
Proc. AAAI-15 1

Inference Graphs: Combining Natural Deduction and Subsumption Inference in a
Concurrent Reasoner

Daniel R. Schlegela and Stuart C. Shapirob

aDepartment of Biomedical Informatics
bDepartment of Computer Science and Engineering

University at Buffalo, Buffalo NY, 14260
<drschleg,shapiro>@buffalo.edu

Abstract

There are very few reasoners which combine natural deduc-
tion and subsumption reasoning, and there are none which
do so while supporting concurrency. Inference Graphs are a
graph-based inference mechanism using an expressive first–
order logic, capable of subsumption and natural deduc-
tion reasoning using concurrency. Evaluation of concurrency
characteristics on a combination natural deduction and sub-
sumption reasoning problem has shown linear speedup with
the number of processors.

1 Introduction
Inference Graphs (IGs) are a graph-based inference mech-
anism using an expressive first–order logic (FOL), capable
of subsumption and natural deduction (ND) reasoning us-
ing forward, backward, bi-directional (Shapiro, Martins, and
McKay 1982), and focused reasoning (Schlegel and Shapiro
2014a), all using concurrency. In this paper we will focus
our discussion on the ability of IGs to combine ND and sub-
sumption reasoning using concurrency, a combination which
no other system provides.1

ND is a proof–theoretic reasoning method which makes
use of a set of introduction and elimination rules for each
logical connective. Subsumption is a reasoning method
which allows the derivation of knowledge about entire
classes of entities from knowledge about other classes, with-
out needing to introduce instances. Subsumption reasoning
is most commonly associated with description logics (DLs)
(Baader et al. 2010). It is often missing from first order rea-
soners because of the lack of non–atomic conceptual de-
scriptions (Woods 1991).

There have been many ND reasoners over the years, and
reasoning using subsumption is increasingly popular. The
combination of these two techniques allows for more sophis-
ticated reasoning about entire classes of entities. We know
of only two reasoners which combine the two techniques,
namely, ANALOG (Ali and Shapiro 1993; Ali 1994) —

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1This paper is an extended and updated version of (Schlegel and
Shapiro 2014c). Parts of it are adapted from (Schlegel and Shapiro
2013) and (Schlegel 2014). A conception of IGs using only ground
predicate logic can be seen in (Schlegel and Shapiro 2014b).

which is an ancestor of this work — and PowerLoom (USC
Information Sciences Institute 2014). Unlike PowerLoom,
IGs use a single graph structure to represent inference paths,
whether they be for subsumption or ND. Neither ANALOG
nor PowerLoom support concurrency.

IGs derive their ability to reason using both ND and sub-
sumption largely from the logic they implement: a Logic of
Arbitrary and Indefinite Objects (LA). LA is a first–order
logic which uses quantified terms instead of quantified for-
mulas with universally and existentially bound variables.
There are two types of quantified terms: arbitrary and in-
definite. Arbitrary terms replace universally quantified for-
mulas, and indefinite terms replace existentially quantified
formulas. Both types of quantified terms are structured, hav-
ing a set of restrictions which the quantified term satisfies.
A quantified term subsumes another quantified term if their
sets of restrictions are appropriately related (further detailed
in Section 3.1). For example, an arbitrary term, a1, subsumes
another arbitrary term, a2, if the restriction set of a1 is a
subset of that of a2. Using this relationship, one can derive
new information about a2 from information about a1, with-
out introducing or knowing about any individuals which are
instances of a1 or a2. This feature is the essence of subsump-
tion reasoning.

LA allows for forming expressions that use propositional
connectives and quantified terms. Propositional connectives
can be reasoned about using ND, while quantified terms can
be reasoned about through subsumption reasoning. IGs al-
low the use of concurrency in both types of inference.

In Section 2 we will discuss LA and some KR concerns.
The IG formalism implementing LA is presented in Sec-
tion 3. Section 4 will discuss the IG concurrency model. Fi-
nally, Section 5 presents an evaluation of IG performance.

