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§83. Relevance logic in computer science (by Stuart C. Shapiro). Artifi-
cial Intelligence (AI) is the branch of Computer Science that uses computational
methods to study the kinds of processing that make up human intelligence. One
means of pursuing this study is by building computer models (i.e., writing com-
puter programs) that perform intellectual tasks, but recently more and more
AT researchers have become concerned with the logical foundations of such pro-
cesses. It is not surprising, then, that a group of AI researchers have been
attracted to relevance logic as an appropriate foundation for human and com-
puter reasoning systems.

We can categorize the uses of relevance logic that have been suggested in the
AT literature in two groups: those that have made use of, or modified, R’s proof
theory to design Al reasoning systems; those that have stressed the four-valued
semantics of R.

§83.1. Use of the proof theory. One of the first suggestions that R would
be useful for Artificial Intelligence reasoning systems was by Shapiro and Wand
1976. Their first point is that, “In a question-answering system, an implication
has imperative as well as declarative content: an implication ought to be a
useful inference rule” (Shapiro and Wand 1976 p.8, see also Hewitt 1972). In
this view, an implication, such as A— B, is also treated as a rule that says, “if
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you want to know the truth of B, check the truth of A.” If A is irrelevant to B
(the worst case being that A is a contradiction), this is not a reasonable rule.

Shapiro and Wand modify the notation of FR_,, (§27.2) to eliminate the
sub-proof structure. They suggest that the knowledge base (KB) of a reasoning
system be considered to contain “assertions of the form (A, ¢, a), where A is
some formula, ¢ € {0,1}, and « is a set.” (The angle brackets were not in the
original.) The rules of inference they present are:

hyp: (4,0, {k}) may be added to the KB as long as {k} is a singleton set such
that no assertion of the form (B, 0, {k}) is already in KB.

add: (A4,0,{k}) may be removed from KB and replaced by (A&B,0, {k}).

—E: If (A,p,a) € KB and (A—B,&,8>) € KB, then (B,1,aU ) may be
added to KB.

—1I: If (A,0,{k}) € KB and (B, ¢,3) € KB and k € 3, then (A—B, 1,5 — {k})
may be added to KB.

&E: If (A&B, p,a) € KB, then (A,1,a) may be added to KB and (B, 1, a)
may be added to KB.

&I: If (A, p,a) € KB and (B,¢,a) € KB, then (A&B,1, @) may be added to
KB.

Using the later terminology of Martins and Shapiro (see §83.1.1 below), we may
refer to o as the origin tag and « as the origin set of the assertion. All assertions
whose origin tags are 0 are hypotheses entered into the KB by some user. All
assertions of the form (A, 1, a) are derived assertions which have been derived
under the set of assumptions {(B,0,{k}) | k € a}.

Shapiro and Wand discuss the use of their system for using hypothetical
reasoning to derive new rules:

Consider a universe of discourse, «, and the new, hypothetical world
produced by assuming (P, 0, {p}). If, in this hypothetical world, we
can derive (@,1,aU{p}), we can then derive the new deduction
rule (P—Q,1,a) in the original universe by use of —I. This is a
productive rule in the sense that if we later learn that (P, ¢, 3) is
true, we can derive (Q,1,a U ). ... The rules of FR_, g, are precisely
the right ones to ensure that any derived [rules] are in fact relevant
to the hypothetical situation. (pp. 16-17)

Shapiro and Wand also use origin sets to define the notion of a context: “A
context is a set v and is said to contain the set of assertions {(4, p,a) |« C v}”?
(p. 15). They point out, in the light of suggestions made by Shapiro 1971 (pp.
107-109), that the rules of FR_, g,can be used to keep contradictory contexts
separate and that origin sets can be used to discover and remove the source



of contradictions if any arise during reasoning. These ideas were subsequently
key ideas in Belief Revision systems and Assumption-based Truth Maintenance
systems (see below).

