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Abstract

We implement belief revision in SNePS based on
a user-supplied epistemic ordering of propositions.
We provide a decision procedure that performs
revision completely automatically when given a
well preorder. We also provide a decision pro-
cedure for revision that, when given a total pre-
order, simulates a well preorder by making a min-
imal number of queries to the user when multi-
ple propositions within a minimally-inconsistent
set are minimally-epistemically-entrenched. The
first procedure useé3(|Z|) units of space, and com-
pletes withinO(|Z|? - smax) Units of time, wher& is

the set of distinct minimally-inconsistent sets, and
Snax IS the number of propositions in the largest
minimally-inconsistent set. The second procedure
usesO(|Z|?- 5, space an®(|=|*- 2,,,) time. We
demonstrate how our changes generalize previous
techniques employed in SNePS.

Introduction

1.1 Belief Revision

to give up, but this has to be decided by some
other means. What makes things more compli-
cated is that beliefs in a database have logical con-
sequences. So when giving up a belief you have to
decide as well which of itsonsequencet® retain
and which to retract.[Gardenfors and Rott, 1995

In later sections we will discuss in detail how to make a
choice of belief(s) to retract when presented with an incon-
sistent belief set.

AGM Paradigm

In [Gardenfors, 1982; Alchourroet al., 1984, operators and
rationality postulates fotheory changeare discussed. In
general, any operator that satisfies those postulates may be
thought of as an AGM operation.

Let Cn(A) refer to the closure under logical consequence
of a set of propositions. A theoryis defined to be a set of
propositions closed under logical consequence. Thus for any
set of proposition#\, Cn(A) is a theory. It is worth noting
that theories are infinite set$Alchourronet al, 1989 dis-
cusses operations that may be performed on thedpeasial
meet contraction and revisiomlefined in[Alchourronet al,
1984, satisfy all of the postulates for a rational contraction
and revision operator, respectively.

Several varieties of belief revision have appeared in therheory Change on Finite Bases

literature over the years. AGM revision typically refers to It is widely accepted that agents, because of their

its negation and any other beliefs supporting its negation  of the logical consequences of their belidiisake-
[Alchourronet al, 1984. Removal of a belief and beliefs meyer, 1991

that support it is calledontraction Alternatively, revision o . L

can refer to the process of resolving inconsistencies in 4 Maor issue with the AGM paradigmiénds tooperate on
contradictory knowledge base, or okeown to be incon- and prqduce infinite sets (theories). A more praqtlpal mo_del
sistent[Martins and Shapiro, 1938 This is accomplished Would include operations to be performed on finite belief
by removing one or more beliefs responsible for the in-S€tS; omelief basesSuch operators would be useful in sup-
consistency, orculprits. This is the task with which we porting computer-based implementations of revision systems

are concerned. In particular, we have devised a means villiams, 1994. .
automatically resolving inconsistencies by discarding the !t has been Fz:rgu'gd that The AGM paradigm useszer-
least-preferred beliefs in a belief base, according to somgntistapproach [Gardenfors, 1989 in that all beliefs re-

epistemic ordering[Gardenfors, 1988; Williams, 1994 quire some sort of external justification. On the other hand,
Gardenfors and Rott, 1995 ’ ’ ' " finite-base systems are said to use a foundationalist approach,

wherein some beliefs indeed have their own epistemic stand-
ing, and others can be derived from them. SNePS, as we shall

. . ) see, uses the finite-base foundationalist approach.
The problem of belief revision is that logical con- PP

siderations alone do not tell you which beliefs Lit has also been argued otherwigtansson and Olsson, 1999



Epistemic Entrenchment way to construct non-prioritized belief revision is

Let us assume that the decision on which beliefs to retract  to base it on the following two-step process: First

from a belief base is made is based on the relative impor-  we decide whether to accept or reject the input. Af-

tance of each belief, which is called its degreeepfstemic ter that, if the input was accepted, it is incorporated

entrenchmentGardenfors, 1988 Then we need an order- into the belief statéHansson, 1999

ing < with which to compare the entrenchment of individual . .
; iddansson goes on to describe several other models of nonpri-

carded during revision over beliefs that are more entrenche!itized belief revision, but they all have one unifiying fea-
An epistemic entrenchment ordering is used to uniquely delure d|§t|nQU|sh|ng them from pr|0r|t|zed. bellef revision: the
termine the result of AGM contraction. Such an ordering is!NPUt. i-€. the RHS argument to the revision operator, is not

a noncircular total preorder (that satisfies certain other post@'Ways accepted. To reiteraterioritized belief revisionis
lates) orall propositions revision in which the proposition by which the set is revised

is always present in the result (as long as it is not a contradic-
Ensconcements tion). Non-prioritized belief revisiofis revision in which the
Ensconcements, introduced[illiams, 1994, consist ofa RHS argument to the revision operator is not always present
set of forumlae together with a total preorder on that set. Theyn the result (even if it is not a contradiction).

can be used to construct epistemic entrenchment orderings, The closest approximation from Hansson’s work to our
and determine theory base change operators. work is the operation ofsemi-revision[Hansson, 1997
Semi-revision is a type of non-prioritized belief revision that

Safe Contraction may be applied to belief bases.