2 Background
2.1 A Logic of Arbitrary and Indefinite Objects
LA is a FOL designed for use as the logic of a KR system
for natural language understanding, and for commonsense
reasoning (Shapiro 2004). The logic is sound and complete,
using ND and subsumption inference. Throughout this pa-
per we will assume the deductive rules implemented are the
standard rules of inference for FOL, though the actual im-
plementation uses set-oriented connectives (Shapiro 2010),

Proc. AAAI-15 2

which subsume the standard rules.
The logic makes use of arbitrary and indefinite terms (col-

lectively, quantified terms). Quantified terms are structured
— they consist of a quantifier indicating whether they are
arbitrary or indefinite, a syntactic variable, and a set of re-
strictions. The range of a quantified term is defined by the
conjunction of its set of restrictions. A quantified term qi has
a set of restrictions R(qi) = {ri1 , . . . , rik}, each of which
make use of qi’s variable, vi. Indefinite terms may be depen-
dent on one or more arbitrary termsD(qi) = {di1 , . . . , dik}.
The structured nature of quantified terms allow them to
satisfy Woods’s requirement that a logic for subsumption
have non–atomic conceptual descriptions. We write an arbi-
trary term as (every vqi R(qi)) and an indefinite term
as (some vqi D(qi) R(qi)).2 The structured nature of
quantified terms syntactically differentiates them from uni-
versally and existentially quantified variables familiar in
first–order predicate logic (FOPL).3

Semantically, arbitrary and indefinite terms are also dif-
ferent from FOPL’s universally and existentially quantified
variables. Instead of reasoning about all members of a class,
LA reasons about a single arbitrary member of a class.4 For
indefinite members, it need not be known which member is
being reasoned about, the indefinite member itself can be
reasoned about. Indefinite individuals are essentially Skolem
functions, replacing FOPL’s existential quantifier.

To our knowledge, the only implemented systems which
use a form of arbitrary term are ANALOG (Ali and Shapiro
1993) and Cyc (Lenat and Guha 1990), though arbitrary
objects themselves were most famously defended by Fine
(Fine 1983) after being attacked by Frege (Frege 1979). The
logic of LA is based on those developed by Ali and by Fine
(Fine 1985a; 1985b), but is different — notably it is more
expressive than ANALOG. It is designed with computation
in mind, unlike Fine’s work, which omits key algorithms.

Since an arbitrary term represents an arbitrary entity, there
are no two arbitrary terms with the same set of restrictions.
Occasionally it is useful to discuss two different arbitrary
members with the same restrictions, so we provide the spe-
cial restriction (notSame qj1 . . . qjk) for this purpose.

2.2 Knowledge Representation
In the tradition of the SNePS family (Shapiro and Rapaport
1992), propositional graphs are graphs in which every well-
formed expression in the knowledge base, including indi-
vidual constants, functional terms, atomic formulas, or non-
atomic formulas (which we will refer to as “rules”), is rep-
resented by a node in the graph. A rule is represented in
the graph as a node for the rule itself (henceforth, a rule
node), nodes for the argument formulas, and arcs emanating

2The syntax we use is a version of CLIF (ISO/IEC 2007).
3In many papers and books FOL and FOPL are used inter-

changeably. Here this is not the case — LA and FOPL are both
members of the class of FOLs, but LA is not FOPL.

4This is in contrast to DLs, which reason about classes. DLs
have two languages: one to discuss classes, another to discuss in-
stances; LA uses a single language to discuss instances and arbi-
trary individuals.

from the rule node, terminating at the argument nodes. Arcs
are labeled with an indication of the role (e.g., antecedent
or consequent) the argument plays in the rule, itself. Every
node is labeled with an identifier. Nodes representing indi-
vidual constants, proposition symbols, function symbols, or
relation symbols are labeled with the symbol itself. Nodes
representing functional terms or non-atomic formulas are la-
beled wfti, for some integer, i. Every SNePS expression
is a term, hence wft instead of wff. An exclamation mark,
“!”, is appended to the label if it represents a proposition
that is asserted in the KB. Arbitrary and indefinite terms are
labeled arbi and indi, respectively. No two nodes repre-
sent syntactically identical expressions; rather, if there are
multiple occurrences of one subexpression in one or more
other expressions, the same node is used in all cases. Propo-
sitional graphs are built incrementally as terms are added to
the knowledge base, which can happen at any time.

Quantified terms are represented in the propositional
graph just as other terms are. Arbitrary and indefinite terms
also each have a set of restrictions, represented in the graph
with special arcs labeled “restrict”, and indefinite terms have
a set of dependencies, represented in the graph with special
arcs labeled “depend.”

Each term in the knowledge base has a semantic type,
itself existing within an ontology of semantic types which
the user can add to. Only terms of type Proposition may be
asserted (taken to be true) in the knowledge base. Generic
terms are terms which contain either other generics, or ar-
bitrary terms, and analytic generic terms are tautological
generics built from the restrictions of an arbitrary term.

