision we use an
orderingďpri as follows:
Let P be the set of beliefs asserted by abelieveaction. Then
@e1,e2re1 P P^e2 R PÑ␣pe1ďpri e2q^e2ďpri e1s
@e1,e2re1 R P^e2 R PÑ pe1ďpri e2Ø e1ďnonpri e2qs
@e1,e2re1 P P^e2 P PÑ pe1ďpri e2Ø e1ďnonpri e2qs

That is, a proposition asserted by abelieveaction takes pri-
ority over any other proposition. When either both or neither
propositions being compared have been assserted by thebe-
lieveaction, then we use the same ordering as we would for
nonprioritized revision.

2.2 Common Requirements for a Rational Belief
Revision Algorithm

Primary Requirements
The inputs to the algorithm are:

• A set of formulaeΦ: the current belief base, which is
known to be inconsistent

• A total preorderď on Φ: an epistemic entrenchment or-
dering that can be used to compare the relative desirabil-
ity of each belief in the current belief base

• Minimally-inconsistent sets of formulaeσ1, . . . ,σn, each
of which is a subset ofΦ: the no-goods

• A setΣ“ tσ1, . . . ,σnu: the set of all the no-goods

The algorithm should produce a setT that satisfies the fol-
lowing conditions:

pEESNePS1q @σ rσ P ΣÑDτrτ P pTXσqs (Sufficiency)

pEESNePS2q @τrτ P T ÑDσ rσ P Σ^τ P σ ^@wrwP σ Ñ
τ ď wsss (Minimal Entrenchment)

pEESNePS3q @T 1rT 1 Ă T Ñ ␣@σ rσ P Σ Ñ Dτrτ P pT 1 X
σqsss (Information Preservation)

ConditionpEESNePS1q states thatT contains at least one for-
mula from each set inΣ. ConditionpEESNePS2q states that ev-
ery formula inT is a minimally-entrenched formula of some
set inΣ. ConditionpEESNePS3q states that if any formula is
removed from T, then ConditionpEESNePS1q will no longer
hold. In addition to the above conditions, our algorithm must
terminate on all possible inputs, i.e. it must be a decision
procedure.

Supplementary Requirement
In any case where queries must be made of the user in order
to determine the relative epistemic ordering of propositions,
the number of such queries must be kept to a minimum.

2.3 Implementation
We present algorithms to solve the problem as stated:
Where we refer toď below, we are using theprioritized en-
trenchment ordering from§2.1. In the case of nonprioritized
revision we may assume thatP“H

Using a well preorder
Let tď be the output of a functionf whose input is a total
preorderď, such thattď Ďď The idea is thatf creates the
well preordertď from ď by removing some pairs from the
total preorderď. Note that in the case whereď is already
a well preorder,tď “ď. Then we may use Algorithm 1 to
solve the problem.

Algorithm 1 Algorithm to compute T given a well preorder

Input: Σ,tď
Output: T
1: T ðH
2: for all pσ P Σq do
3: Move minimally entrenched belief inσ to first position

in σ , usingtď as a comparator
4: end for
5: Sort elements ofΣ into descending order of the values of

the first element in eachσ usingtď as a comparator
6: AddLoop:
7: while pΣ‰Hq do
8: currentCulpritð σ11
9: T ð TYtcurrentCulpritu

10: DeleteLoop:
11: for all pσcurrent P Σq do
12: if pcurrentCulpritP σcurrentq then
13: Σð Σzσcurrent
14: end if
15: end for
16: end while
17: return T

Using a total preorder
Unfortunately it is easy to conceive of a situation in which
the supplied entrenchment ordering is a total preorder, but
not a well preorder. For instance, let us say that, when
reasoning about a changing world, propositional fluents
(propositions that are only true of a specific time or situation)
are abandoned over non-fluent propositions. It is not clear
then how we should rank two distinct propositional fluents,
nor how to rank two distinct non-fluent propositions. If
we can arbitrarily specify a well preorder that is a subset
of the total preorder we are given, then algorithm 1 will
be suitable. Otherwise, we can simulate a well ordert
through an iterative construction by querying the user for
the unique minimally-entrenched proposition of a particular
set of propositions at appropriate times in the belief-revision
process. Algorithm 2 accomplishes just this.