In [Alchourron and Makinson, 1985the operatiorsafe con-
tractionis introduced. Lek be a non-circular relation over a
belief setA. An elementa of A is safewith respect toc iff a 1.2 SNePS

is not a minimal element of any minimal sub&eof A such  pescription of the System

thatxe Cn(B). LetA/xbe the set of all elements éfthatare  .q\.ps is 4 logic-, frame-, and network- based knowledge

zafe Wig& r.esp_ectjto]{_. TQ en gg: s(a:fe ,&:ontraction Biby X, representation, reasoning, and acting system. Its logic is
enotedA s, is defined to be\ n Cn(A/x). based on Relevance Lodi€hapiro, 199P a paraconsistent
Assumption-based Truth Maintenance Systems logic (in which a contradiction does not imply anything what-
In an assumption-based truth maintenance system (ATMS§oever)Shapiro and Johnson, 2000
the system keeps track of the assumptions (base beliefs) un-SNeRE, the SNePS Rational Engine, provides an acting
derlying each beliefde Kleer, 1985 One of the roles of an system for SNePS-based agents, whose beliefs must change
conventional TMS is to keep the database contradiction-freego keep up with a changing world. Of particular interest is
In an assumption-based ATMS, contradictions are removed abebelieveaction, which is used to introduce beliefs that take
they are discovered. When a contradiction is detected in apriority over all other beliefs at the time of their introduction.
ATMS, then there will be one or more minimally-inconsistent
sets of assumptions underlying the contradiction. Such sef8elief Change in SNePS
are calledno-goods [Martins and Shapiro, 198gresented Every belief in a SNePS knowledge base (which consists
SNeBR, an early implementation of an ATMS that uses theof a belief base and all currently-known derived propostions
logic of SNePS. In that paper, sets of assumptions supportingierefrom) has one or moszipport setseach of which con-
a belief are calledrigin sets They correspond tantecedents  sists of anorigin tag and anorigin set The origin tag will
of ajustificationfrom [de Kleer, 198B The focus of this pa- identify a belief as either being introduced as a hypothesis, or
per is modifications to the modern version of SNeBR. derived (note that it is possible for a belief to be both intro-
duced as a hypothesis and derived from other beliefs). The
origin set contains thodeypothesethat were used to derive
the belief. In the case of the origin tag denoting a hypoth-
esis, the corresponding origin set would be a singleton set
containing only the belief itself. The contents of the origin
set of a derived belief are computed by the implemented rules
of inference at the time the inference is draliartins and
Shapiro, 1988; Shapiro, 19p2

The representation of beliefs in SNePS lends itself well to

Kernel Contraction

In [Hansson, 1994 the operatiorkernel contractionis in-
troduced. Akernel set Ala is defined to be the set of all
minimal subsets oA that imply a. A kernel set is like a set
of origin setsfrom [Martins and Shapiro, 1988Let o be an
incision functionfor A. Then for alla, o(ALa) < u(ALa),
and if & # X € Ala, thenX n o(ALa) # . Thekernel
contractionof A by a based oro, denotedA ~; @, is equal

to A\o(ALQ). ! . L )
the creation of processes for contraction and revision. Specif-
Prioritized Versus Non-Prioritized Belief Revision ically, in order to contract a belief, one must merely remove
In the AGM model of belief revisioAlchourron at least one hypothesis from each of its origin sets. Similarly,
et al, 1989 ...the input sentence is always ac- prioritized revision by a belieb (where —b is already be-
cepted. This is clearly an unrealistic feature, and lieved) is accomplished by removing at least one belief from

...several models of belief change have been pro-  each origin set of-b. Non-prioritized belief revision under
posed in which no absolute priority is assigned to this paradigm is a bit more complicated. We discuss both
the new information due to its novelty. ...One types of revision in more detail i§2.



SNeBR That s, a proposition asserted bpalieveaction takes pri-
SNeBR, The SNePS Belief Revision subsystem, is resporgrity over any other proposition. When either both or neither
sible for resolving inconsistencies in the knowledge base apropositions being compared have been assserted dyethe
they are discovered. In the current release of SNePS (versidieve action, then we use the same ordering as we would for
2.7.1), SNeBR is able tautomaticallyresolve contradictions nonprioritized revision.

under a limited variety of circumstancéShapiro and The . ) .
SNePS Implementation Group, 2010,]760therwise “as- 2.2 Common Requirements for a Rational Belief
sisted culprit choosing” is performed, where the user must Revision Algorithm

manually select culprits for removal. After belief revision primary Requirements

is performed, the knowledge base might still be inconsistentype inputs to the algorithm are:

but everyjknownderivation of an inconsistency has been elim-

inated. o A set of formulaed: the current belief base, which is
known to be inconsistent
2 New Belief Revision Algorithms e A total preorder< on ®: an epistemic entrenchment or-

dering that can be used to compare the relative desirabil-

2.1 Problem Statement ity of each belief in the current belief base

Nonprioritized Belief Revision o ) )

