International Journal on Artificial Intelligence Tools, Vol. 3 No. 3 (1994) 349-366
© World Scientific Publishing Company

THE OK BDI ARCHITECTURE

DEEPAK KUMAR

Department of Mathematics, Bryn Mawr College, Bryn Mawr, PA 19010
(610) 526-7485
dkumar@cc.brynmawr.edu

S. C. SHAPIRO

Department of Computer Science, State University of New York at Buffalo, Buffalo, NY 14260
(716) 645-3181
shapiro@cs.buffalo.edu

Abstract

The design of a belief-desire-intention (BDI) architecture is pre-
sented. The architecture is defined using a unified object-based knowl-
edge representation formalism, called the OK formalism, and a unified
reasoning and acting module, called the OK rational engine. Together
they form the OK BDI architecture for modeling rational agents en-
dowed with beliefs, desires, and intentions.

Keywords: BDI Architectures, Knowledge Representation and Reason-
ing, Acting, and Planning.

1 Introduction

A survey of Al systems would reveal that it is somewhat awkward to do
acting in reasoning (or logic-based) systems (but it is convenient to talk
about representational and reasoning issues using them), and it is awk-
ward to study reasoning and representational issues in systems designed
for acting/planning. Thus, most “good” planning/acting systems are “bad”
knowledge representation and reasoning (KRR) systems and vice versa. For
example, in a recent symposium on “Implemented KRR Systems” [24] out
of a total of 22 KRR systems presented only four systems had capabilities
for representation and reasoning about actions/plans (RHET [1], CYC [17],
CAKE [23] and SNePS [28]). The work presented in this paper presents an
approach that bridges this “representational/behavioral gap.”

349

350 D. Kumar & S. C. Shapiro

In traditional planning/acting systems the inference engine is employed
in service of planning and acting. In other words, it is the planning and
acting processes that invoke the modeled thought (reasoning) processes. In
the architecture presented in this paper, it is also possible for inference to
use planning and acting. L.e., it is possible for thought to lead to action. We
describe an integrated approach to reasoning and acting that is based on the
following considerations:

e The modeled agent reasons, plans, as well as acts based on its beliefs,
desires, and intentions.

e The modeled agent’s beliefs, desires, actions, plans, etc., are repre-
sented in a single knowledge representation formalism.

e The modeled agent’s reasoning and acting behavior is implemented
using an amalgamated model of inference and acting.

The above considerations are satisfied by an implemented BDI (for Belief-
Desire-Intention) architecture. In doing so, the architecture makes some
semantic, epistemological, as well as operational commitments. The archi-
tecture makes a semantic clarification between inference and acting—that
they are the same. Inference is a kind of acting: mental acting. This leads
to an operational commitment—an architecture’s reasoning and acting be-
havior should be carried out by a single module (as opposed to traditional
approaches that employ two or more separate modules: an inference engine;
a planner; and an acting ezecutive). We call such a module a rational engine
as 1t is solely responsible for the agent’s reasoning, planning, and acting be-
havior. Not only does the modeled agent use inference in service of acting,
it also employs acting in service of inference. In this paper, we describe the
architecture that results when one makes the above set of commitments.

The work presented here has evolved from research involved in extend-
ing a semantic network-based KRR system, SNePS (whose rational engine
called SNeRE is described in [9, 11, 12, 13]), into a BDI architecture. In
this paper we use an object-oriented approach to describe the architecture.
The resulting architecture is independent of, yet isomorphic to, the SNePS
formalism. The resulting architecture enjoys all the advantages of object-
oriented design—the ontology is easily extendible, as is the underlying logic,
and amenable to a concurrent implementation (8, 12].

2 Motivation

Consider a modeled agent that has the set of beliefs acquired via an under-
standing of the following sentences about a blocksworld domain:

The OK BDI Architecture 351

Blocks are supports. Red colored blocks are wooden. Picking
up is a primitive action. Putting is a primitive action. Before
picking up a block the block must be clear. After picking up a
block the block is not clear and it is held. If a block is on a
support then after picking up the block the support is clear and
the block is not on the support. Before putting a block on a
support the block must be held and the support must be clear.
After putting a block on a support the block is not held, the
block is clear, and the block is on the support. After putting a
block on another block the latter block is not clear.