3 Combining Natural Deduction and
Subsumption in IGs

IGs are an extension of propositional graphs. To proposi-
tional graphs, IGs add directed message passing channels
wherever inference (ND or subsumption) is possible. Chan-
nels are built within rules and generic terms, and wherever
terms match each other. Inference messages, containing sub-
stitutions, pass forward through channels. Nodes for rules
collect and combine messages. When a received or com-
bined message satisfies an inference rule it fires, sending
more messages onward through the graph through its out-
going channels.

To motivate the discussion, we introduce an example in-
spired by the counter–insurgence domain, first only in the
logical syntax of LA, and in a later subsection, using an IG.

;; A person is arrested if and only if
;; they are held by a another person
;; who is a corrections officer.
(iff
(Arrested (every x (Isa x Person)))
(heldBy x (some y (x)

(Isa y Person)
(Isa y CrctnsOfcr)
(notSame x y))))

;; A person is detained if and only
;; if they are held by another person.

Proc. AAAI-15 3

(iff
(Detained (every x (Isa x Person)))
(heldBy x

(some y (x) (Isa y Person)
(notSame x y))))

;; A person is either detained,
;; on supervised release, or free.
(xor

(Detained (every x (Isa x Person)))
(onSupervisedRelease x)
(Free x))

;; A person who is not free
;; has travel constraints.
(hasTravelConstraints

(every x (Isa x Person)
(not (Free x))))

;; A person who has been captured,
;; has been arrested.
(Arrested (every x (Isa x Person)

(Captured x)))

It will then be asked of the system if captured persons
have travel constraints:

(hasTravelConstraints
(every x (Isa x Person) (Captured x)))

This can be derived by recognizing that the arbitrary per-
son who is captured, is a person (a subsumptive relation-
ship), then applying rules in the KB which apply to persons.
For example, since a person is arrested if and only if they
are held by another person who is a corrections officer, then
a captured person is arrested if and only if they are held by
another person who is a corrections officer.

3.1 The Match Process
Whenever a term is added to the graph, it is matched with all
other terms. A term, ti, matches another term, tj , if ti and tj
unify,5 if each substitution of one quantified term for another
in the created substitutions follow appropriate subsumption
rules, and if ti is the same type, or a subtype of tj . The match
process is a way to identify more specific terms which may
share their instances with more general ones. For example,
consider that some person who is a corrections officer is still
a person.

When ti and tj are unified, instead of producing a most
general unifier, a factorization is produced which contains
bindings for each of the terms being unified. While this is
described in (McKay and Shapiro 1981), the main idea is
that as unification is performed, instead of forming a single
substitution, form two – σi and σj – such that all and only
quantified terms in ti are given bindings in σi, and all and
only quantified terms in tj are given bindings in σj . During
this process, we treat quantified terms as simple variables
without considering their restriction sets.

5We avoid pairwise unification using an approach similar to
(Hoder and Voronkov 2009)

Once ti and tj have unified, we must determine in which
direction(s) (if either) their substitutions are compatible in
their subsumption relationship and in type. To define our no-
tion of subsumption formally, we say:

1. an arbitrary, arbi, subsumes another, arbk, if ∀rij ∈
R(arbi),∃rkl ∈ R(arbk) such that rij matches rkl ,

2. an arbitrary, arbi, subsumes an indefinite, indk, if ∀rij ∈
R(arbi),∃rkl ∈ R(indk) such that rij matches rkl , and

3. an indefinite, indi, subsumes another, indk, if ∀rkj ∈
R(indk),∃ril ∈ R(indi) such that rkj matches ril .
If ti and tj unify, and for each substitution pair tl/vl ∈ σi,

tl has type equal or lower than vl, and if tl is a quantified
term, vl subsumes tl, then we call ti an originator, and tj
a destination, and add the 4-tuple < ti, tj , σi, σj > to the
set of matches to return. If ti and tj unify and for each sub-
stitution pair tl/vl ∈ σj , tl has type equal or lower than vl,
and if tl is a quantified term, vl subsumes tl, then we call
tj an originator, and ti a destination, and add the 4-tuple
< tj , ti, σj , σi > to the set of matches to return. So, 0, 1, or
2 4-tuples are the result of the process.