Suppose we have a knowledge base that is not known to be ® Minimally-inconsistent sets of formula, ..., on, each

inconsistent, and suppose that at some point we add a contra- ©f which is a subset ob: the no-goods

dictory belief to that knowledge base. Either that new belief o A set> = {ay,...,0,}: the set of all the no-goods

directly contradicts an existing belief, or we derive a belief . _

that directly contradicts an existing one as a result of per{) k\:ﬁnalgcc())rrl]tgi?oﬁg()uld produce a skithat satisfies the fol-

forming forward and/or backward inference on the new be- 9 ) o

lief. Now the knowledge base is known to be inconsistent. (EEsnepd) Vo[o € Z — 31[1 € (T n 0)] (Sufficiency)

We will refer to the contradictory beliefs gsand—p (EEsnep®) VT[TeT —30[0eSATEOTAYWWE T —
Since SNePS tags each belief with one or more origin sets, 7 < w]]] (Minimal Entrenchment)

or sets of supporting hypotheses, we can identify the underly- o ,

ing beliefs that support each of the two contradictory beliefs. (EEsners$) VT'[T' = T — —Vo[o e 2 — 31[1 € (T'n

In the case wherg@ and —p each have one origin sef 0)]]] (Information Preservation)

andOS., respectively, we may resolve the contradiction by Condition (EEsnepd) states thall contains at least one for-

removing at least one hypothesis fr@%, U OS.,. We shall  mula from each set i&i. Condition(EEsnep) States that ev-

refer to such a union asra-good If there aremorigin sets  ery formula inT is a minimally-entrenched formula of some

for p, andn origin sets for—p, then there willbe atmoshxn  set inZ. Condition (EEsnep8) States that if any formula is

distinct no-goods (some unions may be duplicates of othersyemoved from T, then ConditiofE Esnepd) will no longer

To resolve a contradiction in this case, we must retract at leastold. In addition to the above conditions, our algorithm must

one hypothesis from each no-good (Sufficiency). terminate on all possible inputs, i.e. it must be a decision
We wish to devise an algorithm that will select the hypothe-procedure.

ses for removal from the set of no-goods. The first prior- .

ity will be that the hypotheses selected should be minimally->UPPlementary Requirement _

epistemically-entrenched (Minimal Entrenchment) accordind” @ny case where queries must be made of the user in order

to some total preordex. Note that we are not referring © determine the relative epistemic ordering of propositions,

strictly to an AGM entrenchment order, but to a total pre-the number of such queries must be kept to a minimum.

order on the set of hypotheses, without regard to the AG .

postulates. The second priority will be not to remove an -3 Implementation

more hypotheses than are necessary in order to resolve ti¥e present algorithms to solve the problem as stated:

contradiction (Information Preservation), while still satisfy- Where we refer to< below, we are using therioritized en-

ing priority one. trenchment ordering fror§2.1. In the case of nonprioritized

o . .. revision we may assume tht=
Prioritized Belief Revision y Z

The process of Prioritized Belief Revision in SNePS occurdJsing a well preorder

when a contradiction is discovered after a belief is assertetlet << be the output of a functiof whose input is a total
explicitly using thebelieveact of SNeRE. The major differ- preorder<, such that< =< The idea is thaff creates the
ence here is that a subtle change is made to the entrenchmemtll preorder<< from < by removing some pairs from the
ordering<. If <ponpri is the ordering used for nonprioritized total preorder<. Note that in the case where is already
belief revision, then for prioritized belief revision we use ana well preorder<< =<. Then we may use Algorithm 1 to

ordering<py; as follows: solve the problem.
Let P be the set of beliefs asserted bpelieveaction. Then
Ve, elereParex¢ P— —(e <pri €2) A€ <pri 1] Algorithm 1 Algorithm to compute T given a well preorder

Ve, ele1¢PrexéP— (g <pri € <> €1 <nonpri e)]
VeLeZ[el ePrepeP— (el <pri € <> €1 <nonpri ez)]




Input: X, << other no-good via ahy;,(1 < j < [Z],i # ])) then

Output: T 11: T<Tu{p}

1. T< Q 12: for all (Ocurrent € Z) do

2: for all (U € Z) do 13: if (pe Ucurrent) then

3:  Move minimally entrenched belief ior to first position  14: Y <= 2\ Ocurrent

in g, using<< as a comparator 15: end if
4: end for 16: end for
5: Sort elements of into descending order of the values of 17: if (= ) then
the first element in eactr using<< as a comparator 18: return T

6: AddLoop: 19: end if

7. while (£ # &) do 20: end if

8: currentCulprit< oy, 21: end for

9: T < T u{currentCulprit 22:  ModifyLoop
10: DeleteLoop 23: forall (ceZ)do
11:  for all (Gcurrent€ Z) do 24: if (o has multiple minimally-entrenched proposi-
12: if (currentCulprite geyrrent) then tions)then
13: Z < X\ Ocurrent 25: query which propositionl of the minimally-
14: end if entrenched propostions is least desired.
15 end for 26: Modify < so thatl is strictly less entrenched than
16: end while those other propositions.
17: return T 27: break out of ModifyLoop