There is a table. The table is a support. A, B, and C are
blocks. A is clear and it is on the table. B is clear and it is on
the table. C is clear and it is on the table.

Now, consider posing the following queries (or requests) to the agent
holding the above set of beliefs:

Is A a support?

Is A wooden?

What blocks are wooden?
Pick up A.

Put B on C.

Pick up a wooden block.
Put A on a wooden block.

NSO W

Query 1 can be answered using standard backward chaining inference (ital-
icized text is system response):

Is A a support?

I wonder if A is a support.

I wonder if A is a block.

I know A is a block.

Since A is a block and blocks are supports
I'infer A is a support.

Queries 2 and 3 are similar to query 1 except in both cases, the inference will
fail to produce an answer since the agent does not have any beliefs about
blocks being wooden or red:

Is A wooden?

I wonder if A is wooden.

I wonder if A is a block.

I wonder if A is Red.

I know A is a block.

I don’t know if A is wooden.

352 D. Kumar & S. C. Shapiro

Of course, the agent could, as in the paragraphs above, acquire beliefs about
the colors of blocks. However, our motivation here is to model behavior
that would lead the agent to perform a belief acquisition act (like looking
at an object) that would lead to its knowing the color of the block. This is
a situation where an agent forms an explicit intention to act purely driven
by its reasoning processes. In other words, the agent is said to be acting in
service of inference. This is vastly different from intentions that an agent
forms by an explicit request (as in 4-6 above). The latter being the norm
for traditional planning/acting systems (i.e., inference, if used, is always in
service of acting)[6]. For instance, for request 4, the agent will typically
exhibit the following behavior:

Pickup A.
I'intend to do the act Pickup A.
I wonder if the act Pickup A has any preconditions.
I wonder if A is a block.
I know A is a block.
Since A is a block
and before picking up a block it must be clear
I infer before picking up A it must be clear.
The act Pickup A has the following precondition:
A s clear.
I wonder if A is clear.
I know A is clear.
It 1s satisfied.
Now doing: Pickup A
L - €5C:

Clearly, inference is being used in service of acting. In the case of the failed
query, the agent does have to know about the act of looking at objects. How-
ever, in the traditional planning and reasoning architectures, there is no way
to relate backward chaining queries to actions that, if performed, may bring
about the beliefs necessary in order to facilitate an answer. Requests 6 and
7 are explicit requests for performing acts where the agent would benefit by
being able to act in service of inference which is in service of acting!. In the
next section, we present the set of commitments required in order to design
an architecture that provides a solution to the above problem.

3 Commitments

The belief-desire-intention architecture we have developed is based on our
analysis of the relationship between beliefs, plans, acts, and the process of
reasoning and acting. This has led us to make several commitments.

The OK BDI Architecture 353

3.1 Semantic Commitments

Let us look closely at the mechanism of inference. Reasoning is the process of
forming new beliefs from other beliefs using inference rules. The connectives
and quantifiers of the inference rules govern the derivation of new beliefs.
Reasoning can be looked at as a sequence of actions performed in applying
inference rules to derive beliefs from other beliefs. Thus, an inference rule
can be viewed as a rule specifying an act—that of believing some previously
non-believed proposition—but the “believe” action is already included in the
semantics of the propositional connective. Thus, another way of character-
izing an inference engine is as a mental actor or a mental acting ezecutive.
During backward chaining, the mental acting executive forms the intention
of believing the consequents of a rule if its antecedents are satisfied (i.e.,
preconditions are fulfilled). Similarly for forward chaining. McCarthy has
also suggested that inference can be treated as a mental action [19]. Alterna-
tively, plans can be viewed as rules for acting. Reasoning rules pass a truth
or a belief status from antecedent to consequent, whereas acting rules pass
an intention status from earlier acts to later acts. In order to exploit this
relationship between inference and acting we must make an architectural
commitment.

3.2 Architectural Commitments

The above discussion suggests that we may be able to integrate our models of
inference and acting by eliminating the acting component of the architecture.
While it may sound appealing to redefine all the inference mechanisms as a
bunch of explicit plans (under the new interpretation, this is theoretically
possible), we have refrained from doing so. The trade-off here is that of the
long-standing tradition of inference being a basic primitive in an Al system
as well as the optimized implementation of inference (where previous deduc-
tions are not repeated, if valid), which is a necessity. The resulting unified
acting and reasoning engine, which we are calling a rational engine, has to
operate on beliefs as well as acts [10]. This poses a challenge to the underly-
ing knowledge representation scheme, which leads us to the epistemological
commitments described in the next section.

