
Formalizing a Deductively Open Belief Space
CSE Technical Report 2000-02

Frances L. Johnson and Stuart C. Shapiro

Department of Computer Science and Engineering, Center for Multisource Information Fusion, and Center for Cognitive Science

State University of New York at Buffalo

226 Bell Hall, Buffalo, NY 14260-2000

flj@cse.buffalo.edu shapiro@cse.buffalo.edu

January 24, 2000

Abstract

A knowledge representation and reasoning system must be
able to deal with contradictions and revise beliefs. There
has been much research in belief revision in the last decade,
but this research tends to be either in the Coherence camp
(AGM) or the Foundations (TMS) camp with little
crossover. Most theoretical postulates on belief revision
and belief contraction assume a deductively closed belief
space - something that is computationally hard (or
impossible) to produce in an implementation. This makes it
difficult to analyze implemented belief revision systems
using the theoretical postulates. This paper offers a
formalism that describes a deductively open belief space
(DOBS). It then uses this formalism to alter the AGM
integrity constraints for a DOBS. A DOBS uses a base set
of hypotheses, but only deduces beliefs from that base as
the result of specific queries. Thus, it can grow over time
even if the base remains static, and can never be referred to
as consistent - only either inconsistent or "not known to be
inconsistent." This work and future alterations to the
traditional postulate formalisms will better enable
system/postulate comparisons.

Introduction

A knowledge representation and reasoning system must be
able to deal with contradictions and revise beliefs. There
has been much research in belief revision (Martins 1991;
Gärdenfors 1992; Martins 1992a; Martins 1992b;
Gärdenfors and Rott 1995; Friedman and Halpern 1996),
but this research tends to be either in the Coherence camp
or the Foundations (TMS) camp with little crossover.
Foundations theory states that justifications should be
maintained – requiring that all believed propositions must
be justified; and, conversely, those that lose their
justification should no longer be believed. By contrast,
coherence theory focuses on whether the belief space is
consistent – i.e. whether a belief coheres with the other
beliefs in the current belief space without regard to its
justification.

Most formalized postulates for belief revision and belief
contraction come from theorists (as opposed to
implementers), who assume a deductively closed belief
space (DCBS). This is something that is computationally
hard (or impossible) to produce in an implementation,
which makes it difficult to compare the operations of
implemented belief revision systems with the theoretical
postulates.

Our research began with the goal of altering the AGM
postulates – and others (Hansson 1993) – for a deductively
open belief space (DOBS), a belief space that builds up its
explicit beliefs gradually. We quickly realized that the
first step was to formalize the DOBS followed by altering
the AGM integrity constraints upon which the postulates
were formed. This paper offers our DOBS formalism and
a DOBS version of the integrity constraints. For this
paper, we will assume that the belief revision system is
complete and uses Classical Propositional Logic. The next
section contains a brief overview of AGM terminology and
Integrity Constraints for belief revision (Alchourron,
Gärdenfors, and Makinson 1985). The sections following
define a DOBS and its belief change operations, and
propose a DOBS version of the Integrity Constraints. In
the final section, we present a discussion of our findings
and issues that we plan to explore in the future. Most
important is how these DOBS integrity constraints will
help us to formulate postulates for DOBS belief change
operations.

Terminology and DCBS Integrity Constraints

As mentioned above, the system discussed is assumed to
be complete and using Classical Propositional Logic.
Propositions may also be referred to as sentences. When
we refer to a proposition as a belief, we will be specifically
referring to a proposition that is currently believed by the
system. A proposition is “believed” if the system accepts it
(asserts that it is true, considers it an asserted belief). It is
unasserted if and only if it is not accepted – this is not the

same as believing its negation. For the purposes of this
paper, an inconsistency refers to a pair of contradictory
propositions, P and ~P, as opposed to their conjunction,

P ~P. A belief space is a set of believed propositions.