§83.1.1. SWM. The work of Shapiro and Wand 1976 was continued by Mar-
tins and Shapiro, whose work is described in a series of papers (Martins 1983;
Martins and Shapiro 1981, 1983, 1984, 1986a, 1986b, 1986¢c, 198+a, 198+b; see
also Martins 1987). The logic developed by Martins and Shapiro, called SWM,
operates on supported wffs, which are expanded versions of the assertion triples
of Shapiro and Wand, and which we shall here refer to as assertions. An SWM
assertion A is a quadruple, (A, 7, @, p), where A is a wif called the wif of A, T is
a member of the set {hyp, der, ext}, and is called the origin tag (OT) of A, « is
a set of wis and is called the origin set (OS) of A, and p is a set of sets of wifs
and is called the restriction set (RS) of A. If A is the assertion (A, T, a, p), the
functions wff, ot, os, and rs are defined so that wff(A) = A, ot(A) = 7, 0s(A)
= a, and rs(A4) = p. (The notation in most of Martins and Shapiro’s papers
differs slightly from that given here.)

A set of hypotheses, «, is known to be inconsistent as soon as an assertion
is derived whose wif is a contradiction and whose os is «a, or as soon as two
assertions, Ajand Aj, are derived for which wff(A4;) = ~wff(A2) and a =
0s(A1) U 0s(Az). The rules of inference of SWM guarantee that for every
derived assertion A, os(A) contains every hypothesis wif that was used in A’s
derivation and only those hypothesis wifs and that rs(A) contains every set of
hypothesis wifs known to be inconsistent with os(.A). The rules of inference do
not allow the derivation of any assertion .A for which os(.A) would be a set of
hypothesis wifs already known to be inconsistent.

§83.1.1.1. Rules of inference of SWM. To make the rules of inference of
SWM easier to state, several functions are defined.

First, to prevent any use of a context already known to be inconsistent, the
rules require all parent assertions to be combinable, as defined by:

Combine(A;, A2) =Vr € rs( A1) : 7 € os(Az) & Vr € 1s(A2) : r € os( A1)

The OT ‘hyp’ tags assertions that are hypotheses; ‘der’ tags assertions that
are normal derived assertions; ‘ext’ tags derived assertions whose later use is
restricted. To prevent irrelevancies from arising, the rule of And Introduction
must be restricted to parent assertions with the same OS. However, if A;=
(A, t1,01,71) and As= (B, tg,02,72) are two assertions, it intuitively seems un-
objectionable for a reasoner to assert As= (A&B,ts,01 Uog,7r3). There is, in
fact nothing wrong with this as long as certain rules are prevented from acting
on A3 or any of its descendants. For this reason, A3 and all its descendants are



given an OT of ‘ext’. The function A correctly computes OTs:

ext if a = ext or b = ext
Afa,b) = { der otherwise

The final four functions are used in the computation of RSs to insure that
no two sets in an RS overlap, and that all are disjoint with the OS.

p{re, s rmbs {01, on}

Y(R,0)
o(R) = {a€eR|~EB)(B#a&BeER&BCa)}
) = o(@W(riU---Urp,o00U---Uoy))

)

J(©

Given these functions, the rules of inference of SWM are:

Hypothesis (Hyp): For any wif A and sets of wffs Ry,...,R,(n > 0), such
that Vr € {Ry,...,R,} :rN{A} = and Vr,s € {Ry,...,Rp}: 7 € s, we
may add the assertion (A4, hyp, {A}, {Ri,...,R,}) to the knowledge base,
provided that A has not already been introduced as a hypothesis.

Negation Introduction (~I):

From

and
infer
From

and
infer

<A7 t]_,O,T>,
<NA7 t2707 T>7
{Hla"'an} C o,

(~(H & - &H,), Aty 1), 0 — {Hy, ... Hy}, [(0o— {Hy,. .., H,})).

Al: <A7t17017T1>7

A2: <NA7 t2,02,7“2>,

01 # 02,

Combine(.Al, Az),

{Hla' . 7Hn} - (01 UOQ),

<N(H1& v -&Hn),ext, (01 U 02) - {Hl, .. .,Hn},f((ol U 02) - {Hl, e

This rule may be applied before URS (see below).

Negation Elimination (~E): From (~~A,t,o0,7), infer (A, A(t,t),0,r).

And Introduction (&I):

From
and
infer

From

and
infer

(A, t1,0,7)

<Bat2707 T>7

<A&B,A(t1,t2),0, ’I">.

Al: <A7 tla 01, 7"1>,

A2: <B,t2,02,7‘2>,

01 # 02,

Combine(A;, As),

(A&B, ext, 01 U oz, p({r1,r2}, {01, 02})).

= {a|(aeR&anNO=¢)V(EBeR)[BNO #p&a=5-0]|}

= p{{r|3H€O:r=1s(H)},{o|IH € O:0=0s(H)})

s Hn})).