3.3 Epistemological Commitments

The key to success lies not only in making the above semantic and architec-
tural commitments but also an important epistemological commitment: all
knowledge required by the agent for reasoning, planning, and acting should
be represented in a single formalism. We impose an additional requirement
that the modeled agent be capable of interaction using natural language.

354 D. Kumar & S. C. Shapiro

3.4 The SNePS BDI Architecture

Based on the above commitments, we have extended the SNePS KRR Sys-
tem to the SNePS BDI architecture. The SNePS BDI architecture has the
following components:

SNePS BDI Architecture = SNePS Formalism -+ SNePS Rational Engine

The modeled agent’s beliefs, plans, acts, and rules are represented in the
SNePS semantic network formalism [29). SNePS is an intentional, proposi-
tional semantic network system. Nodes in the semantic network represent
conceptual entities—individuals, and structured individuals. Structured in-
dividuals can be propositions, which are used to represent beliefs, or acts
and plans. Representing beliefs as well as acts as conceptual entities pro-
vides the central uniform framework for the architecture. Any conceptual
entity represented in the system can be the object of a belief, plan, or act.
By the same token, it can be reasoned about (or acted upon, as the case
may be) and discussed by the agent representing it.

The SNePS Rational Engine, called SNeRE (9, 12], is an integrated rea-
soning and acting module that uses a logic called SWM (18]. It is the module
responsible for the agent’s reasoning processes. It is also the module respon-
sible for the agent’s acting and planning behavior. It employs an assumption-
based truth maintenance (ATMS) system [18]. Thus, inferences, once drawn,
are retained by the agent as long as their underlying support persists. The
ATMS is also employed for implementing the extended STRIPS assumption
for acting [6, 15]. Moreover, as will be evident in the section below, the
rational engine is capable of modeling reactive as well as belief acquisition
behavior (cases where inference can lead to acting). We have extracted the
core ideas of the SNePS BDI architecture and incorporated them into the
design of a SNePS-independent architecture, which is described in the next
section.

4 The OK Architecture

We have defined the OK! architecture to have the following constituents:
OK BDI Architecture = OK Formalism + OK Rational Engine

The OK formalism is a conceptual, extendible, object-oriented hierarchy
of classes that correspond to the various representational components of a
knowledge representation system-—individuals, propositions, and acts. While
several object-based Al systems are already in existence, this is the first one

'OK stands for Object-based Knowledge.

The OK BDI Architecture 355

that makes an object-oriented commitment to the entities of a KR formal-
ism itself. The OK rational engine is defined using methods inherited or
specialized by the classes of the OK formalism.

4.1 The OK Formalism

The representational formalism is described as a conceptual object-oriented
hierarchy. This is depicted in Figure 1. In an intensional representational
framework, anything a cognitive agent can think about is termed a “mental
concept” or a conceptual entity. More specifically these can be individuals,
beliefs (propositions), or acts. Acts can be primitive or complex (ones that
will have to be decomposed into a plan) and are classified as physical, mental,
or control acts. Physical acts are domain specific acts (like PICKUP or PUT).
Mental acts are the acts of believing (or disbelieving) a proposition (i.e.,
they bring about changes in the agent’s belief space). Control acts are used
to structure plans (i.e., they control the agent’s intentions). Our repertoire
of control acts includes acts for sequencing (linear plans), conditional acts,
iterative acts, nondeterministic choice and ordering acts, and qualifier acts
—acts whose objects are only described and not yet fully identified (as in
requests 6 and 7 in Section 2) (see [9, 12]).