3.2 Communication Within the Network
The results of the match process are used to create some of
the channels in the graph. Channels are a pre-computation
of every path that inference might take. Each channel starts
at an originator node, and terminates at a destination. Each
node has channels to every node that it can derive and to
every node that can make use of inference results that the
originator has derived. Messages are sent through the chan-
nels. Messages come in several types, and either communi-
cate newly inferred knowledge (inference messages) or con-
trol inference operations (control messages).

Channels In addition to the originator and destination,
each channel has a type and contains three structures — a
valve, a filter, and a switch. Valves control the flow of infer-
ence; filters discard inference messages that are irrelevant to
the destination; and switches adjust the variable context of
the substitutions that inference messages carry from that of
the originator to that of the destination.

There are three types of channels — i-channels, g-
channels, and u-channels. I-channels are meant to carry mes-
sages that say “I have a new substitution of myself you might
be interested in”, and u-channels carry messages that say
“you or your negation have been derived with the given sub-
stitution.” G-channels are i-channels, but used only within
generic terms.
Definition 3.1. A channel is a 6-tuple < o, d, t, v, f, s >,
where o is the originator, d is the destination, t is the type, v
is the valve, f is the filter, and s is the switch. �

A filter serves to stop messages with irrelevant substitu-
tions from flowing through a channel. The filter ensures that
the incoming message’s substitution is relevant to d by en-
suring that, for every substitution pair tf/y in the destination
bindings, there is a substitution pair ts/y in the passing mes-
sage substitution such that either tf = ts or ts is a special-
ization of tf , determinable through one-way pattern match-
ing. If a message does not pass the filter, it is discarded.

Proc. AAAI-15 4

Switches change the substitution’s context to that of the
destination term. The switch applies the originator binding
substitution to the term of each pair in the passing message
substitution. This adjusts the substitution to use quantified
terms required by the destination. The updated substitution
is stored in the passing message.

Valves control inference by allowing or preventing mes-
sages from passing to the destination.

Definition 3.2. A valve is a pair < (open|closed), wq >
where the first position indicates whether the valve is opened
or closed, and wq is a waiting queue.6 �

When an inference message is submitted to a channel, it
first is sent through the filter, then the switch. Should the
message pass the filter, it will eventually reach the valve. The
valve, depending on whether it is open or closed, allows the
message to pass or prevents it from doing so. If a reached
valve is closed, the message is added to that valve’s wait-
ing queue. When a valve is opened, the items in the waiting
queue are sent on to the destination.

Channels are built between any two nodes which match
each other. All channels from the match operation are i-
channels, since they communicate new substitutions for the
originator, which the destination may be interested in.

Channels are built in several other locations as well:
within rules, generic terms, and quantified terms. Each of
these channels is simpler than those created from the match
process, as their filters and switches are no-ops.

Within rules, i-channels are built from each antecedent to
the node for the rule itself, and u-channels are built from the
rule node to each consequent. This allows the antecedents
to inform the rule of newly satisfying substitutions, and it
allows the rule node to send substitutions produced when
the rule fires to its consequents.

A generic term, g, is defined recursively as a term that is
a parent of one or more arbitrary terms a1, . . . , an, or one or
more other generic terms, g1, . . . , gm. Each ai and gk has an
outgoing g-channel to g. This allows substitutions to begin
at the arbitrary terms, and be built up successively as higher
level generic terms are reached.

Arbitrary terms have i-channels from each restriction to
the arbitrary itself. This allows arbitrary terms to find in-
stances of themselves through the combination of substitu-
tions from terms matching each restriction.

In Figure 1 the IG for the example is shown, with channels
drawn as specified. For example, wft2 has an i-channel to
wft3! and wft3! has a u-channel to wft2, indicating that
wft2 may want to share a substitution it has with wft3!,
and wft3! might derive wft2. Additionally, wft19! has
an i-channel to wft2, indicating that wft2 may be inter-
ested in wft19!’s assertional status and substitution.