Algorithm 2 Algorithm to compute T given a total preorder

Input: Σ,ď
Output: T
1: T ðH
2: MainLoop:
3: loop
4: ListLoop:
5: for all pσi P Σ,1ď i ď |Σ|q do
6: Make a list lσi of all minimally-entrenched propo-

sitions, i.e. propositions that are not strictly more
entrenched than any other, among those inσi , using
ď as a comparator.

7: end for
8: RemoveLoop:
9: for all (σi P Σ,1ď i ď |Σ|) do

10: if (According tolσi , σ has exactly one minimally-
entrenched propositionp AND the other proposi-
tions in σi are not minimally-entrenched in any

other no-good via anlσ j ,(1ď j ď |Σ| , i ‰ j)) then
11: T ð TYtpu
12: for all pσcurrent P Σq do
13: if pp P σcurrentq then
14: Σð Σzσcurrent
15: end if
16: end for
17: if pΣ“Hq then
18: return T
19: end if
20: end if
21: end for
22: Modi f yLoop:
23: for all pσ P Σq do
24: if (σ has multiple minimally-entrenched proposi-

tions)then
25: query which proposition l of the minimally-

entrenched propostions is least desired.
26: Modify ď so thatl is strictly less entrenched than

those other propositions.
27: break out ofModi f yLoop
28: end if
29: end for
30: end loop

Characterization
These algorithms perform an operation similar toincision
functions [Hansson, 1994], since they select one or more
propositions to be removed from each minimally-inconsistent
set. Their output seems analogous toσpΦápp^␣pqq, where
σ is the incision function,á is the kernel-set operator from
[Hansson, 1994], andp is a proposition. But we are actually
incisingΣ, the set ofknownno-goods. The known no-goods
are of course a subset of all no-goods, i.e.ΣĎ Φápp^␣pq.
This happens because SNeBR resolves contradictions as soon
as they are discovered, rather than performing inference first
to discover all possible sources of contradictions.

The type of contraction eventually performed is similar to
safe contraction[Alchourron and Makinson, 1985], except
that there are fewer restrictions on our epistemic ordering.

3 Analysis of Algorithm 1
3.1 Proofs of Satisfaction of Requirements by

Algorithm 1
We show that Algorithm 1 satisfies the requirements estab-
lished in section 2:

pEESNePS1q (Sufficiency)
During each iteration ofAddLoopan elementτ is added to
T from someσ P Σ. Then each setσ P Σ containingτ is
removed fromΣ. The process is repeated untilΣ is empty.
Therefore each removed setσ in Σ contains someτ in T
(Note that eachσ will be removed fromΣ by the end of the
process). So@σ rσ P ΣÑDτrτ P pTXσqs. Q.E.D.

pEESNePS2q (Minimal Entrenchment)
From lines 8-9, we see thatT is comprised solely of first el-
ements of sets inΣ. And from lines 2-4, we see that those
first elements are all minimal undertď relative to the other

elements in each set. Since@e1,e2,ď re1tďe2 Ñ e1 ď e2s,
those first elements are minimal underď as well. That is,
@τrτ PTÑDσ rσ PΣ^τ Pσ^@wrwPσ Ñ τ ďwsss. Q.E.D.

pEESNePS3q (Information Preservation)
From the previous proof we see that during each iteration of
AddLoop, we are guaranteed that at least one setσ containing
the current culprit is removed fromΣ. And we know that the
current culprit for that iteration is minimally-entrenched inσ .
We also know frompEESNePS2q that each subsequently cho-
sen culprit will be minimally entrenched in some set. From
lines 2-5 andAddLoop, we know that subsequently chosen
culprits will be less entrenched than the current culprit. From
lines 2-5, we also see that all the other elements inσ have
higher entrenchment than the current culprit. Therefore sub-
sequent culprits cannot be elements inσ . So, they cannot be
used to eliminateσ . Obviously, previous culprits were also
not members ofσ . Therefore, if we exclude the current cul-
prit from T, then there will be a set inΣ that does not contain
any element ofT. That is,
@T 1rT 1 Ă T ÑDσ rσ P Σ^␣Dτrτ P pT 1Xσqsss
6 @T 1rT 1 Ă T ÑDσ r␣␣pσ P Σ^␣Dτrτ P pT 1Xσqqsss
6 @T 1rT 1 Ă T ÑDσ r␣p␣pσ P Σq_Dτrτ P pT 1Xσqqsss
6 @T 1rT 1 Ă T ÑDσ r␣pσ P ΣÑDτrτ P pT 1Xσqqss
6 @T 1rT 1 Ă T Ñ␣@σ rσ P ΣÑDτrτ P pT 1Xσqsss Q.E.D.