In addition to standard beliefs that an agent is able to represent, we
also define a special class of beliefs called transformers. A transformer is a
propositional representation that subsumes various notions of inference and
acting. Being propositions, transformers can be asserted in the agent’s belief
space; they are also beliefs. In general, a transformer is a pair of entities—
((a), (B)), where both (@) and (B) can specify beliefs or acts. Thus, when
both parts of a transformer specify beliefs, it represents a reasoning rule.
When one of its parts specifies beliefs and the other acts, it can represent
either an act’s preconditions, or its effects, or a reaction to some beliefs,
and so on. What a transformer represents is made explicit by specifying its
parts. When believed, transformers can be used during the acting/inference
process, which is where they derive their name: they transform acts or be-
liefs into other beliefs or acts and vice versa. Transformations can be applied
in forward and/or backward chaining fashion. Using a transformer in for-
ward chaining is equivalent to the interpretation “after the agent believes
(or intends to perform) (a), it believes (or intends to perform) (3).” The
backward chaining interpretation of a transformer is, “if the agent wants
to believe (or know if it believes) or perform (f), it must first believe (or
see if it believes) or perform (a).” There are some transformers that can
be used in forward as well as backward chaining, while others may be used
only in one of those directions. This depends upon the specific proposition
represented by the transformer and whether it has any meaning when used
in the chaining process. Since both (@) and () can be sets of beliefs or an

356 D. Kumar & S. C. Shapiro

l Conceptual Entity Ten?l

Believe? Believe! Intend

Proposition Term mdividual lermj LAct Term j

| On] [_Physical Act] [Mental Act_| [“Control Act]

| DISBELIEVE [SEQUENCE H
[And][Neg] [or] PICKUP | BELIEVE L F 7—

Transform? \ Transform!

Transformer

LIEIENL

Belief-Belief Belief-Act Act-Belief Act-Act

LAnquj lPiconditiorm LWhenDr] LActEHectj L Dolf 7 [jsnActj

Figure 1: An Object-Oriented KR Formalism

The OK BDI Architecture 357

act, we have four types of transformers—belief-belief, belief-act, act-belief,
and act-act.

Belief-Belief Transformers: These are standard reasoning rules (where
(@) is a set of antecedent belief(s) and (B) is a set of consequent belief(s)).
Such rules can be used in forward, backward, as well as bidirectional in-
ference to derive new beliefs. For example, a class of transformers that
represent antecedent-consequent rules is called AntCq transformers. We will
use the notation

(@) = (B)

to write them. For example “All blocks are supports” is represented as
Vx[Isa(x,BLOCK) — Isa(x, SUPPORT)]

In addition to the connective above (which is also called an or-entailment),
our current vocabulary of connectives includes and-entailment, numerical-
entailment, and-or, thresh, and non-derivable. Other quantifiers include the
existential, and the numerical quantifiers (see (26, 9]).

Belief-Act Transformers: These are transformers where () is a set of
belief(s) and () is a set of acts. Used during backward chaining, these can
be propositions specifying preconditions of actions, i.e. (@) is a precondition
of some act (3). For example, the sentence “Before picking up A it must be
clear” may be represented as

PreconditionAct(Clear(A), PICKUP(A))

Used during forward chaining, these transformers can be propositions
specifying the agent’s desires to react to certain situations, i.e. the agent,
upon coming to believe (a) will form an intention to perform (B). For
example, a general desire like “Whenever something is broken, fix it” can be
represented as

Vx[WhenDo(Broken(x), FIX(x))]

Act-Belief Transformers: These are the propositions specifying effects of
actions as well as those specifying plans for achieving goals. They will be
denoted ActEffect and PlanGoal transformers respectively. The ActEffect
transformer will be used in forward chaining to accomplish believing the
effects of act (o). For example, the sentence, “After picking up A it is no
longer clear” is represented as

ActEffect(PICKUP(A), ~Clear(A))

It can also be used in backward chaining during the plan generation process
(classical planning). The PlanGoal transformer is used during backward

358 D. Kumar & S. C. Shapiro

chaining to decompose the achieving of a goal (B) into a plan (a). For
example, “A plan to achieve that A is held is to pick it up” is represented as

PlanGoal(PICKUP(A), Held(A))

Another backward chaining interpretation that can be derived from this
transformer is, “if the agent wants to know if it believes (3), it must perform
(a),” which is represented as a DoIf transformer. For example, “Look at A
to find out its color” can be represented as

DoIf(LOOKAT(A),Color(a, ?color))

Act-Act Transformers: These are propositions specifying plan decompo-
sitions for complex actions (called PlanAct transformers), where (B) is a
complex act and () is a plan that decomposes it into simpler acts. For
example, in the sentence, “To pile A on B first put B on the table and then
put A on B” (where piling involves creating a pile of two blocks on a table),
piling is a complex act and the plan that decomposes it is expressed in the
proposition