Messages Messages of several types are transmitted
through the IG’s channels, serving two purposes: relaying
derived information and controlling the inference process.
A message can be used to relay the information that its

6This is a simplified conception of a valve which does not ac-
count for the dynamic nature of backward inference. See (Schlegel
2014) for more on this topic.

arb1

wft1!

wft2 wft3! wft6 ind1

wft4!

wft5!Person CorrectionsO�cer

i� i�arrested holder

arb3

wft18!wft19!arrested

depend

re
st

ric
t

m
em

be
r restrict

re
st

ric
t

class

m
em

be
r

classclass

member

class m
em

ber

arb1

Person

wft7 ind2

wft8!

wft9wft10! holderi�i�

restrictfrom wft6
detained

class
member

arb1

wft7 wft11 wft12

wft13!
xor

supervisedReleasedetained free

xor xor

Person

arb2

wft14!

wft16!notwft15

wft17!
hasTravelConstraints

arb3wft18!

wft20?

class memberclass

member

restrict

free

restrict

hasTravelConstr
aints

from wft12

i-channel u-channel g-channel

from wft18!

(notSame)
held

depend
(notSame)

held

wft20!

captured

restric
t

restrict

dependency
restriction/

Figure 1: The IG for the example, split into four segments
for easier reading. The top IG segment contains proposi-
tions meant to mean that a person is arrested if and only if
they are held by a another person who is a corrections offi-
cer (wft3), and that the arbitrary captured person is arrested
(wft19). The second segment contains the rule that a per-
son is detained if and only if they are held by another person
(wft10). The third segment contains the rule that a person
is either detained, on supervised release, or free (wft13),
and the final segment contains the generic proposition that a
person who is not free has travel constraints (wft17), along
with the question of whether the arbitrary person who is cap-
tured has travel constraints (wft20). Channels and restric-
tions/dependencies for quantified terms are drawn according
to the key at the bottom of the figure.

origin has a new asserted or negated substitution instance
(an i-infer or g-infer message), or that it has found
a substitution for the destination to now be asserted or
negated (u-infer). These messages flow forward through
the channels, and are called inference messages. Control
messages flow backward through channels, controlling in-
ference: backward-infer messages open valves, and
cancel-infer messages close them.

Definition 3.3. A message is an 8-tuple:

< pri , subst , type, pos,neg , fNS , t?, fwd? >

where: pri is the priority of the message (discussed further
in Section 4); subst is a substitution; type is the type of
message; pos and neg are the are the number of known true
(“positive”) and negated (“negative”) antecedents of a rule,
respectively; the fNS is the flagged node set, which contains
a mapping from each antecedent with a known truth value
to its truth value; t? indicates whether the message regards a

Proc. AAAI-15 5

true or negated term; and fwd? indicates whether this mes-
sage is part of a forward inference process. �

3.3 Inference by Combining Messages
Inference in the IG is essentially the combination of mes-
sages, and the determination of whether a resulting combi-
nation satisfies the requirements of a deductive rule, quanti-
fied term, or generic term.

Two messages, m1 and m2 may be combined if they
are compatible – that is, if their substitutions and flagged
node sets are compatible. We say that two substitutions,
σ = {tσ1/vσ1 . . . tσn/vσn} and τ = {tτ1/vτ1 . . . tτm/vτm},
are compatible if whenever vσi = vτj then tσi = tτj , and
that two flagged node sets are compatible if they have no
contradictory entries (that is, no antecedent of the rule is
both true and false).

Two messages that are compatible are combined in the
following way. Let
m1 =< pri1, subst1, type1, pos1, neg1,

fNS1, t?1, fwd?1 >

and
m2 =< pri2, subst2, type2, pos2, neg2,

fNS2, t?2, fwd?2 >

where m2 is the most recently received message. The com-
bined message, m3, combines m1 and m2 as follows:

m3 =<max(pri1, pri2),merge(subst1, subst2),

nil, |posEntries(fNS3)|, |negEntries(fNS3)|,
fNS3 , nil, or(fwd?1 , fwd2) >

Some fields inm3 are made nil, to be later filled in as neces-
sary. The combined flagged node set, fNS3, is the addition
of all entries from fNS2 to fNS1.

Messages may be combined efficiently using several dif-
ferent data structures. Which structure is used depends on
the logical operation a specific node performs. The ap-
proaches include a tree-based approach called a P-Tree, a
hash-map based technique called an S-Index, and a default
combinatorial algorithm (see (Choi and Shapiro 1992)). The
result of the combination process is a set of new messages
seen since just before the message arrived at the node. The
newly created messages are added to the node’s cache, and
examined to determine if the conditions of the node are met
to send out further messages. If the message arriving al-
ready exists in the cache, no work is done. This prevents
re-derivations, and can cut cycles.