Decidability
We see thatDeleteLoopis executed once for each element in
Σ, which is a finite set. So it always terminates. We see that
AddLoopterminates whenΣ is empty. And from lines 8 and
13 we see that at least one set is removed fromΣ during each
iteration ofAddLoop. SoAddLoopalways terminates. Lines
2-4 involve finding a minimum element, which is a decision
procedure. Line 5 performs sorting, which is also a decision
procedure. Since every portion of Algorithm 1 always termi-
nates, it is a decision procedure. Q.E.D.

Supplementary Requirement
Algorithm 1 is a fully-automated procedure that makes no
queries of the user. Q.E.D.

3.2 Complexity of Algorithm 1
Space Complexity
Algorithm 1 can be run completely in-place, i.e. it can use
only the memory allocated to the input, with the exception of
the production of the set of culpritsT. Let us assume that the
space needed to store a single proposition isOp1q memory
units. Since we only need to remove one proposition from
each no-good to restore consistency, algorithm 1 usesOp|Σ|q
memory units.

Time Complexity
The analysis for time complexity is based on a sequential-
procesing system. Let us assume that we implement lists as
array structures. Let us assume that we may determine the
size of an array inOp1q time. Let us also assume that per-
forming a comparison usingtď takesOp1q time. Then in
lines 2-4, for each arrayσ P Σ we find the minimum ele-
ment σ and perform a swap on two elements at most once
for each element inσ . If we let smax be the cardinality of the

largestσ in Σ, then lines 2-4 will takeOp|Σ| ¨ smaxq time. In
line 5, we sort the no-goods’ positions inΣ using their first
elements as keys. This takesOp|Σ| ¨ logp|Σ|qq time. Lines 7-
16 iterate through the elements ofΣ at most once for each
element inΣ. During each such iteration, a search is per-
formed for an element within a no-good. Also, during each
iteration through all the no-goods, at least oneσ is removed,
though this does not help asymptotically. Since the no-goods
are not sorted, the search takes linear time insmax. So lines
7-16 takeOp|Σ|2 ¨ smaxq time. Therefore, the running time is
Op|Σ|2 ¨smaxq time.

Note that the situation changes slightly if we sort the
no-goods instead of just placing the minimally-entrenched
proposition at the front, as in lines 2-4. In this case,
each search through a no-good will takeOplogpsmaxqq time,
yielding a new total time ofOp|Σ| ¨ smax¨ logpsmaxq ` |Σ|2 ¨
logpsmaxqq.

4 Analysis of Algorithm 2
4.1 Proofs of Satisfaction of Requirements by

Algorithm 2
We show that Algorithm 2 satisfies the requirements estab-
lished in section 2:

pEESNePS1q (Sufficiency)
Since every set of propositions must contain at least one
proposition that is minimally entrenched, at least one propo-
sition is added to the list in each iteration ofListLoop. In the
worst case, assume that for each iteration ofMainLoop, only
eitherRemoveLoopor Modi f yLoopdo any work. We know
that at least this much work is done for the following rea-
sons: ifModi f yLoopcannot operate on any no-good during
an iteration ofMainLoop, then all no-goods have only one
minimally-entrenched proposition. So eitherRemoveLoop’s
condition at line 10 would hold, or:
1. A no-good has multiple minimally-entrenched proposi-
tions, causingModi f yLoopto do work. This contradicts our
assumption thatModi f yLoopcould not do any work during
this iteration ofMainLoop, so we set this possibility aside.
2. Some propositionp1 is a non-minimally-entrenched
proposition in some no-goodσn, and a minimally-entrenched
one in another no-goodσm. In this case, eitherp1 is removed
during the iteration ofRemoveLoopwhereσm is considered,
or there is another propositionp2 in σm that is not minimally-
entrenched inσm, but is in σm1 . This chaining must even-
tually terminate at a no-goodσmfinal sinceď is transitive.
And the final proposition in the chainpf inal must be the sole
minimally-entrenched proposition inσ f inal , since otherwise
Modi f yLoopwould have been able to do work for this iter-
ation of MainLoop, which is a contradiction.Modi f yLoop
can only do work once for each no-good, so eventually its
work is finished. IfModi f yLoophas no more work left to
do, thenRemoveLoopmust do work at least once for each it-
eration ofMainLoop. And in doing so, it will create a list of
culprits of which each no-good contains at least one. Q.E.D.