Gärdenfors and Rott (Gärdenfors and Rott 1995) list
four “integrity constraints” or “rationality postulates” for
belief revision that are the basic guidelines for developing
postulates for belief change:
1. A knowledge base should be kept consistent whenever

possible;
2. If a proposition can be derived from the beliefs in the

knowledge base, then it should be included in that
knowledge base (deductive closure);

3. There should be a minimal loss of information during
belief revision;

4. If some beliefs are considered more important or
entrenched than others, then belief revision should
retract the least important ones.

Constraints 3 and 4 can conflict with each other, so
properly weighting and combining them is an open
question for both theorists and implementers. For example:
How do you choose between retraction of many weak
beliefs vs. one strong belief? The deductive closure of a
DCBS gives it a decided advantage over the DOBS, which
does not have access to its implicit beliefs. All a DOBS
can do is minimize the loss of what information it does
have.

This paper focuses on constraints 1 and 2. Constraint 1
is implementable depending on your interpretation of the
phrase “whenever possible.” We will alter it to clarify
what it means in a DOBS system. Constraint 2 as stated
precludes the very notion of a DOBS, so we need to define
some DOBS terms that can be used to rewrite constraint 2
for a DOBS.

+
Expansion: Addition of a proposition, p, to a

belief space, K, such that K + p = Cn(K {p})
Contraction: Retraction of a proposition, p,

from a belief space, K, such that K p �p

*
Revision: Consistent addition of a proposition,
p, to a belief space, K, such that K*p is

consistent, (equivalent to Cn((K ~p) �{p}).

Figure 1: Table representing the AGM belief change
operations.

When discussing deductive closure, we use the AGM
definition of a consequence operation, Cn, where Cn(K)
denotes the deductive closure of a belief space, K, and K is
a deductively closed belief space (DCBS) under Cn if K =

Cn(K) (Alchourron, Gärdenfors, and Makinson 1985).
The AGM belief change operations are shown in Figure 1.

Why a Deductively Open Belief Space (DOBS)

The integrity constraints and belief revision operations
mentioned above assume a deductively closed belief space
(DCBS) within some language L. For classical
propositional logic, this is an infinite belief space. Even if
only one of every set of logically equivalent propositions is
included, to make the belief space finite, its size is on the

order of
n22 sentences, where n = the number of atomic

propositions in the language L (e.g. over 4 trillion
sentences if n = 5). This makes implementation
computationally hard if not impossible.

Forming postulates about how a deductively closed
belief space would be altered by the various belief change
operations is helpful in establishing theoretical guidelines
for belief revision. To compare how well these postulates
are satisfied by an implemented belief revision system,
however, they must be altered to fit the broad constraints
of an implemented system: it must function within a finite
(and reasonable) amount of time and use a finite memory
and reasoning space. Since even a finite belief space that is
deductively closed can become unmanageable,
implementations must consider using a Deductively Open
Belief Space (DOBS).

Defining the DOBS

A DOBS, by definition, is a belief space that is not
guaranteed to contain all the possible inferences from the
beliefs it holds (only some subset of them) or to know all
the possible ways that its beliefs can be derived (only those
derivations that it has already performed). A DOBS begins
as an empty set to which hypotheses can be added. The
beliefs derived from those hypotheses, however, are added
gradually over time, as it considers them and discovers
them derivable – not all at once.

The entire Belief State is represented by a knowledge
base, KB. The DOBS is the Belief Space of the knowledge
base, BS(KB). Given a propositional language L,
consisting of all the well-formed propositions formed from
some set of proposition letters, a belief state is defined as:

 KB =def < HYPS, DERS, B, A, J> where

HYPS L, DERS Cn(HYPS) ,B HYPS,

A {<p,os> }, and J {<q,js> } where

p HYPS DERS

q DERS

os HYPS

js HYPS DERS

js�{q}

os p

js 1 q�
where js 1 q means that the set js derives the proposition
q by using only one rule of inference and in one step.
Unless otherwise noted, assume that all future examples
and definitions are using KB = <HYPS, DERS, B, A, J>
as their starting belief state.