The pos and neg portions of the messages in the new com-
bined set are used to determine if the conditions of the node
are satisfied. For a rule node, this determines whether the
rule may fire. For example, for a conjunctive rule to fire,
pos must be equal to the number of rule arguments. A dis-
advantage of this reasoning approach is that some rules are
difficult, but not impossible, to implement, such as negation
introduction and proof by cases. For the non-rule-node com-
bination nodes, this process determines if an instance has
been found, by waiting until pos is equal to the number of
required restrictions or subterms.

The restrictions of an arbitrary term arb, represented by
analytic generic terms with i-channels to arb, are taken con-
junctively. Therefore, messages from restrictions must be
combined in arb as they are available. When a message
m has been received or created via combination such that
mpos = |R(q)|, where mpos is the number of positive an-
tecedent instances in the message, it is considered to be an
instance of the arbitrary, and is sent onward to any generic
terms the arbitrary is part of. In the example this is evident
in arb2, which has two restrictions: wft14! and wft16!.
Only when both of these terms report to arb2 with compat-
ible substitutions can the combined substitution be sent to
wft17! for instantiation of the generic.

As discussed earlier, a generic term, g, is defined recur-
sively as a term that is a parent of one or more arbitrary terms
a1, . . . , an, or one or more other generic terms, g1, . . . , gm.
As instances are discovered by ai and gk, substitutions for
those instances are sent to g via the appropriate i-channel
to g. g combines these substitutions should they be compati-
ble, and sends out resulting messages. Unlike arbitrary terms
where all restrictions must be satisfied for an instance to be
made, generics require instances for only as many compati-
ble subterms as are available.

In the example, we can now derive that the arbitrary
captured person has travel constraints. Messages flow for-
ward from wft18! (through wft1! and arb1), and from
wft19! to wft2, which then satisfies wft3!, deriving
a generic instance of wft6 – the arbitrary captured per-
son is held by a corrections officer. We derive the arbi-
trary captured person is detained by messages flowing from
wft6, and arb1 (through ind2) to wft9, which satisfies
wft10! and derives a generic instance of wft7. The mes-
sage from wft7 satisfies the xor rule wft13!, allowing
a negated instance of wft12 to be derived – captured per-
sons are not free. Finally we learn that the arbitrary captured
person has travel restrictions since messages from wft18!
(through wft14!), and from wft12 (through wft15 and
wft16!) satisfy arb2, allowing a message to be sent as-
serting wft20 (through wft17!).

4 Concurrency
The structure of IGs lends itself naturally to concurrent in-
ference. Any number of nodes in the graph may process
messages simultaneously without fear of interfering with
any others. Only when a single node receives multiple mes-
sages must those messages be processed synchronously.
This synchronous processing is necessary because the mes-
sage caches are shared state. We need not concern ourselves
with the actual order in which the messages are processed,
since the operation is commutative, meaning there is no need
to maintain a queue of changes to the message cache.

In order to perform inference concurrently, the IG is di-
vided into inference segments (henceforth, segments). A seg-
ment represents the inference operation — from receipt of a
message to sending new ones — which occurs in a node.
Valves delimit segments, as seen in Figure 2. When a mes-
sage passes through a valve a new task is created — the ap-
plication of the segment’s inference function to the message.
When tasks are created they enter a global prioritized queue,

Proc. AAAI-15 6

where the priority of the task is the priority of the message.
Tasks are removed from the queue and executed as proces-
sors become available. When a task is executed, inference
is performed, and any newly generated messages are sent
toward its outgoing valves for the process to repeat.

wft1!
Filter Switch Valve

... ...
Valve

Inference Segment

Figure 2: A single inference segment.

The goal of any inference system is to infer the knowledge
requested by the user. If we arrange an IG so that a user’s re-
quest (in backward inference) is on the right, and channels
flow from left to right wherever possible (the graph may con-
tain cycles), we can see this goal as trying to get messages
from the left side of the graph to the right side of the graph.
We, of course, want to do this as quickly as possible.

Every inference operation begins processing inference
messages some number of levels to the left of the query
node. Since there are a limited number of tasks that can be
running at once due to hardware limitations, we must pri-
oritize their execution, remove tasks that we know are no
longer necessary, and prevent the creation of unnecessary
tasks. Therefore,

1. Tasks relaying newly derived information using segments
to the right are executed before those to the left.

2. Once a node is known to be true or false, all tasks still
attempting to derive it are canceled, as long as their results
are not needed elsewhere, and in all channels pointing to
it that may still derive it, valves are closed.