PlanAct (SEQUENCE(PUT(B, TABLE), PUT(A, B)), PILE(A,B))

Our present model of acting is based upon a state-change model (see
[14]). We identify three types of states—external world states, mental states
(belief space), and intentional states (agent’s current intentions). Accord-
ingly, we identify three classes of actions—physical actions, mental actions,
and control actions that bring about changes in their respective states. Thus
PICKUP is a physical action, we have BELIEVE and DISBELIEVE as mental ac-
tions whose objects are beliefs, and control actions are described below. Acts
can be primitive or complex (not shown in the figure). A primitive act has an
effectory procedural component which is executed when the act is performed.
Complex acts have to be decomposed into plans.

Plans, in our ontology, are also conceptual entities. However, like acts, we
do not define a separate class for them as they are also acts—albeit control
acts. Control acts, when performed, change the agent’s intentions about
carrying out acts. Qur repertoire of control actions includes sequencing (for
representing linear plans), conditional, iterative, disjunctive (equivalent to
the OR-splits of the Procedural Net formalism (25, 30)), conjunctive (AND-
splits), selective, and achieve acts (for goal-based plan invocation).

Sequencing Act: SEQUENCE(a,, ay)
The acts a; and a2 are performed in sequence. For example:

SEQUENCE(PICKUP(A), PUT(A, TABLE))

The OK BDI Architecture 359

is the act of first picking up A and then putting it on the table.

Disjunctive Act: DoONE(ay,...,a,)
This act represents a nondeterministic choice. One of the acts ay,...,a, IS
performed. For example:

DoONE(PICKUP(A), PICKUP(B))
is the act of picking up A or picking up B.

Conjunctive Act: DoALL(ay, ..., a,)
All of the acts ay, ..., a, are performed in some order. For example:

DoALL(PICKUP(A),PICKUP(B))
is the act of picking up A and picking up B.

Conditional Act: IF((p1,a1),...,(pn,an))
Some act a; whose p; is believed is performed. For example:

IF((Clear(A), PICKUP(A)), (Clear(B), PICKUP(B)))
is the act of either picking up A (if A is clear) or picking up B (if B is clear).

Iterative Act: ITERATE((p1,a1),..., (Pn,an))
Some act a; whose corresponding p; is believed is performed and the act is
repeated. For example:

ITERATE((Clear(A),PICKUP(A)), (Clear(B), PICKUP(B)))
is the act of picking up A (if A is clear) and picking up B (if B is clear).

Achieve Act: ACHIEVE(p)
The act of achieving the proposition p. For example:

ACHIEVE(Clear(A))
is the act of achieving that A is clear.

Single-object Qualifier Act: WITHONE(x,y,...)(p(x,y,...),a(x,y,...))
Find some x, y, etc. that satisfy p and perform act a on them For example:

WITHONE(x)(Held(x), PUT(x, TABLE))
is the act of putting on the table something that is being held.

Multiple-object Qualifier Act: WITHALL(x,y,...)(p(x,y,...),a(x,y,...))
Find all x, y, etc that satisfy p and perform the act a on them. For Example,

WITHALL(x)(Held(x), PUT(x, TABLE))

360 D. Kumar & S. C. Shapiro

is the act of putting on the table everything that is being held.

These control acts are capable of representing most of the existing plan
structures found in traditional planning systems (and more). We should
emphasize, once again, that since plans are also conceptual entities (and
represented in the same formalism) they can be represented, reasoned about,
discussed, as well as followed by an agent modeled in this architecture.

4.2 The OK Rational Engine

Next, we will outline details of the integrated reasoning and acting module—
called a Rational Engine (as opposed to an inference engine that only per-
forms inference). A Rational Engine is the ‘operational’ component of the
architecture (the interpreter) that is responsible for producing the modeled
agent’s reasoning and acting (and reacting) behavior. It is specified by three
types of methods (or messages)—

Believe— A method that can be applied to beliefs for assertional or querying
purposes. Consequently there are two versions—

Believe!(p)— where p is a proposition, the method denotes the process
of asserting the proposition, p, in the agent’s belief space. It re-
turns all the propositions that can be derived via forward chaining
inference/acting.