. 28: end if

Using a total preorder 29:  end for

Unfortunately it is easy to conceive of a situation in which 30: end loop
the supplied entrenchment ordering is a total preorder, but -
not a well preorder. For instance, let us say that, wher-haracterization S
reasoning about a changing world, propositional fluentsthese algorithms perform an operation similariteision
(propositions that are only true of a specific time or situation)functions[Hansson, 1994 since they select one or more
are abandoned over non-fluent propositions. It is not cleaPropositions to be removed from each minimally-inconsistent
then how we should rank two distinct propositional fluents,Set. Their output seems analogousi@pL (p A —p)), where
nor how to rank two distinct non-fluent propositions. If O iS the incision functllon,LL is the _Kernel-set operator from
we can arbitrarily specify a well preorder that is a subsefHansson, 1994 andp is a proposition. But we are actually
of the total preorder we are given, then algorithm 1 will incisingZ, the set oknownno-goods. The known no-goods
be suitable. Otherwise, we can simulate a well order are of course a subset of all no-goods, ke ®1(p A —p).
through an iterative construction by querying the user forThis happens because SNeBR resolves contradictions as soon
the unique minimally-entrenched proposition of a particularas they are discovered, rather than performing inference first
set of propositions at appropriate times in the belief-revisiorfo discover all possible sources of contradictions.
process. Algorithm 2 accomplishes just this. The type of_ contraction eventually performed is similar to
safe contractiofAlchourron and Makinson, 1985except

Algorithm 2 Algorithm to compute T given a total preorder that there are fewer restrictions on our epistemic ordering.

3 Analysis of Algorithm 1

Input. 2, < 3.1 Proofs of Satisfaction of Requirements by
OlmPl_“t- ; Algorithm 1
: ==
2: MainLoop We show that Algorithm 1 satisfies the requirements estab-
3: loop lished in section 2:
4: ListLoop . (EEsnepd) (Sufficiency)
5 forall (gieZ 1<i<|Z[)do During each iteration oAddLoopan element is added to
6: Make a listlg of all minimally-entrenched propo- 1 from someo € =. Then each set € = containingT is

sitions, i.e. propositions that are not striptly_ MOTe removed froms. The process is repeated uriilis empty.
entrenched than any other, among thoseiinusing  Therefore each removed setin = contains some in T

< as a comparator. (Note that eacto will be removed from= by the end of the
- end for process). S&g[o e X — 3t1[re (T n0)]. Q.E.D.
8. Removeloop
9: forall (gieZ1<i<|Z|)do (EEsnep2) (Minimal Entrenchment)
10: if (According tolg,, o has exactly one minimally- From lines 8-9, we see thadtis comprised solely of first el-

entrenched propositiop AND the other proposi- ements of sets i2. And from lines 2-4, we see that those
tions in g; are not minimally-entrenched in any first elements are all minimal undex relative to the other



elements in each set. Sinte;, e, < [e1<cer — €1 < €], largesto in Z, then lines 2-4 will takéD(|Z| - Smax) time. In
those first elements are minimal underas well. That is, line 5, we sort the no-goods’ positions using their first
Vi[TeT —»3o[oeZarTeoanVwWwe o —T<W]]]. Q.E.D. elements as keys. This take$|Z| -log(|Z|)) time. Lines 7-
. . 16 iterate through the elements bfat most once for each
(EEsner$) (Information Preservation) _ element inZ. During each such iteration, a search is per-
From the previous proof we see that during each iteration oformed for an element within a no-good. Also, during each
AddLoop we are guaranteed that at least onessedntaining jieration through all the no-goods, at least @nés removed,
the current culprit is removed from And we know that the  thoygh this does not help asymptotically. Since the no-goods
current culprit for that iteration is minimally-entrencheddn  gre not sorted, the search takes linear timeqig. So lines
We also know from(EEsnepg) that each subsequently cho- 7 14 takeO(|Z|? - smax) time. Therefore, the running time is
sen culprit will be minimally entrenched in some set. Fromo(‘z‘z Sma) time '

- Smax )

lines 2-5 andAddLoop we know that subsequently chosen o . .
culprits will be less entrenched than the current culprit. From Note thf?‘t the situation chqnges sllght!y if we sort the
lines 2-5, we also see that all the other elemente ihave no-goods instead of just placing the minimally-entrenched

higher entrenchment than the current culprit. Therefore Subr_)ropr)]osmonhatth the ;‘]ront, as '3 “'Tlets 2-4. In tht'.s case,
sequent culprits cannot be elementginSo, they cannot be each search through a no-good will taR€log(smax) time,

used to eliminates. Obviously, previous culprits were also Yielding a new total time ofO(|Z| - Smax- 10g(Smax) + [Z[ -
not members otr. Therefore, if we exclude the current cul- 109(Smax))-
prit from T, then there will be a set ik that does not contain

any element off. That is, 4 Analysis of Algorithm 2
VI'[T'cT —>do[oeza—-31[Te (T' n0)]]] 4.1 Proofs of Satisfaction of Requirements by
SNT[T' T -»30[—~—(oceZa—3t[Te (T n0o))]]] Algorithm 2

SYT[T' T »30[—~(—(ceX)vit[te (T nao))l]]
SYT[T T —-30[(—~(0eX—3t[te (T no))]]
SYT[T'eT - —VoloeX—3t[te (T'no)]]] Q.E.D.