HYPS represents all the hypotheses ever introduced into
KB. DERS represents all the propositions ever derived
from HYPS, and A and J are the record of just those
derivations – in the styles of an ATMS (A) and a JTMS
(J). B represents the set of currently believed hypotheses.
All propositions in the knowledge base are represented in
A by at least one pair. All propositions in DERS are
represented in J by at least one pair.

Since a DOBS can have propositions that are derivable
but not, yet, derived, we introduce the concept of a
proposition, p, being known to be derivable from a set of

propositions, α. This is denoted as α KB p and is defined
by the rules below.
1. A hypothesis is known to derive itself:

p �HYPS �{p} KB p.
2. A justification set, js, for a proposition, p, is known to

derive p: <p,js> �J � js KB p.
3. An origin set for a proposition, p, is known to derive

p: <p,os> �A os KB p.

4. KB is transitive:

q[(q � � KB q)] � � KB p � KB p
5. A superset of a set that derives a proposition also

derives that proposition:

� KB p � � � � � � KB p.

A proposition p can be an element of both HYPS and
DERS if it is both asserted as a hypothesis and known to

be derivable from some os HYPS where p os.

D is the set of derived propositions that are currently
believed, and BS(KB) is the set of all currently believed
propositions (the DOBS):

D(KB) =def {α | α �DERS B KB α }

BS(KB) =def B D

In other words, KB represents all the propositions that
exist in the system along with a record of how they were
derived, and BS(KB) represents only those propositions

that are currently believed. Although a DCBS “ forgets”
what it no longer believes, its “ omniscient” deductive
closure allows it to instantly remember anything that is re-
believed. The DOBS must keep track of the disbelieved
propositions and derivations to avoid having to repeat
earlier derivations when disbelieved propositions are
returned to the belief space. The diagram in Figure 2,
below, shows most of these concepts.

For shorthand purposes, BS(KB) and D(KB) can be
written as BS and D respectively when their KB is clear

from the context. The information that p HYPS�
DERS, can be written in a shorthand version as p KB.

This is not to be confused with p BS, though the latter
implies the former.

Figure 2. The propositions of a KB are the area within the
two circles marked HYPS and DERS. B is the lighter
shaded area, including the double-shaded intersection. D is
the darker shaded area, including the double-shaded
intersection. The double-shaded intersection represents
believed propositions, which have been both asserted as
hypotheses and derived from asserted hypotheses. The belief
space represented here, BS(KB), is the entire shaded region.

KB-Closure and K-consistency

Because we are removing the omniscience of a DCBS and
its consequence operation, we must “ remember” as much
as possible about our DOBS, including propositions that
we no longer believe. Once a base set of hypotheses, B, is
chosen, the closure of B is limited by KB (i.e. by its
derivation records in A and J). We call this closure CnKB,
and it is defined below:

CnKB(B) =def { α | B KB α } = BS(KB)

A DOBS is inconsistent if a contradiction has been or
can be derived from its beliefs. A DOBS, BS(KB) or

CnKB(B), is k-inconsistent IFF p[p �CnKB(B) ~p
CnKB(B)]. If a DOBS is not k-inconsistent, then we will
call it k-consistent – there are no inconsistencies in
CnKB(B), it is not known to be inconsistent. This means a
DOBS can be both inconsistent and k-consistent at the

same time: For example, B={A, P, P ~A}, but ~A has
not, yet, been derived.

It has been suggested that this is unacceptable, causing
a lack of confidence in the information provided by the
DOBS system. There are no certainties in a real world
implementation, and you can never know for sure if you
have correct information… only a system’s best guess.
Our goal is to try to make that best guess as good as
possible.