Believe?(p)— where p is a proposition, it denotes the process of query-
ing the assertional status of p. It returns all the propositions
that unify with p and are believed by the modeled agent either
explicitly or via backward chaining inference/acting.

Intend— that takes an act as its argument (Intend(a)) and denotes the mod-
eled agent’s intention to perform the act, a.

Transform— These methods enable various transformations when applied
to transformers. Corresponding to backward and forward chaining
interpretations there are two versions— Transform? and Transform!,
respectively.

Notice that the first two also correspond to the propositional attitudes of
belief and intention. The methods Believe and Intend can be invoked by
a user interacting with the agent. New beliefs about the external world
can be added to the agent’s belief space by using Believe! and queries re-
garding agent’s beliefs are generated using Believe?. These methods, when
used in conjunction with transformers lead to chaining via the semantics of
the transformers defined above. The architecture also inherently provides
capabilities for consistency maintenance. Each specific object that is a be-
lief can have slots for its underlying support. The support is updated and

The OK BDI Architecture 361

maintained by the Believe methods as well as the mental actions BELIEVE
and DISBELIEVE (together they form the TMS). The effectory procedures
for BELIEVE and DISBELIEVE are implemented as belief revision procedures.
We have found that such an integrated TMS facility simplifies several action
and plan representations (see [15] for details). The Intend method is used
to specify the fulfillment of agent’s intentions by performing acts. All these
methods can be specified (and specialized) for the hierarchy as well as in-
herited. Thus, domain specific acts (physical acts) will inherit the standard
method for the agent to accomplish its intentions (i.e. the specific theory
of intentionality employed), where as specializations of the Intend method
can be defined for mental and control acts (to implement the semantics of
respective acts).

Thus, an object-oriented design not only provides a uniform representa-
tional formalism, it also facilitates an extendible ontology. The semantics
of representations is described by reasoning and acting methods that can
be either individually specified or inherited and further specialized, as the
case may be. Further, we would also like to claim that the representational
formalism is ‘canonical’ in that its user interface (which is mainly defined
via ‘print methods’) is also extendible. For example, the same object (say,
a belief proposition) can be displayed as a frame, a predicate, a semantic
network, or some other communicational entity (ala KIF) (see [9]). The
next section presents how the example of Section 2 can be solved by such an
architecture.

5 Example

In order for the failed inference of Section 2 to succeed, the agent only needs
to have the following set of beliefs:

Looking is a primitive action. If you want to know the color of
something, look at it.

The primitive act of looking at something is modeled so that, when per-
formed, it will result in the addition of a belief about the color of the entity
being looked at. Thus, in a case where the color of the block A is indeed
red, the agent, may exhibit the following behavior:

Is A wooden?
I wonder if A is wooden.
I wonder if A is colored red.

I wonder if A is a block.
I know A is a block.

Since A is a block I infer

362 D. Kumar & S. C. Shapiro

If you want to know the color of A look at it.

I intend to do the act look at A.
I wonder if the act look at A has any preconditions.

Now doing: Look at A.
Sensory-add: A is colored red.

Since A is a block and A is colored red
and all red colored blocks are wooden
I infer A is wooden.

Notice how, in the above example, a backward chaining query lead the agent
to perform an action in order to answer the query. Thus, acting was per-
formed in service of inference.

6 Related Work

Our use of the term ‘BDI Architectures’ comes from Georgeft [6], that men-
tions the challenges of designing rational agents capable of goal-directed as
well as reactive behavior based on the attitudes of beliefs, desires, and inten-
tions. Georgeff specifically mentions that, ‘the problem that then arises is
specifying properties we expect of these attitudes, the way they interrelate,
and the ways they determine rational behavior in a situated agent.” As ex-
plained in Section 1, we have taken the task of designing BDI architectures
by defining a unified intensional representational formalism; identifying the
semantic interrelationships between beliefs, desires, and intentions; captur-
ing these into the idea of transformers; and finally designing a rational engine
that brings about rational behavior based on these entities.