We show that Algorithm 2 satisfies the requirements estab-
lished in section 2:

o (EEsnerd) (Sufficiency)

Decidability . ~ Since every set of propositions must contain at least one
We see thaDeleteLoops executed once for each element in proposition that is minimally entrenched, at least one propo-
Z, which is a finite set. So it always terminates. We see thaéition is added to the list in each iterationldétLoop In the
AddLoopterminates whei is empty. And from lines 8 and  worst case, assume that for each iteratioMafnLoop only

13 we see that at least one set is removed fEotuiring each  eitherRemoveLoopr ModifyLoopdo any work. We know
iteration ofAddLoop SoAddLoopalways terminates. Lines that at least this much work is done for the following rea-
2-4 involve finding a minimum element, which is a decision sons: ifModifyLoopcannot operate on any no-good during
procedure. Line 5 performs sorting, which is also a decisiomn jteration ofMainLoop then all no-goods have only one
procedure. Since every portion of Algorithm 1 always termi- minimally-entrenched proposition. So eitiRemoveLoop
nates, it is a decision procedure. Q.E.D. condition at line 10 would hold, or:

Supplementary Requirement 1 A no-gt_)od ha_s multiple minimally-entrenched_proposi-
Al FZ)prithm 1 isya fu?l -automated procedure that makes notlons’ cal_Jsmg/IodlfyLoopto do work. This contradicts our
gor y P assumption thalodifyLoopcould not do any work during

queries of the user. Q.E.D. this iteration ofMainLoop so we set this possibility aside.

2. Some propositionp; is a non-minimally-entrenched
_ proposition in some no-goad,, and a minimally-entrenched
Space Complexity one in another no-good. In this case, eithep; is removed
Algorithm 1 can be run completely in-place, i.e. it can useduring the iteration oRemoveLoowhereay, is considered,
only the memory allocated to the input, with the exception ofor there is another propositige in on, that is not minimally-
the production of the set of culprits. Let us assume that the entrenched irop,, but is in g,y. This chaining must even-
space needed to store a single propositio®(%) memory  tually terminate at a no-goodm,,, since< is transitive.
units. Since we only need to remove one proposition fromang the final proposition in the chaiprina must be the sole
each no-good to restore consistency, algorithm 1 G&S|)  minimally-entrenched proposition itifina, Since otherwise
memory units. ModifyLoopwould have been able to do work for this iter-
aion ofManloop which s 2 conradicionitodyloop
The analysis for time complexity is based on a sequential- ork is finished. IfModifyLoophas no more work left to

procesing system. Let us assume that we implement lists 0, thenRemoveLoomust do work at least once for each it-
array structures. Let us assume that we may determine the’ m

size of an array irD(1) time. Let us also assume that per- glrj?tlr(i)tg (c))ff'\\/l/v?irzzhoggcﬁgg-mo%?jlZ%r?t%i;]tsvgyIgfs?tgnae“SQt (I)Ef D
forming a comparison using< takesO(1) time. Then in P 9 T

lines 2-4, for each arrag € Z we find the minimum ele- (EEsnepg) (Minimal Entrenchment)
mento and perform a swap on two elements at most onceSince propositions are only addedftavhen the condition in
for each element iw. If we let syax be the cardinality of the line 10 is satisfied, it is guaranteed that every proposition in

3.2 Complexity of Algorithm 1



T is a minimally-entrenched proposition in some no-gaod O(|Z|) time. We noted earlier that during each iteration of
. . MainLoop RemoveLoomr ModifyLoopwill do work. In
(EEsneps) (Information Preservation) the worst case, only one will do work each time. And they

e 1, e se bt wen o gt et ST vt ot s St o
prop g y time for the procedure iI©(|Z|? - s,

entrenched in any other no-good. That means none of th
other propositions could be a candidate for removal. So, th% .
only way to remove the no-good in whighappears is by re- Annotated Demonstrations

moving p. So if pwere not removed, theflE Esnepd) Would A significant feature of our work is that it generalizes pre-

not be satisfied. Q.E.D. vious published work on belief revision in SNelP¥®hnson

Decidability and Shapiro, 1999; Shapiro and Johnson, 2000; Shapiro and
Kandefer, 200k The following demonstrations showcase the

ListLoop creates lists of minimal elements of lists. This .
is a decision procedure since the comparator is a total presc. features we have introduced to SNeBR, and capture the

essence of belief revision as seen in the papers mentioned
order. From the proof ofEEsnepd) above, we see that : . o X . . .
either RemoveLoopr Modi fyLoopmust do work for each above by using well-specified epistemic ordering functions.

iteration of MainLoop ModifyLoopcannot operate more The demos have been edited for formatting and clarity.