pEESNePS2q (Minimal Entrenchment)
Since propositions are only added toT when the condition in
line 10 is satisfied, it is guaranteed that every proposition in

T is a minimally-entrenched proposition in some no-goodσ .

pEESNePS3q (Information Preservation)
From line 10, we see that when a propositionp is removed,
none of the other propositions in its no-good are minimally-
entrenched in any other no-good. That means none of the
other propositions could be a candidate for removal. So, the
only way to remove the no-good in whichp appears is by re-
moving p. So if p were not removed, thenpEESNePS1q would
not be satisfied. Q.E.D.

Decidability
ListLoop creates lists of minimal elements of lists. This
is a decision procedure since the comparator is a total pre-
order. From the proof ofpEESNePS1q above, we see that
eitherRemoveLoopor Modi f yLoopmust do work for each
iteration of MainLoop. Modi f yLoopcannot operate more
than once on the same no-good, because there are no longer
multiple minimally-entrenched propositions in the no-good
after it does its work. Nor canRemoveLoopoperate twice
on the same no-good, since the no-good is removed when
Modi f yLoopdoes work. So, eventuallyModi f yLoophas no
more work to do, and at that pointRemoveLoopwill remove
at least one no-good for each iteration ofMainLoop. By lines
17-18, when the last no-good is removed, the procedure ter-
minates. So it always terminates. Q.E.D.

Supplementary Requirement
RemoveLoopattempts to computeT each time it is run
from MainLoop. If the procedure does not terminate within
RemoveLoop, then we runModi f yLoopon at most oneno-
good. Afterwards, we run RemoveLoop again. Since the user
is only queried when the procedure cannot automatically de-
termine any propositions to remove, we argue that this means
minimal queries are made of the user. Q.E.D.

4.2 Complexity of Algorithm 2
Space Complexity
As before, letsmax be the cardinality of the largest no-good
in Σ. In the worst case all propositions are minimally en-
trenched, soListLoopwill recreateΣ. SoListLoopwill use
Op|Σ| ¨smaxq space. RemoveLoop creates a culprit list, which
we stated before takesOp|Σ|q space. ModifyLoop may be im-
plemented in a variety of ways. We will assume that it creates
a list of pairs, of which the first and second elements range
over propositions in the no-goods. In this caseModi f yLoop
usesOp|Σ|2 ¨ s2

maxq space. So the total space requirement is
Op|Σ|2 ¨s2

maxq memory units.

Time Complexity
The analysis for time complexity is based on a sequential-
procesing system. For each no-goodσ , in the worst case,
ListLoopwill have to compare each proposition inσ agains
every other. So, for each iteration ofMainLoop, ListLoop
takesOp|Σ| ¨ s2

maxq time. There are at mostOpsmaxq elements
in each list created byListLoop. So, checking the condition
in line 10 takesOp|Σ| ¨ s2

maxq time. Lines 12-16 can be ex-
ecuted inOp|Σ| ¨ smaxq time. Therefore,RemoveLooptakes
Op|Σ| ¨ s2

maxq time. We assume that all the work in lines 24-
27 can be done in constant time. So,Modi f yLoop takes

Op|Σ|q time. We noted earlier that during each iteration of
MainLoop, RemoveLoopor Modi f yLoopwill do work. In
the worst case, only one will do work each time. And they
each may do work at most|Σ| times. So the total running
time for the procedure isOp|Σ|2 ¨s2

maxq.

5 Annotated Demonstrations
A significant feature of our work is that it generalizes pre-
vious published work on belief revision in SNePS[Johnson
and Shapiro, 1999; Shapiro and Johnson, 2000; Shapiro and
Kandefer, 2005]. The following demonstrations showcase the
new features we have introduced to SNeBR, and capture the
essence of belief revision as seen in the papers mentioned
above by using well-specified epistemic ordering functions.
The demos have been edited for formatting and clarity.