3. Once a rule fires, all tasks for potential antecedents of that
rule still attempting to satisfy it are canceled, as long as
their results are not needed elsewhere. Valves are closed
in channels from antecedents that may still satisfy it.
All cancel-infer messages have the highest pri-

ority. Then come i-infer and u-infer messages.
backward-infer messages have the lowest priority, de-
creasing at each step backward through the graph. As
i-infer and u-infer messages flow closer to the goal,
they get higher priority, but their priorities remain lower than
that of cancel-infer messages.

5 Evaluation
We have aimed to combine ND and subsumption reasoning
within a system which supports concurrency. We have not
implemented the fastest known algorithms for procedures
such as subsumption, due only to research agenda. For this
reason, the most interesting measure of the performance of
IGs is the concurrency characteristics.

We evaluated the performance of IGs in backward in-
ference, as it is the most resource intensive type of infer-
ence IGs can perform, and most fully utilizes the schedul-
ing heuristics. To do so we used graphs of chaining and-
entailments, meaning for each implication to derive its con-
sequent, all its antecedents had to be true. Each entailment

had bf antecedents, where bf is the branching factor, and
a single consequent. Each antecedent and consequent made
use of the same single arbitrary term, a , containing a single
restriction.7 Each consequent was the consequent of exactly
one rule, and each antecedent was the consequent of another
rule, up to a depth of d entailment rules. Exactly one conse-
quent, cq , was not the antecedent of another rule. A single
instance of each leaf node was asserted which made use of
an arbitrary which was subsumed by a . We tested the per-
formance of the system in backchaining on and deriving a
term subsumed by cq .

Since we backchained on a term subsumed by cq, this
meant terms subsumed by every rule consequent and an-
tecedent in the graph would have to be derived. This is the
worst case of entailment. The timings we observed are pre-
sented in Table 1.8 This experiment showed that speedup
grows linearly9 as more CPUs are involved in inference.

Table 1: Inference times using 1, 2, 4, and 8 CPUs for 100
iterations in an IG with bf = 2 and d = 7.

CPUs Inference Time (ms) Speedup
1 229551 1.00
2 123015 1.87
4 65783 3.49
8 36013 6.38

Experiments testing the effect of depth and branching fac-
tor showed no statistically significant effect. All results were
found to be very similar to those of (Schlegel 2014) which
tested ND reasoning alone.

6 Conclusion
IGs are the only inference mechanism which combine ND
and subsumption reasoning, and support concurrency. Infer-
ence is performed through a message passing architecture
built upon propositional graphs. IGs derive their ability to
perform both types of inference from a logic, LA, which
uses structured quantified terms. Evaluation of concurrency
characteristics on a combination ND and subsumption rea-
soning problem has shown linear speedup with the number
of processors.

7 Acknowledgements
This work has been supported by a Multidisciplinary
University Research Initiative (MURI) grant (Number
W911NF-09-1-0392) for “Unified Research on Network-
based Hard/Soft Information Fusion”, issued by the US
Army Research Office (ARO) under the program manage-
ment of Dr. John Lavery.

7Adjusting the number of arbitrary terms or restrictions used
has a very small impact, as calculation of instances is performed
only once per arbitrary, and the arbitrary or arbitraries need to be
shared by all nodes to perform meaningful inference.

8Tests were performed on a Dell Poweredge 1950 server with
dual quad-core Intel Xeon X5365 processors and 32GB RAM.
Each test was performed twice, with the second result being used.