The commandsr-tie-mode autandbr-tie-mode manual
than once on the same no-good, because there are no longgy; e ¢ Algorithm 1 and Algorithm 2 should be used re-

multiple minimally-entrenched propositions in the no'gOOdspectively AW is a well-formed formula. A wif followed
after it does its work. Nor caRemoveLoopperate twice el%y a period (.) indicates that the wif should be asserted, i.e.

on the same no-good, since the no-good is removed wh
. X added to the knowledge base. A wff followed by an exclama-
ModifylL.oopdoes work. So, eventualModifyl.oophas no tion point (!) indicates that the wff should be asserted, and

more work to do, and at that poiRemoveLoowill remove . .
at least one no-good for each iteratior\inLoop By lines that forward inference should be performed on it

17-18, when the last no-good is removed, the procedure teSays Who?

minates. So it always terminates. Q.E.D. We present a demonstration on how the source-credibility-
Supplementary Requirement based revision behavior frobShapiro and Johnson, 2008
Pp y neq generalized by our changes to SNeBR. The knowledge base

RemoveLoofattempts to computd each time it is run in the demo is taken frofdohnson and Shapiro, 1999 the

from MainLoop If the procedure does not terminate within following example. the commansket-order sourcesets the
RemovelLoopthen we runModifyLoopon at most oneno- 9 p'e,

good. Afterwards, we run RemoveLoop again. Since the use(?pistemic ordering used by SNeBR to be a lisp function that

is only queried when the procedure cannot automatically decompares two propositions based on the relative credibility of

fermine anyproposiions o remove,we e that s mearfcr SCUE%, Lnsoured proposiions e assumec (o have
minimal queries are made of the user. Q.E.D. Y. !

credibility are represented as meta-knowledge in the SNePS
4.2 Complexity of Algorithm 2 knowledge base. This was also donédahnson and Shapiro,
Space Complexit 1999 and[Shapiro and Johnson, 20T hesourcefunction

P plexity o makes SNePSLOG queries to determine sources of propo-
As before, letsmax be the cardinality of the largest n0-good gjions and credibility of sources, using thekwhand ask
in Z. In the worst case all propositions are m|n|mally en- commandgShapiro and The SNePS Implementation Group,
trenched, sd.istLoopwill recreateX. SoListLoopwill use 201d. This allows it to perform inference in making deter-
O(|Z| - smax) Space. RemovelLoop creates a culprit list, whichinations about sources.
we stated before také3{(||) space. ModifyLoop may beim- a6 \ve see that the nerd and the sexist make the gener-
plemented in a variety of ways. We will assume that it create$jiz ations that all jocks are not smart and all females are not
a list of pars, of Wh'Ch the first and seqond e'e!“e”ts rang&mart respectively, while the holy book and the professor state
over propcz)smons in the no-goods. In this casedifyLoop  hat all old people are smart, and all grad students are smart
usesO(|Z|“ - s SPace. So the total space requirement isrespectively. Since Fran is an old female jock graduate stu-
o(|=?- $,a) Memory units. dent, there are two sources that would claim she is smart, and

. . two that would claim she is not, which is a contradiction.
Time Complexity

The analysis for time complexity is based on a sequentialé;gxsphgﬁ origin sets

procesing system. For each no-goodin the worst case, . brmode auto

LiStLOOpWi” have to compare each proposition dnagains Augorrtlgtic b;lief revlision will now be automatically selected.
- : : : . br-tie—-mode manual

every other. So, TOI’ each iteration MamLoop LIStLOOp The user will be consulted when an entrenchment tie occurs

takesO(|Z]| - time. There are at mo€)(Smax) €lements  ;:; use source credibilities as epistemic ordering criteria.

a

in each list created bisistLoop So, checking the condition set-order source

in li 10 takesO(|> % time. Lines 12-16 can be ex- ;7 The holy book is a better source than the professor.

In line - (| ‘ : ax) | . | X IsBetterSource (holybook, prof).

ecuted inO(|Z| - smax) time. ThereforeRemoveLoopakes  ;;; The professor is a better source than the nerd.

. P IsBetterSource(prof, nerd).
O(|Z| 'Srznax) time. .We assume .that all the YVOI‘k in lines 24- ;i» The nerd is a better source than the sexist.
27 can be done in constant time. SdpdifyLooptakes IsBetterSource(nerd, sexist).



;;; Fran is a better source than the nerd. less credible than the sources for “Fiasmart.”
IsBetterSource(fran, nerd).

;;; BetterSource is a transitive relation

all(x,y,z)({IsBetterSource(x,y), IsBetterSource(y}z§ Wumpus World . -
IsBetterSource(x,z))! We present a demonstration on how the state-constraint-

i+ All Jocks are not smart. based revision behavior frofShapiro and Kandefer, 20p5

all (x) (jock(x)=>"smart(x)). ;wff10 . .