The commandsbr-tie-mode autoandbr-tie-mode manual
indicate that Algorithm 1 and Algorithm 2 should be used re-
spectively. Awff is a well-formed formula. A wff followed
by a period (.) indicates that the wff should be asserted, i.e.
added to the knowledge base. A wff followed by an exclama-
tion point (!) indicates that the wff should be asserted, and
that forward inference should be performed on it.

Says Who?
We present a demonstration on how the source-credibility-
based revision behavior from[Shapiro and Johnson, 2000] is
generalized by our changes to SNeBR. The knowledge base
in the demo is taken from[Johnson and Shapiro, 1999]. In the
following example, the commandset-order sourcesets the
epistemic ordering used by SNeBR to be a lisp function that
compares two propositions based on the relative credibility of
their sources. Unsourced propositions are assumed to have
maximal credibility. The sources, as well as their relative
credibility are represented as meta-knowledge in the SNePS
knowledge base. This was also done in[Johnson and Shapiro,
1999] and[Shapiro and Johnson, 2000]. Thesourcefunction
makes SNePSLOG queries to determine sources of propo-
sitions and credibility of sources, using theaskwhand ask
commands[Shapiro and The SNePS Implementation Group,
2010]. This allows it to perform inference in making deter-
minations about sources.

Here we see that the nerd and the sexist make the gener-
alizations that all jocks are not smart and all females are not
smart respectively, while the holy book and the professor state
that all old people are smart, and all grad students are smart
respectively. Since Fran is an old female jock graduate stu-
dent, there are two sources that would claim she is smart, and
two that would claim she is not, which is a contradiction.

; ; ; Show origin sets
: expert
: bŕ mode auto
Automatic bel ief revision wil l now be automatically selected .
: bŕ t ie ḿode manual
The user wil l be consulted when an entrenchment t ie occurs
; ; ; Use source c red ib i l i t i es as epistemic ordering c r i t e r i a .
set́ order source
; ; ; The holy book is a better source than the professor .
IsBetterSource (holybook , prof) .
; ; ; The professor is a bet ter source than the nerd .
IsBetterSource (prof , nerd) .
; ; ; The nerd is a better source than the sexist .
IsBetterSource (nerd , sexist) .

; ; ; Fran is a better source than the nerd .
IsBetterSource (fran , nerd) .
; ; ; Betteŕ Source is a t rans i t i ve relat ion
a l l (x ,y , z) ({ IsBetterSource (x ,y) , IsBetterSource (y , z)} &=>

IsBetterSource (x , z)) !
; ; ; All jocks are not smart .
a l l (x) (jock (x)=>˜smart (x)) . ;wff10
; ; ; The source of the statement ’All jocks are not smart ’ is the nerd
HasSource(wff10 , nerd) .
; ; ; All females are not smart .
a l l (x) (female (x)=>˜smart (x)) . ;wff12
; ; ; The source of the statement ’All females are not smart ’ is the

sexist .
HasSource(wff12 , sexist) .
; ; ; All graduate students are smart .
a l l (x) (grad (x)=>smart (x)) . ;wff14
; ; ; The source of the statement ’All graduate students are smart ’ is

the professor .
HasSource(wff14 , prof) .
; ; ; All old people are smart .
a l l (x) (old (x)=>smart (x)) . ;wff16
; ; ; The source of the statement ’All old people are smart ’ is the

holy book .
HasSource(wff16 , holybook) .
; ; ; The source of the statement ’Fran is an old female jock who is a

graduate student ’ is fran .
HasSource(and{jock (fran) ,grad (fran) , female (fran) , old (fran)} , fran) .
; ; ; The KB thus far l i s t́ asserted́wffs
wff23 ! : HasSource(old (fran) and female (fran) and grad(fran) and

jock (fran) , fran) {<hyp,{wff23}>}
wff17 ! : HasSource(a l l (x) (old (x) => smart (x)) ,holybook){<hyp,{wff17}>}
wff16 ! : a l l (x) (old (x) => smart (x)) {<hyp,{wff16}>}
wff15 ! : HasSource(a l l (x) (grad (x) => smart (x)) , prof) {<hyp,{wff15}>}
wff14 ! : a l l (x) (grad (x) => smart (x)) {<hyp,{wff14}>}
wff13 ! : HasSource(a l l (x) (female (x) => (˜ smart (x))) , sexist)