There has been work describing formal BDI models (3, 21]. There are
also architectures that have been proposed that address various issues re-
lating to rational agency. For instance (2, 20] describe a high-level BDI
architecture that specifically focuses on issues relating to resource bound-
edness of rational agent behavior. Their work explores the hypothesis that
plans, once committed, in addition to guiding the agent’s actions, also con-
strain the agent’s reasoning behavior. Rao and Georgeff [21, 22] have also
studied formally the nature of intention and commitment in the context of
rational agent behavior. The architecture reported in (22] provides a very
simplistic representation of beliefs (thus suffering from some of the concerns
mentioned in Section 1) together with a transition network-like formalism
for plans. It is a (limited, though successful) attempt towards bridging the
their earlier work on PRS [5, 7] and their later work on formal foundations
of rational agents [21]. The work presented here complements these models.

The OK BDI Architecture 363

It provides a general representational framework which these models lack.
At the same time, it can facilitate easy incorporation of their ideas by virtue
of the extendibility of the design.

We have taken a unified approach to representations. Drummond ex-
presses the need for a single unified formalism for representing beliefs, acts,
and plans [4]. This facilitates a single reasoning module to be able to reason
about beliefs, acts, and plans. We have taken this approach a step further
by explicitly identifying the semantic relationship between inference and act-
ing so that a single module, a rational engine, in addition to reasoning, is
also responsible for carrying out physical acts and plans (see (16] for ex-
amples). In our formalism, act representations are different from standard
operator-based representations of classical planning/acting systems. Else-
where [15], we have also shown how even simple act representations can
benefit from an integrated TMS. In the presence of a TMS even the simplest
acting model (that of adding and deleting the act’s effects) implements the
extended STRIPS assumption. As a result, ours is a deductive approach
to acting. While this leads to tractability concerns, we feel that it pro-
vides consistency in the modeled agent’s belief space and forms the basis
for rational behavior. This also facilitates a deductive approach to hierar-
chical plan decomposition (specific PlanAct and PlanGoal propositions can
be deduced in order to find plan decompositions). Search during reason-
ing/acting/plan decomposition is focused by means of some KR principles,
the Uniqueness Principle being one (there is a one-to-one correspondence
between instances and intensional entities) [10]. The Uniqueness Principle
helps focus the chaining (method/message propagation) through a restricted
set of entities.

The object-oriented approach provides a promising approach to building
BDI architectures. It can be used to implement a unified representational
formalism that bridges the gap between classical approaches to representa-
tion/acting/planning and the emerging paradigms for designing and imple-
menting integrated intelligent architectures.

7 Summary

By making a semantic clarification, an operational commitment, and an
ontological commitment that maintains proper distinctions between beliefs,
plans, acts, reasoning rules, and reacting rules, we are able to arrive at an
integrated BDI architecture that is capable of reasoning as well as acting.
The design of the resulting BDI architecture was presented. The architecture
was defined using a unified object-based knowledge representation formalism,
called the OK formalism, and a unified reasoning and acting module, called
the OK rational engine. Together they form the OK BDI architecture for
modeling rational agents endowed with beliefs, desires, and intentions.

364 D. Kumar €& S. C. Shapiro
References
(1] James Allen. The RHET System. In Charles Rich (Guest Editor), edi-

2]

(4]

[5]

[6]

[11]

[12]

tor, SIGART BULLETIN Special Issue on Implemented KRR Systems,
pages 1-7, June 1991.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and
Resource-Bounded Practical Reasoning. Computational Intelligence,
4(4), 1988.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42(3), 1990.

Mark E. Drummond. A representation of action and belief for automatic
planning systems. In Michael P. Georgeff and Amy L. Lansky, editors,
Reasoning about Actions and Plans - Proceedings of the 1986 Work-
shop, pages 189-212, Los Altos, CA, 1987. AAAI and CSLI, Morgan
Kauffmann.

M. P. Georgeff, A. Lansky, and P. Bessiere. A procedural logic. In
Proceedings of the 9th IJCAI 1985.

Michael P. Georgeff. Planning. In Annual Reviews of Computer Science
Volume 2, pages 359-400. Annual Reviews Inc., Palo Alto, CA, 1987.

Michael. P. Georgeff and Amy. Lansky. Procedural knowledge. Technical
Note 411, Al Center, SRI International, 1987.

Deepak Kumar. An Al architecture based on message passing. In James
Geller, editor, Proceedings of The 1993 AAAI Spring Symposium on
Innovative Applications of Massively Parallel Architectures, pages 127~
131. AAAI Press, March 1993.