:;; The source of the statement 'All jocks are not smart’ is the nerd IS generalized by our Chang_es to SNeBR. The qomnmhd
HassAc?lurfce(wlfflO, nerd). order fluentsays that propositional fluents are strictly less en-
T emales are not smart. .

all (x) (female (x)="smart(x)) . ;wff12 trenched than_non-fluent propositions. 'I‘fluen_torder_ was

;;; The source of the statement 'All females are not smart’ is the  created specifically to replace the original belief revision be-

Hass Sfxi?\fv-mz sexis) havior of the SNeRBbelieveact. In the version of SNeBR
A graduate students are smart, used in[Shapiro and Kandefer, 20n5propositions of the
all(x) (grad (x)>smart(x)) . ;wff14 formandor(< 0|1 >,1)(p1, p2,...) were assumed to be state

B Trﬁesopurr(;:fzsc;fo:he statement 'All graduate students are smart’ is contraints, while the inner propositior]sj,, P2, etc., were as-

HasSource (wff14, prof). sumed to be fluents. The fluents were less entrenched than
ii: All old people are smart. the state constraints. We see that the ordering was heavily

all(x) (old(x)=>smart(x)). ;wffl6 _
i3, The source of the statement 'All old people are smart’ is the syntax dependent'

holy book. In our new version, the determination of which proposi-
HasSource (wif16, holybook). . __ tions are fluents is made by checking for membership of the
;i3 The source of the statement 'Fran is an old female jock who is a . . L. . X

graduate student’ is fran. predicate symboll of_an atomic proposition in a list called
HasSEurce(ai:{QOcr(fr?n),grad(frzn)ff,female(fran),old(fra@)fran). * fluents * which is defined by the user to include the
;7 The KB thus far list-assertedwffs L o i
wff23!: HasSource(old(fran) and female(fran) and grad(fran) and predlcate symbol_s of al_l proposmonal fluents. So the en

jock(fran),fran) {<hyp{wff23}>} trenchment ordering defined here uses metaknowledge about

wff17!: HasSource(all(x)(old(x) = smart(x)) ,holybookj<hyp {wff17}>} the knowledge base that is not represented in the SNePS
wifl6!: all(x)(old(x) = smart(x)) {<hyp{wff16}>}

wffl5!: HasSource(all(x)(grad(x)> smart(x)),prof) {<hyp{wff15}>} knOWIedge base. The commaid-tie-mode manuaindi-

wifl4!: all(x)(grad(x) = smart(x)) {<hyp{wff14}>} cates that Algorithm 2 should be used. Note thatdbiecon-

Wif131: Has?"ﬁrce{(af'f'l(;})(gema'e(x); (“smart(x))) , sexist) nective[Shapiro, 201Dused below replaces instancesaof
<hyp,q W > .

wifL21: all(x) (female(x) = (“smart(x))) {<hyp,{wff12}>} dor(1,1)(...)from [Shapiro and Kandefer,_20D5I’he com-

vv;ﬁ(l): Hﬁs(s?t{rceéfl)l (x)(J'(ock(X)(>)()“)snza;t(X){))f}rig}rdThyp,{wffllb} mandperform believe(wff) is identical to the com-

w I all(x) (jock(x) = ("smart(x <hyp,{w > ;

wffa!: IsBetterSource(fran, sexist){<der {wff3,wff4, wif5}>} mandwif! -, except that the former CaUSﬁ'Iﬁ. 'tO be St_”Ctly .

wifgl: IsBetterSource (prof, sexist) {<der {wff2,wff3, wff5}>} more entrenched than every other proposition during belief

wff7!: IsBetterSource (holybook, sexist{der { wffl,wff2, wff3, wff5}>} revision. That iswff is guaranteed to bmfe(un'essvvff
wff6!: IsBetterSource (holybook, nerd){<der {wffl,wff2,wff5}>} ’

wif5!1: all(z,y,x)({IsBetterSource(y,z),IsBetterSource (x}y§=> IS ”fself a. c_ontradlc'uon). So we would be USIDQOHtIZGd
{IsBetterSource(x,z)) {<hyp{wff5}>} belief revision.
wff4!: IsBetterSource (fran,nerd){<hyp {wff4}>}
wff3!: IsBetterSource(nerd, sexist)}{<hyp {wff3}>} ;7; Show origin sets
wff2!1: IsBetterSource (prof,nerd) {<hyp {wff2}>} : expert
wffl!: IsBetterSource (holybook, prof){<hyp {wff1}>} ;75 Always use automatic belief revision
3, Fran is an old female jock who is a graduate student (asserted . br-mode auto
with forward inference). Automatic belief revision will now be automatically selected.
and{jock(fran) ,grad(fran),female(fran),old(fraf) ;75 Use algorithm 2
wif50!: “(all(x) (jock(x) = ("smart(x)))) . br—tie—-mode manual
{<ext {wff16,wif22}><ext {wifl4, K wff22}>} The user will be consulted when an entrenchment tie occurs.
wff241: smart(fran) {<der {wffl6,wff22}><der {wffl4,Kwff22}>} ;7; Use an entrenchment ordering that favors -Adnents over
;7 The resulting knowledge base (HasSource and IsBetterSource omited;;; fluents
for clarity) set-order fluent
list—assertedwffs i+, Establish what kinds of propositions are fluents; specifically,
wff50!: “(all(x) (jock(x) = ("smart(x)))) that the agent is facing some direction is a fact that may
{<ext {wff16,wff22}>, <ext {wif1l4,wff22}>} change over time.
wff371: “(all(x)(female(x) = (“smart(x)))) {<ext {wff16,wff22}>} “(setf xfluents« ’(Facing))
wff24!1: smart(fran) {<der {wffl6,wff22}><der {wff14, Kwff22}>} ;;; The agent is Facing west
wff22!: old(fran) and female(fran) and grad(fran) and jock(fran) Facing(west).
{<hyp { wff22}>} ;75 At any given time, the agent is facing either north, south, east,
wff21!: old(fran) {<der {wff22}>} or west (asserted with forward inference).
wff20!: female(fran) {<der {wff22}>} xor{Facing(north) ,Facing(south),Facing(east), Facing(wgst)
wiff19!: grad(fran) {<der {wff22}>} ;7: The knowledge base as it stands
wffl8!: jock(fran) {<der {wff22}>} list—assertedwffs
wifl6!: all(x)(old(x) = smart(x)) {<hyp{wffl6}>} wff8!:  “Facing(north) {<der {wffl,wff5}>}
wffl4!: all(x)(grad(x) = smart(x)) {<hyp,{wff14}>} wff7!:  “Facing(south) {<der {wffl,wff5}>}