{<hyp,{wff13}>}
wff12 ! : a l l (x) (female (x) => (˜ smart (x))) {<hyp,{wff12}>}
wff11 ! : HasSource(a l l (x) (jock (x) => (˜ smart (x))) ,nerd)<hyp,{wff11}>}
wff10 ! : a l l (x) (jock (x) => (˜ smart (x))) {<hyp,{wff10}>}
wff9 ! : IsBetterSource (fran , sexist){<der ,{wff3 , wff4 , wff5}>}
wff8 ! : IsBetterSource (prof , sexist){<der ,{wff2 , wff3 , wff5}>}
wff7 ! : IsBetterSource (holybook , sexist){<der ,{wff1 , wff2 , wff3 , wff5}>}
wff6 ! : IsBetterSource (holybook , nerd){<der ,{wff1 , wff2 , wff5}>}
wff5 ! : a l l (z ,y ,x) ({ IsBetterSource (y , z) , IsBetterSource (x ,y)} &=>

{IsBetterSource (x , z)}) {<hyp,{wff5}>}
wff4 ! : IsBetterSource (fran , nerd){<hyp,{wff4}>}
wff3 ! : IsBetterSource (nerd , sexist){<hyp,{wff3}>}
wff2 ! : IsBetterSource (prof , nerd){<hyp,{wff2}>}
wff1 ! : IsBetterSource (holybook , prof){<hyp,{wff1}>}
; ; ; Fran is an old female jock who is a graduate student (asserted

with forward inference) .
and{jock (fran) ,grad (fran) , female (fran) , old (fran)}!
wff50 ! : ˜ (a l l (x) (jock (x) => (˜ smart (x))))

{<ext ,{wff16 , wff22}>,<ext ,{wff14 , wff22}>}
wff24 ! : smart (fran) {<der ,{wff16 , wff22}>,<der ,{wff14 , wff22}>}
; ; ; The resul t ing knowledge base (HasSource and IsBetterSource omited

for c la r i ty)
l i s t ásserted́wffs
wff50 ! : ˜ (a l l (x) (jock (x) => (˜ smart (x))))

{<ext ,{wff16 , wff22}>, <ext ,{wff14 , wff22}>}
wff37 ! : ˜ (a l l (x) (female (x) => (˜ smart (x)))) {<ext ,{wff16 , wff22}>}
wff24 ! : smart (fran) {<der ,{wff16 , wff22}>,<der ,{wff14 , wff22}>}
wff22 ! : old (fran) and female (fran) and grad(fran) and jock (fran)

{<hyp,{wff22}>}
wff21 ! : old (fran) {<der ,{wff22}>}
wff20 ! : female (fran) {<der ,{wff22}>}
wff19 ! : grad (fran) {<der ,{wff22}>}
wff18 ! : jock (fran) {<der ,{wff22}>}
wff16 ! : a l l (x) (old (x) => smart (x)) {<hyp,{wff16}>}
wff14 ! : a l l (x) (grad (x) => smart (x)) {<hyp,{wff14}>}

We see that the statements that all jocks are not smart and
that all females are not smart are no longer asserted at the
end. These statements supported the statement that Franis
not smart. The statements that all old people are smart and
that all grad students are smart supported the statement that
Franis smart. The contradiction was resolved by contracting
“Fran is not smart,” since the sources for its supports were

less credible than the sources for “Franis smart.”

Wumpus World
We present a demonstration on how the state-constraint-
based revision behavior from[Shapiro and Kandefer, 2005]
is generalized by our changes to SNeBR. The commandset-
order fluentsays that propositional fluents are strictly less en-
trenched than non-fluent propositions. Thefluentorder was
created specifically to replace the original belief revision be-
havior of the SNeREbelieveact. In the version of SNeBR
used in[Shapiro and Kandefer, 2005], propositions of the
form andorpă 0|1ą,1qpp1, p2, . . .q were assumed to be state
contraints, while the inner propositions,p1, p2, etc., were as-
sumed to be fluents. The fluents were less entrenched than
the state constraints. We see that the ordering was heavily
syntax-dependent.