It is always the case that, for a given KB = <HYPS,

DERS, B, A, J>, A D IFF B KB A, therefore BS A IFF

B A, and likewise for KB. If B,B �s.t.�B B , then 1)

if B is k-inconsistent, then B is k-inconsistent, and 2) if B
is k-consistent, then B is k-consistent.

We distinguish the propositions in HYPS from those in
DERS to allow a foundations approach to belief revision.
A coherence approach can be implemented by storing all
propositions as hypotheses in HYPS while retaining their
derivation history for later revision needs.

Operations on a DOBS

The operations on a DOBS Belief State, KB = <HYPS,
DERS, B, A, J>, are KB-Closure (described above),
expansion, contraction, revision and query. The belief
change operations are functions that take a Knowledge
Base and a proposition and return an altered Knowledge
Base. They are:
1. + Expansion

KB+A is the addition of a belief A to KB by adding A
as a hypothesis to B, and therefore to HYPS, and can
be specifically referred to as hypothesis-addition. The

result is a new KB = <HYPS , DERS, B , A , J> s.t.

HYPS � = HYPS {A}, B � = B {A}, and A � =

A {<A,{A}>}. It is possible for A to already be an
element of HYPS and even B.

2. Contraction

KB A is the retraction of a belief A from KB by
retracting some of the elements of B that are known to

derive A in order to form a new KB = <HYPS, DERS,

B , A, J> s.t. not(B KB A) -- i.e. A BS . It is
possible for A to not be an element of BS.

3. * Revision
KB*A is the consistent addition of A to B. Insisting on
consistency requires that ~A be retracted from BS. The

result is a new KB = <HYPS , DERS, B , A , J> s.t.

HYPS = HYPS {A}, A = A {<A,{A}>}, A B ,

B �B {A}, and B is k-consistent.

Expanding the DOBS using Query

As explained before, the system builds its explicit beliefs
as new propositions are considered and derived from the
current belief space, CnKB(B). This happens through the
query process – when the system is queried about whether
a sentence A can be derived from the Belief State, KB (i.e.

B KB
?
 A).

The query Q(A, KB) is a way to ask the knowledge base
KB whether a proposition A is derivable from its existing
beliefs. The query process proceeds in two stages:
1. If A is already present in the belief space, there is no

change to the knowledge state.
2. If A is recognized as an axiom (using axiom templates

that are part of the system) it is added to HYPS and B

and the pair < A,� �> is added to J. This is axiom
addition; and, with an empty justification set, A will
remain in the belief space from now on.

3. If A is not present as a belief, the query process

identifies some α where α KB A using one rule of
inference and only one step. This is done by finding
an implication with A as a consequent. The
antecedents are used to form α. The system then
recursively queries for the elements in α. This is
called back-chaining.

4. Steps 1, 2, and 3 are repeated for all queries, until
either A is derived or queries for all possible sets of α
have failed.

Although there might be more than one way to derive A
from KB, finding any single derivation of A that is
supported by the current beliefs – even a pre-existing one –
should end the query successfully. The query fails if it

cannot derive A. In a complete system, if B �A, then the
query process is guaranteed to derive A. In an incomplete

system, even though B �A, the query process might not
derive A. An implemented system might be incomplete if
it has to impose restrictions on the query process (e.g. to
eliminate long or computationally expensive derivation
attempts, satisfy time restrictions, etc.).

Query-addition (+Q)

If a one-step query, Q(p,KB), is successful, a new
proposition, p, is added by query-addition (+Q) to DERS.
The actual query-addition refers to the method of adding

pairs to A and J , thus altering them to form an A and J .