And Elimination (&E):
From (A&B,t,o,r),
and t # ext,
infer either (A, der,o,r)
or (B, der,o0,r) or both.

Or Introduction (truth functional) (VI):
From (A,t,o0,r),
infer either (AVB, A(t,t),0,r)
or (BVA,A(t,t),o,r), for any wif B.

Or Introduction (intensional) (&I):
From (~A—B,t;,0,r)
and (~B—A, ty,0,1),
infer (A®B, A(t1,t2),0,7).

Or Elimination (®E):
a. From A;= (A®B,t1,01,71),
Ao= (~A, t3,02,72),
and Combine(A;, As),
infer <B, A(tl, tz), 01 U og, N({rb T2}7 {017 02})>'
From A;= (A®B,t1,01,71),
-A2: <NBa t27 02, T2>7
and Combine(A;, Az),
infer <A, A(tl, tz), 01 U o2, /"’({7‘17 TZ}’ {017 02})>'
b. From A;= (A®B,t;,01,71),
A2: <A_>Oa t27 02, T2>7
As= (B—C,t3,02,72),
and Combine(A;, Az),
infer  (C, A(t1, Az, t3)), 01 U oz, u({r1, 72}, {01, 02})).

Implication Introduction (—I):
From (B,der,o,r)
and any hypothesis H € o,
infer (H—B,der,0o— {H}, [(o—{H})).

Modus Ponens—Implication Elimination, Part 1 (MP):
From .A1: <A, tl, 01, T‘1>,
AQZ <A—)B, ta, 02, 7‘2>,
and Combine(A;, Az),
infer (B, A(t1,t2),01 U 02, u({r1, 72}, {01, 02})).

Modus Tollens—Implication Elimination, Part 2 (MT):
From A;= (A—B,ty,01,71),
A2: <NB, tz, 03, T'2>,
and Combine(A;, As2)
infer  (~A, A(t1,12),01 U oz, u({r1, 2}, {o1,02})).



Updating of Restriction Sets (URS): From (A4, t1,01,71), and (~A, ta,02,72),
we must replace each hypothesis (H,hyp, { H}, R) such that H € (0; Uos)
by (H,hyp,{H},c(RU ((01 Uo2) — H))). Furthermore, we must also re-
place every assertion (F,¢,0,7) (t = der or t = ext) such that oN (o3 Uoy) #
¢ by (F,t,0,0(r U{(01 Uoz) — 0})). However, the rule of ~I may be ap-
plied before the restriction sets are updated.

V Introduction (V I): From (B(t),der,oU {A(t)},r), in which A(t) is a hy-
pothesis that uses a term () never used in the system prior to A’s in-
troduction, and ¢ is not in o or 7, infer (V(z)[A(z)—B(z)],der,o, [(0)).
(According to this rule of inference, the universal quantifier can only be
introduced in the context of an implication. This is not a drawback, as
it may seem at first, since the role of the antecedent of the implication
(A(z)) is to define the type of objects that are being quantified.)

V Elimination—Universal Instantiation (V E):
From A= (¥(z)[A(z)—B(z)],t1,01,71),
A= <A(C), t2, 02, T‘2>,
and Combine(A;, Az),
where ¢ is any individual symbol,
infer <A(C)—>B(C), A(tl, tz), 01 U 03, /,L({Tl, 7“2}, {01, 02})>.

3 Introduction (3 I):
From (A(c),t,o0,r), where ¢ is an individual constant,
infer (3(x)[A(z)], A(t, t), 0, 7).

3 Elimination (3 E):
From  (3(z)[A(z)],¢,0,7)
infer  (A(c),A(t,t),0,7)

where c is any individual constant that was never used before.