Deepak Kumar. Rational engines for BDI architectures. In Amy Lansky,
editor, Proceedings of The 1993 AAAI Spring Symposium on Founda-
tions of Automated Planning, pages 78-82. AAAI Press, March 1993.

Deepak Kumar. A unified model of acting and inference. In Proceed-
ings of the Twenty-Sizth Hawaii International Conference on System
Sciences. IEEE Computer Society Press, Los Alamitos, CA, 1993.

Deepak Kumar. From Beliefs and Goals to Intentions and Actions—
An Amalgamated Model of Acting and Inference. PhD thesis, State
University of New York at Buffalo, 1994.

Deepak Kumar. The SNePS BDI architecture. Journal of Decision
Support Systems—Special Issue on Logic Modeling, 1994. Forthcoming.

[13]

[17]

[20]

21]

22]

The OK BDI Architecture 365

Deepak Kumar, Susan Haller, and Syed S. Ali. Towards a Unified Al
Formalism. In Proceedings of the Twenty-Seventh Hawaii International
Conference on System Sciences. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

Deepak Kumar and Stuart C. Shapiro. Architecture of an intelligent
agent in SNePS. SIGART Bulletin, 2(4):89-92, August 1991.

Deepak Kumar and Stuart C. Shapiro. Deductive efficiency, belief re-
vision and acting. Journal of Ezperimental and Theoretical Artificial
Intelligence (JETAI), 5(2), 1993.

Deepak Kumar and Stuart C. Shapiro. Acting in Service of Inference
(and vice versa). In Douglas D. Dankel II, editor, Proceedings of The
Seventh Florida AI Research Symposium (FLAIRS 93). The Florida Al
Research Society, May 1994.

Douglas B. Lenat and Ramanathan V. Guha. The Evolution of CYCL,
The CYC Representation Language. In Charles Rich (Guest Editor),
editor, SIGART BULLETIN Special Issue on Implemented KRR Sys-
tems, pages 84-87, June 1991.

J. P. Martins and S. C. Shapiro. A model for belief revision. Artificial
Intelligence, 35(1):25-79, 1988.

John McCarthy. Mental situation calculus. In Joseph Y. Halpern, edi-
tor, Theoretical Aspects of Reasoning about Knowledge— Proceedings of
the 1986 Conference, page 307, 1986.

Martha E. Pollack. Overloading Intentions for Efficient Practical Rea-
soning. Notis, XXV(4):513-536, September 1991.

Anand S. Rao and Michael P. Georgeff. Modeling Rational Agents
within a BDI-Architecture. In Principles of Knowledge Representation
and Reasoning— Proceedings of the Second International Conference
(KR91), pages 473-485. AAAI, IJCAI, CSCSI, April 1991.

Anand S. Rao and Michael P. Georgeff. An Abstract Architecture
for Rational Agents. In Bernhard Nebel, Charles Rich, and William
Swartout, editors, Proceedings of the 2nd Conference on Principles of
Knowledge Representation and Reasoning, pages 439-449, San Mateo,
CA, 1992. Morgan Kaufmann Publishers.

Charles Rich. CAKE: An Implemented Hybrid KR and Limited Rea-
soning System. In Charles Rich (Guest Editor), editor, SIGART BUL-
LETIN Special Issue on Implemented KRR Systems, pages 120-127,
June 1991.

366 D. Kumar & S. C. Shapiro

[24] Charles Rich. Special Issue on Implemented Knowledge Representa-
tion and Reasoning Systems—Letter from the Guest Editor. SIGART
Bulletin, 2(3), June 1991.

[25] Earl D. Sacerdoti. A Structure for Plans and Behavior. Elsevier North
Holland, New York, NY, 1977.

[26] S. C. Shapiro and The SNePS Implementation Group. SNePS-2 User’s
Manual. Department of Computer Science, SUNY at Buffalo, 1989.

[27] Stuart C. Shapiro. Case studies of SNePS. SIGART Bulletin, 2(3):128-
134, June 1991.

(28] Stuart C. Shapiro and William J. Rapaport. SNePS considered as a
fully intensional propositional semantic network. In Leslie Burkholder,
editor, Philosophy and the Computer, pages 75-91. Westview Press,
Boulder, CO, 1992.

[29] David E. Wilkins. Practical Planning-Eztending the Classical AI Plan-
ning Paradigm. Morgan Kaufmann, Palo Alto, CA, 1988.