For the query to be successful (in one step), it had to

find some js s.t. js 1 p js BS. The tuple <p, js> is

then query-added to J: J +Q <p, js> =def (J {<p, js>})

Warning: It is possible to store this derivation
information in A, as a <p,os> pair, by forming an origin
set, os, for p from the union of the origin sets for each of

the elements in js. For example: js = {q, q p}, where the

origin sets for q and q p are {q p} and {q p},

respectively. The os for p would then be {q p, q p}.
But there are three things to beware of:
1. If an element of js has more than one origin set, then

there will be multiple origin sets for p. (e.g., if q also

has the origin set {q s}, then p would have a second

os: {q s, q p}.
2. To avoid duplication and foster minimality of the

origin sets, use the following definition:
A +Q <p, os> =def

(A {<p, os>}) - {<p, osj>}, for all osj s.t. os osj

This is to guarantee minimality and a lack of
duplication of the origin set, os, for any given
proposition in DERS: i.e.

<p, α> [<p, α> A � β[<p, β> A β ⊂ α]].
Continuing the above example: if p is later derived

directly from {q p }, its new os would be {q p},

which would replace the os {q p, q p}.
3. If you use A exclusively, you need to consider your

algorithms carefully or your KB-closure might be a
subset of the KB-closure when js was also used.

Continuing our example: After retracting q p and

q s, p,q BS anymore. The addition of q as a

hypothesis would restore p to BS if the js {q, q p}
was referenced. But, if only A was available for

derivation records, p �BS until a new query is made.

When a query makes recursive queries, the above
process is iterated, continually adjusting KB along the way
through query-addition. After each query-addition, BS is
regenerated (using the KB-Closure operation). It is
possible, therefore, to query-add derivable propositions to
KB (and, therefore, BS) without ever deriving the initial
proposition that was queried for, A.

Query Postulates

Whether it succeeds or fails, the query, Q(A,KB), is a
function Q that takes a proposition A and a knowledge
base KB = <HYPS,DERS,B,A,J> as arguments. It

returns an altered knowledge base KB = <HYPS, DERS ,

B, A , J > that has the following properties (where BS and

BS are used to represent BS(KB) and BS(KB)
respectively):

Q0) If KB is a knowledge base, then Q(A,KB) is
a knowledge base

Q1) If A �BS, then KB = KB

Q2
�

) If B A, then A �BS

Q3) If B A, then A �BS

Q4
�

) If B is k-inconsistent and A �BS, then

DERS – DERS = BS – BS� = {A}
(since anything follows from a contradiction)

Q5) If KB � KB and A KB , then

p, β s.t. <p,β> �J , β BS, and either p = A,
or p was derived in a successful attempt to
derive A

Q6) If KB � KB and A KB , then

p, β s.t. <p,β> �J , β BS, and p was
derived in an unsuccessful attempt to derive A

�

 Q2 – deriving A is not guaranteed if the system is
 incomplete.

�

 Q4 does not apply if the logic is paraconsistent.

The initial KB, KB0, is the tuple < , , , , >. Note
that HYPS, DERS, A, and J increase monotonically with
the exception of the recommended minimality constraint of
query-addition to A.

Integrity Constraints for a DOBS

Now that we have formalized a DOBS, we can assess
the key changes necessary to adjust the list of integrity
constraints (Gärdenfors and Rott 1995) so that they can be
used as belief revision guidelines for a DOBS. Alterations
are in bold italics. Additions or clarifications are in plain
italics:
1. A knowledge base should be kept k-consistent

whenever possible.
2. If a proposition can be derived from the beliefs in the

knowledge base using the derivations currently known,
then it should be included in that knowledge base (kb-
closure). Likewise, if a proposition is not in the
knowledge base, but can be derived from the beliefs in
the knowledge base, it should be produced if queried
for.

3. There should be a minimal loss of the known
information during belief revision.

4. If some beliefs are considered more important or
entrenched than others, then belief revision should
retract the least important ones.

Constraint 1 suggests that a system should activate
belief revision as soon as an inconsistency is detected.
Constraint 2 recommends that we avoid re-deriving a
proposition from a set of propositions from which it has
already been derived. It furthermore suggests that we
strive for a system that is as complete as possible, so that,
from a set of hypotheses, the user can expect to derive any
proposition that would be included in the deductive closure
of that set.