wff6!: “Facing(east) {<der {wffl,wff5}>}
We see that the statements that all jocks are not smart an"ﬁm:{ ﬁm{{Faf%”}g(}eaSt) Facing(south) ,Facing(north), Facing (west)
<nyp,qwi >
that all females are not smart are no longer asserted at thefl!: Facing(west) {<hyp{wffl}>}

i ;i Tell the agent to believe it is now facing east.
end. These statements supported the statement thatsran: ™ believe (Facing (east))

D
not smart. The statements that all old people are smart anqﬂ; The resulting knowledge base
that all grad students are smart supported the statement thlaﬁia?ssggeéwff(s ) (<ot (wlid witS]>}
. I . Wi L acing(wes ext,q w , W
Franis smart. The contradiction was resolved by contracting, g, “Facing(north) {<der {wifl wif5}>cder {wif4, wif5}>}

“Fran is not smart,” since the sources for its supports werewff7!: “~Facing(south) {<der {wff1,wff5}><der {wff4,wif5}>}



wff5!:  xor{Facing(east),Facing(south),Facing(north),Facing(we$8 [Gardenfors, 198]8 P. G’élrdenforsKnowledge in Flux: Mod-
hyp {wif5}>} eling the Dynamics of Epistemic StateEhe MIT Press,
wif4!:  Facing(east) {<hyp {wff4}>} Cambridge, Massachusetts, 1988.

_There are three propositions in the no-good when revi{gyrdenfors, 1960 P. Gardenfors. The dynamics of belief
sion is performedFacing(west) , Facing,east , and systems: Foundations vs. cohererRevue Internationale

xpr(l,l) {Facing(.... }.. Facing(ga'st') is not con- de Philosophig1989.
sidered for removal since it was prioritized by the believe
action. The state-constraimor(1,1) {Facing... }re- [Hanssonand Olsson, 1998. O. Hansson and E. J. Olsson.

mains in the knowledge base at the end, because it is more Providing foundations for coherentistirkenntnis 51(2—
entrenched tharFacing(west) , a propositional fluent, 3):243-265, 1999.

which is ultimately removed. [Hansson, 1994S. O. Hansson. Kernel contractioriThe
Journal of Symbolic Logicc9(3):845—-859, 1994.
6 Conclusions [Hansson, 1997S. O. Hansson. Semi-revisiodournal of

Our modified version of SNeBR provides decision proce- Applied Non-Classical Logi¢s(2):151-175, 1997.

dures for belief revision in SNePS. By providing a single re-[Hansson, 1999S. O. Hansson. A survey of non-prioritized

sulting knowledge base, these procedures essentially perform pejief revision.Erkenntnis 50:413—427, 1999.

maxichoice revision for SNePS. Using a well preorder, belief .

revision can be performed completely automatically. Given B{JOshr?;girrloandsg)?sl\alilrr?(,)’%qg?ﬁcol_rb o‘rJ:t?r?gSOSnou?cned Cr% ditﬁi y
I i It th in or- - i coo X

total preorder, it may be necessary to consult the user in or Issues into Belief Revision. Technical Report 99-08, De-

der to simulate a well preorder. The simulated well preorder partment of Computer Science and Engineering, SUNY
need only be partially specified; it is only necessary to query Buffalo, Buffalo, NY, 1099, '

the user when multiple beliefs are minimally-epistemically-
entrenched within a no-good, and even then only in the casi-akemeyer, 1991 Lakemeyer. On the relation between ex-
where no other belief in the no-good is already being re- plicit and implicit beliefs. InProc. KR-199] pages 368—
moved. In any event, the epistemic ordering itseltiser- 375. Morgan Kaufmann, 1991.

supplied Our algorithm for revision given a well preorder [Martins and Shapiro, 1938J. P. Martins and S. C. Shapiro.

uses asymptotically less time and space than the other algo- o model for belief revision. Artificial Intelligence
rithm, which uses a total preorder. Our work generalize pre- 35(1):25-79, 1988.

vious belief revision techniques employed in SNePS. ] i
[Shapiro and Johnson, 2008. C. Shapiro and F. L. John-
son. Automatic belief revision in SNePS. In C. Baral and
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