The rules of ~I (part 1), &I (part 1), and &I are only applicable to assertions
that have the same OS and the same RS. This condition is not as constraining
as it may seem at first glance, since Martins and Shapiro prove that if two
assertions have the same OS, then they also have the same RS. In fact, this
justifies a different view of the database of assertions. One may think of the KB
as containing a set of wifs. For every wff A and every assertion A in which A
= wif(A), A is a wif of type ot(A) in the context os(.A) and in every context -y
such that os(A) C 4. Two contexts o and 3 are known to be inconsistent if, in
the previous way of thinking, there is an assertion A such that o = os(A) & 3 €
rs(A) or 8 = 0s(A) & o € rs(A). The rules of inference of SWM apply with
the obvious modifications. However, Martins and Shapiro show that if one
restricts the reasoner to a consideration of only wffs in a single context, not
known to be inconsistent, the Combine test need never be made, and if a new
contradiction is uncovered within the context, the removal of any wff in the OS
of the contradictory assertion will restore the context to the status of not being



known to be inconsistent. This is the logical basis for assumption-based truth
maintenance, or belief revision (Martins 1987; Martins and Shapiro 1981, 1984,
1986a, 198+a, 198+b).

§83.1.1.2 Example. The main advantages of SWM are that the OSs show
precisely the hypotheses required to derive each assertion, so that when a con-
tradiction is found, no innocent hypothesis will be blamed, and that once a set
of hypotheses is found to be contradictory, reasoning will no longer occur in the
context formed by that set of hypotheses. In actual computer reasoning systems
based on SWM, the user may explicitly decide to reason in a context known to
be inconsistent.

As an example of SWM, we show the derivation that the existence of the
Russell set is self-inconsistent.

1. S(s)[Set(s)&V(x)[Set(w)—)((w € s—~(z € x))&(~(x € z)—a € 9))]], hyp, {1}, {})
yp

2. ;S’EeI;(R)&V(x)[Set(x)—)((x € R—r~(z € ))&(~(z € )=z € R))],der,{1},{})

3. (Set(R),der,{1},{}) &E 2

4. ;V(x)[Set(ac)—)((x € R—~(z € x))&(~(z € £)—x € R))],der, {1}, {}) &E

(R € R—~(R € R))&(~(R € R)=R € R)),der, {1}, {}) VE 4,3
(R € R)—~(R € R),der, {1},{}) &E 5

(R € R, hyp,{7},{}) Hyp

(~(R € R),der,{1,7},{}) MP 7, 6

(~(R € R),ext, {1}, {{7}}) ~I1 7,8

© ® N & o

URS is now required by the presence of 7 and 8. Every assertion with an OS of
{1} now has {7} added to its RS, and every assertion with an OS of {7} now
has {1} added to its RS. The two hypotheses are now:

1. (3(s)[Set(s)&V(z)[Set(z)—=((z € s—~(z € 2))&(~(z € x)—z € 9))]], hyp, {1}, {{7}})
Hyp; URS 7, 8

7. (R € R, hyp,{7},{{1}}) Hyp; URS 7, 8

Other revised assertions will be shown when and only when they are about to
be used.

9. (~(R € R),ext, {1}, {{7}}) ~1 7, 8 URS 7, 8



5. (R € R—>~(R € R))&(~(R € R)—=R € R)),der, {1}, {{T}}) VE 4,3; URS
7,8

10. (~(R € R)—R € R, der, {1}, {{T}}) &E5’
11. (R € R, ext, {1},{{7}}) MP ¢', 10

URS is now required by the presence of 11 and 9'. In this case, 01 = 02 =
01 U o2 = {1}, so hypothesis 1 becomes:

1”7, (3(s)[Set(s)&V(z)[Set(z)—=((z € s—=~(z € z))&(~(z € )=z € 5))]], hyp, {1}, {{}})
Hyp; URS 7, 8; URS 11, 9’

The existence of the empty set in the RS of 1” means that 1” is self-inconsistent
and not combinable with any other assertion. Within the context of the hy-
pothesis {1} we may reason about the Russell set, but that hypothesis may not
be combined with any other, so the contradiction has been isolated.

§83.1.2. Implementations. Martins and Shapiro implemented a computer
reasoning system, SNeBR (Martins 1983; Martins and Shapiro 1983, 1984,
1986¢, 198+b), based on a version of SWM for the non-standard propositional
connectives of SNePS, the Semantic Network Processing System (Shapiro 1979,
Shapiro and Rapaport 1987).

Ohlbach and Wrightson 1984 used the Markgraf Karl Refutation Procedure
(Raph 1983), a resolution based theorem prover, to show that

(A—=(B—B))—(A—(A—(B—B)))

follows from the axioms of T— (see §8.13).

Thistlewaite and McRobbie have implemented KRIPKE, an R based auto-
matic theorem prover (see Malkin 1987 and Thistlewaite, McRobbie and Meyer
198+).