Constraint 3 reminds us that we are forced to analyze
the system based on the knowledge we “ know,” a subset of
the total knowledge that a DCBS has. Fortunately, this
means there is less information to analyze during a
retraction and, since we queried to get this information, it
is more likely to be of interest to us. A might bother us
with belief revision decisions about obscure information
than our query-generated DOBS. However, more
information does imply better choices about how to
minimize information loss, so we return to the issue of
constraint 2 and the need to build our belief space as
quickly as possible.

Lastly, constraint 4 seems to need no adjustment for
compliance with the needs and restrictions of a DOBS. A
DCBS (with its deductive closure) might make a
connection between some seemingly unimportant
proposition and some important information, whereas the
limited knowledge of a DOBS might not have made (or
derived) that connection. In this sense, a DOBS is still less
“ reliable” than the theoretical DCBS. All the more reason
to focus on constraint 2 – attempting to improve the
quality of completeness – in hopes that we can query for
those important pieces of information and still make well-
informed choices.

Discussion and Future Work

We have analyzed the concepts of a DOBS and presented a
formalism that is flexible enough to be useful to both the
coherence theory researchers as well as those working in
the foundations camp. The term k-consistent enables a
more direct reference to the DOBS state of “ not knowing
whether a DOBS is consistent.” The detailed formalism
offers a guideline for retaining derivation information for a
DOBS, using both the ATMS and/or JTMS style; and the
DOBS integrity constraints offer implementers basic
concepts for optimizing their belief revision systems.

The next step in this research is to formulate belief
revision postulates specific to a DOBS, using the altered
integrity constraints. We hope to offer a DOBS version of
not only the AGM postulates, but also Hansson’s base
contraction postulates (Hansson, 1993) and postulates
proposed for ranked beliefs. We also hope to continue to
provide brief comments regarding postulate adherence for
paraconsistent logics and/or incomplete systems.
Implementers will, then, be able to analyze how well their
systems meet the standards of the postulates.This is a
“ pressing issue” (Hansson 1999, p. 367) for those doing
belief revision research in Computer Science.

References

Alchourron, C. E.; Gärdenfors, P.; and Makinson, D. 1985.
On the Logic of Theory Change: Partial Meet Contraction
and Revision Functions. The Journal of Symbolic Logic,
Vol 20, Num. 2, 510-530.

Friedman, N.; and Halpern, J. Y. 1996. Belief Revision: A
Critique. In Aiello, L. C.; Doyle, J.; and Shapiro, S.C. eds.
Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR
’96), 421-431. San Francisco: Morgan Kaufmann.

Gärdenfors, P. 1992. Belief Revision. Cambridge
Computer Tracks. Cambridge: Cambridge University Press

Gärdenfors, P.; and Rott, H. 1995. Belief Revision. In:
Gabbay, D.; Hogger, C. J.; and Robinson, J.A. eds.
Handbook of Logic in Artificial Intelligence and Logic
Programming, Vol 4, Epistemic and Temporal Reasoning.
Oxford: Clarendon Press. 35-131.

Hansson, S. O. 1999. A Textbook of Belief Dynamics:
Theory Change and Database Updating, Vol 11 , ‘Applied
Logic Series’ of Kluwer Academic Publishers, Dordrecht.

Hansson, S.O. 1993. Reversing the Levi Identity. Journal
of Philosophical Logic 22:637-669

Martins, J. P. 1991. The truth, the whole truth, and nothing
but the truth: An indexed bibliography to the literature of
truth maintenance systems. AI Magazine, 11(5):7-25

Martins, J. P. 1992a. Belief Revision. In Shapiro, S. C. ed
Encyclopedia of Artificial Intelligence, 110-116. New
York: John Wiley & Sons, second edition

Martins, J. P. 1992b. Truth Maintenance Systems. In
Shapiro, S. C. ed Encyclopedia of Artificial Intelligence,
1613-1622. New York: John Wiley & Sons, second edition