In our new version, the determination of which proposi-
tions are fluents is made by checking for membership of the
predicate symbol of an atomic proposition in a list called
* fluents * , which is defined by the user to include the
predicate symbols of all propositional fluents. So the en-
trenchment ordering defined here uses metaknowledge about
the knowledge base that is not represented in the SNePS
knowledge base. The commandbr-tie-mode manualindi-
cates that Algorithm 2 should be used. Note that thexor con-
nective[Shapiro, 2010] used below replaces instances ofan-
dor(1,1)(. . .) from [Shapiro and Kandefer, 2005]. The com-
mandperform believe(wff) is identical to the com-
mandwff! , except that the former causeswff to be strictly
more entrenched than every other proposition during belief
revision. That is,wff is guaranteed to besafe(unlesswff
is itself a contradiction). So we would be usingprioritized
belief revision.

; ; ; Show origin sets
: expert
; ; ; Always use automatic bel ief revision
: bŕ mode auto
Automatic bel ief revision wil l now be automatically selected .
; ; ; Use algorithm 2
: bŕ t ie ḿode manual
The user wil l be consulted when an entrenchment t ie occurs .
; ; ; Use an entrenchment ordering that favors nonf́ luents over
; ; ; f luents
set́ order f luent
; ; ; Establish what kinds of propositions are f luents ; speci f ical ly ,

that the agent is facing some direct ion is a fact that may
change over time .

ˆ (set f ∗f luents∗ ’(Facing))
; ; ; The agent is Facing west
Facing(west) .
; ; ; At any given time , the agent is facing ei ther north , south , east ,

or west (asserted with forward inference) .
xor{Facing(north) ,Facing(south) ,Facing(east) , Facing(west)}!
; ; ; The knowledge base as i t stands
l i s t ásserted́wffs
wff8 ! : ˜Facing(north) {<der ,{wff1 , wff5}>}
wff7 ! : ˜Facing(south) {<der ,{wff1 , wff5}>}
wff6 ! : ˜Facing(east) {<der ,{wff1 , wff5}>}
wff5 ! : xor{Facing(east) ,Facing(south) ,Facing(north) , Facing(west)}

{<hyp,{wff5}>}
wff1 ! : Facing(west) {<hyp,{wff1}>}
; ; ; Tell the agent to believe i t is now facing east .
perform believe (Facing(east))
; ; ; The resul t ing knowledge base
l i s t ásserted́wffs
wff10 ! : ˜Facing(west) {<ext ,{wff4 , wff5}>}
wff8 ! : ˜Facing(north) {<der ,{wff1 , wff5}>,<der ,{wff4 , wff5}>}
wff7 ! : ˜Facing(south) {<der ,{wff1 , wff5}>,<der ,{wff4 , wff5}>}

wff5 ! : xor{Facing(east) ,Facing(south) ,Facing(north) ,Facing(west)} {<
hyp,{wff5}>}

wff4 ! : Facing(east) {<hyp,{wff4}>}

There are three propositions in the no-good when revi-
sion is performed:Facing(west) , Facing,east , and
xor(1,1) {Facing(... }. Facing(east) is not con-
sidered for removal since it was prioritized by the believe
action. The state-constraintxor(1,1) {Facing... } re-
mains in the knowledge base at the end, because it is more
entrenched thanFacing(west) , a propositional fluent,
which is ultimately removed.

6 Conclusions
Our modified version of SNeBR provides decision proce-
dures for belief revision in SNePS. By providing a single re-
sulting knowledge base, these procedures essentially perform
maxichoice revision for SNePS. Using a well preorder, belief
revision can be performed completely automatically. Given a
total preorder, it may be necessary to consult the user in or-
der to simulate a well preorder. The simulated well preorder
need only be partially specified; it is only necessary to query
the user when multiple beliefs are minimally-epistemically-
entrenched within a no-good, and even then only in the case
where no other belief in the no-good is already being re-
moved. In any event, the epistemic ordering itself isuser-
supplied. Our algorithm for revision given a well preorder
uses asymptotically less time and space than the other algo-
rithm, which uses a total preorder. Our work generalize pre-
vious belief revision techniques employed in SNePS.

Acknowledgments
We would like to thank Prof. William Rapaport for providing
editorial review, and Prof. Russ Miller for his advice con-
cerning the analysis portion of this paper.

References
[Alchourron and Makinson, 1985] C.E. Alchourron and

D. Makinson. On the logic of theory change: Safe
contraction.Studia Logica, (44):405–422, 1985.

[Alchourronet al., 1985] C. E. Alchourron, P. G̈ardenfors,
and D. Makinson. On the logic of theory change: Par-
tial meet contraction and revision functions.Journal of
Symbolic Logic, 20:510–530, 1985.