9y = 0.764x+ 0.32, R2 = 0.9986

Proc. AAAI-15 7

References
Ali, S. S., and Shapiro, S. C. 1993. Natural language pro-
cessing using a propositional semantic network with struc-
tured variables. Minds and Machines 3(4):421–451.
Ali, S. S. 1994. A “Natural Logic” for Natural Language
Processing and Knowledge Representation. Ph.D. Disserta-
tion, Technical Report 94-01, Department of Computer Sci-
ence, State University of New York at Buffalo, Buffalo, NY.
Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2010. The Description Logic
Handbook: Theory, Implementation, and Applications. New
York, NY, USA: Cambridge University Press, 2nd edition.
Choi, J., and Shapiro, S. C. 1992. Efficient implementation
of non-standard connectives and quantifiers in deductive rea-
soning systems. In Proceedings of the Twenty-Fifth Hawaii
International Conference on System Sciences. Los Alamitos,
CA: IEEE Computer Society Press. 381–390.
Fine, K. 1983. A defence of arbitrary objects. In Pro-
ceedings of the Aristotelian Society, volume Supp. Vol. 58,
55–77.
Fine, K. 1985a. Natural deduction and arbitrary objects.
Journal of Philosophical Logic.
Fine, K. 1985b. Reasoning with Arbitrary Objects. New
York: Blackwell.
Frege, G. 1979. Posthumous writings. In Hermes, H.; Kam-
bartel, F.; Kaulbach, F.; Long, P.; White, R.; and Hargreaves,
R., eds., Posthumous Writings. Blackwell: Oxford.
Hoder, K., and Voronkov, A. 2009. Comparing unifica-
tion algorithms in first-order theorem proving. In Proceed-
ings of the 32nd annual German conference on Advances in
artificial intelligence, KI’09, 435–443. Berlin, Heidelberg:
Springer-Verlag.
ISO/IEC. 2007. Information technology — Common Logic
(CL): a framework for a family of logic-based languages,
ISO/IEC 24707:2007(E). ISO/IEC, Switzerland, First edi-
tion. available from http://standards.iso/ittf/
license.html.
Lenat, D. B., and Guha, R. V. 1990. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Reading, MA: Addison-Wesley.
McKay, D. P., and Shapiro, S. C. 1981. Using active con-
nection graphs for reasoning with recursive rules. In Pro-
ceedings of the Seventh International Joint Conference on
Artificial Intelligence, 368–374. Los Altos, CA: Morgan
Kaufmann.
Schlegel, D. R., and Shapiro, S. C. 2013. Inference graphs:
A roadmap. In Poster Collection of the Second Annual Con-
ference on Advances in Cognitive Systems, 217–234.
Schlegel, D. R., and Shapiro, S. C. 2014a. The ‘ah ha!’ mo-
ment : When possible, answering the currently unanswer-
able using focused reasoning. In Proceedings of the 36th
Annual Conference of the Cognitive Science Society. Austin,
TX: Cognitive Science Society. In Press.
Schlegel, D. R., and Shapiro, S. C. 2014b. Concurrent rea-
soning with inference graphs. In Croitoru, M.; Rudolph, S.;

Woltran, S.; and Gonzales, C., eds., Graph Structures for
Knowledge Representation and Reasoning, Lecture Notes in
Artificial Intelligence, volume 8323 of Lecture Notes in Arti-
ficial Intelligence. Switzerland: Springer International Pub-
lishing. 138–164.
Schlegel, D. R., and Shapiro, S. C. 2014c. Inference graphs:
A new kind of hybrid reasoning system. In Proceedings
of the Cognitive Computing for Augmented Human Intelli-
gence Workshop at AAAI-14 (CCAHI@AAAI-14).
Schlegel, D. R. 2014. Concurrent Inference Graphs. Ph.D.
Dissertation, State University of New York at Buffalo, De-
partment of Computer Science, Buffalo, NY, USA.
Shapiro, S. C., and Rapaport, W. J. 1992. The SNePS family.
Computers & Mathematics with Applications 23(2–5):243–
275.
Shapiro, S. C.; Martins, J. P.; and McKay, D. P. 1982. Bi-
directional inference. In Proceedings of the Fourth Annual
Conference of the Cognitive Science Society, 90–93. Ann
Arbor, MI: the Program in Cognitive Science of The Uni-
versity of Chicago and The University of Michigan.
Shapiro, S. C. 2004. A logic of arbitrary and indefinite ob-
jects. In Dubois, D.; Welty, C.; and Williams, M., eds., Prin-
ciples of Knowledge Representation and Reasoning: Pro-
ceedings of the Ninth International Conference (KR2004),
565–575. Menlo Park, CA: AAAI Press.
Shapiro, S. C. 2010. Set-oriented logical connectives: Syn-
tax and semantics. In Lin, F.; Sattler, U.; and Truszczynski,
M., eds., Proceedings of KR2010, 593–595. AAAI Press.
USC Information Sciences Institute. 2014. PowerLoom
knowledge representation and reasoning system. www.
isi.edu/isd/LOOM/PowerLoom.
Woods, W. A. 1991. Understanding subsumption and taxon-
omy: A framework for progress. In Sowa, J. F., ed., Princi-
ples of Semantic Networks. San Mateo, CA: Morgan Kauff-
man. 45–94.