Brachman, Gilbert, and Levesque 1985 mention their intention to implement
an inference mechanism based on a relevance logic as part of the KRYPTON
knowledge representation/reasoning system.

§83.2. Use of the four-valued semantics of R. Belnap 1975, 1977 was the
first to suggest that the four-valued semantics of R make it a useful model for
computer reasoning systems. A revised version of these papers appears as §81
of this volume, so the discussion will not be repeated here beyond noting the
meaning, in a computer reasoning context, of the four values. Most database
management systems assume what in Artificial Intelligence has been called the
Closed World Assumption (Reiter 1978). This is that the database contains
all relevant true information, so whatever information is not in the database is
false. The Closed World Assumption is unreasonable for any reasoning system
that might learn new facts. For such a system, false assertions as well as true



assertions may be explicitly stored in the database. An assertion that is not
stored in the database as either true or false must only be assumed to be un-
known. True, false, and unknown are three of the four truth values. The fourth,
both, is used if more than one informant put information into the database and
one informant said that an assertion was true while another said that it was
false. Perhaps a single informant at one time said that the assertion was true,
and at another time that it was false. Perhaps the actual situation changed,
so that an assertion that was true at one time later became false, or maybe a
simple error was made in entering information, and this led to a contradiction.
Of course, an assertion’s having a truth value of both indicates some problem to
be resolved in the database, unless it is true in one context and false in another.
However, until the problem is resolved, the use of R can prevent the contradic-
tion from polluting the database with every possible conclusion (derivable from
a contradiction in standard logics).

The Closed World Assumption is also unreasonable for a database man-
agement system or reasoning system that, for reasons of speed, must produce
information before it can develop all the implications of its stored data. Such a
system might not find some information, not because it was not in or implied by
its database, but because it was not given enough time (or other resources). Call
the information retrievable by such a system within its resource limits its ez-
plicit beliefs and all the information it could retrieve given an arbitrary amount
of resources its implicit beliefs. Semantics for relevance logics appropriate for
the set of explicit beliefs of such systems have been discussed by Levesque 1984a,
1984b; Fagin and Halpern 1985, 198+; Frisch 1985, 1986; and Lakemeyer 1986
(see also Levesque 1986).

Lakemeyer 1987 extends the model of Levesque 1984b to one that an agent
can use to hold meta-beliefs (beliefs about its own beliefs) and reason about
them efficiently.

Mitchell and O’Donnell 1986 (see also O’Donnell 1985) are particularly in-
terested in the use of R for database systems that may have errors in the data.
They present two versions of realizability semantics for relevance logic, show
soundness for the first, and soundness and completeness over a nonstandard set
of models for the second.

Patel-Schneider 1985a, 1985b presents a decidable variant of relevance logic
including quantifiers as an appropriate logic for reasoning systems.

Allowing unknown as a truth value invites one to consider inferences based
on lack of knowledge; e.g., if P is unknown conclude ). The Closed World
Assumption then amounts to VP, if P is unknown then~P, but less overriding
rules are useful for the sort of default reasoning people seem to engage in. (The
favorite example in Artificial Intelligence is if z is a bird and it is not known
that  doesn’t fly, then x does fly.) If a previously unknown datum, used
for one of these lack-of-knowledge inferences, is later learned to be false, the
earlier conclusion may no longer be justified. This phenomenon, of once valid
conclusions becoming invalid due to the gaining of knowledge, has been termed



non-monotonicity, and several non-monotonic logics have been proposed as the
foundation of such reasoning (see Perlis 1987). Sandewall 1985a, 1985b discusses
a functional approach to non-monotonic logic with the four-valued semantics of
R.

A particular kind of database used in Artificial Intelligence is the inheri-
tance net (see Touretzky 1987). Thomason, Horty, and Touretzky 1986 discuss
inheritance nets in which nodes represents either individuals or kinds, and in
which there are two kinds of links. The link p—¢ means that p is a ¢ (or all p’s
without exception are ¢’s), and the link p 4¢ means that p is not a ¢ (or p’s are
not ¢’s, again without exception). They give a proof theory and a model theory
for inference in these nets, show the soundness and completeness of the proof
theory relative the the model theory, and show that the four-valued semantics
of R is an appropriate interpretation of this logic.

ADDITIONAL TWO PARAGRAPHS PROVIDED BY BELNAP
& DUNN HERE
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