[de Kleer, 1986] J. de Kleer. An Assumption-Based TMS.
Artificial Intelligence, 28:127–162, 1986.

[Gärdenfors and Rott, 1995] P. G̈ardenfors and H. Rott. Be-
lief revision. In Gabbay, Hogger, and Robinson, editors,
Epistemic and Temporal Reasoning, volume 4 ofHand-
book of Logic in Artificial Intelligence and Logic Program-
ming, pages 35–131. Clarendon Press, Oxford, 1995.

[Gärdenfors, 1982] P. G̈ardenfors. Rules for rational changes
of belief. In T. Pauli, editor,Philosophical Essays Ded-
icated to LennartÅqvist on His Fiftieth Birthday, num-
ber 34 in Philosophical Studies, pages 88–101, Uppsala,
Sweden, 1982. The Philosophical Society and the Depart-
ment of Philosophy, University at Uppsala.

[Gärdenfors, 1988] P. G̈ardenfors.Knowledge in Flux: Mod-
eling the Dynamics of Epistemic States. The MIT Press,
Cambridge, Massachusetts, 1988.

[Gärdenfors, 1989] P. G̈ardenfors. The dynamics of belief
systems: Foundations vs. coherence.Revue Internationale
de Philosophie, 1989.

[Hansson and Olsson, 1999] S. O. Hansson and E. J. Olsson.
Providing foundations for coherentism.Erkenntnis, 51(2–
3):243–265, 1999.

[Hansson, 1994] S. O. Hansson. Kernel contraction.The
Journal of Symbolic Logic, 59(3):845–859, 1994.

[Hansson, 1997] S. O. Hansson. Semi-revision.Journal of
Applied Non-Classical Logics, 7(2):151–175, 1997.

[Hansson, 1999] S. O. Hansson. A survey of non-prioritized
belief revision.Erkenntnis, 50:413–427, 1999.

[Johnson and Shapiro, 1999] F. L. Johnson and S. C.
Shapiro. Says Who? - Incorporating Source Credibility
Issues into Belief Revision. Technical Report 99-08, De-
partment of Computer Science and Engineering, SUNY
Buffalo, Buffalo, NY, 1999.

[Lakemeyer, 1991] Lakemeyer. On the relation between ex-
plicit and implicit beliefs. InProc. KR-1991, pages 368–
375. Morgan Kaufmann, 1991.

[Martins and Shapiro, 1988] J. P. Martins and S. C. Shapiro.
A model for belief revision. Artificial Intelligence,
35(1):25–79, 1988.

[Shapiro and Johnson, 2000] S. C. Shapiro and F. L. John-
son. Automatic belief revision in SNePS. In C. Baral and
M. Truszczynski, editors,Proc. NMR-2000, 2000. unpag-
inated, 5 pages.

[Shapiro and Kandefer, 2005] S. C. Shapiro and M. Kande-
fer. A SNePS Approach to the Wumpus World Agent or
Cassie Meets the Wumpus. In L. Morgenstern and M. Pag-
nucco, editors,NRAC-2005, pages 96–103, 2005.

[Shapiro and The SNePS Implementation Group, 2010]
Stuart C. Shapiro and The SNePS Implementation Group.
SNePS 2.7.1 USER’S MANUAL. Department of Computer
Science and Engineering, SUNY Buffalo, December
2010.

[Shapiro, 1992] Stuart C. Shapiro. Relevance logic in com-
puter science. Section 83 of A. R. Anderson and N. D.
Belnap, Jr. and J. M/ Dunnet al. Entailment, Volume II,
pages 553–563. Princeton University Press, Princeton, NJ,
1992.

[Shapiro, 2010] S. C. Shapiro. Set-oriented logical connec-
tives: Syntax and semantics. In F. Lin, U. Sattler, and
M. Truszczynski, editors,KR-2010, pages 593–595. AAAI
Press, 2010.

[Williams, 1994] M.-A. Williams. On the logic of theory
base change. In C. MacNish, D. Pearce, and L. Pereira, ed-
itors,Logics in Artificial Intelligence, volume 838 ofLec-
ture Notes in Computer Science, pages 86–105. Springer
Berlin / Heidelberg, 1994.

