
Graph Structures for Knowledge Representation and Reasoning (GKR 2011)

Visually Interacting with a Knowledge Base
Using Frames, Logic, and Propositional Graphs

Daniel R. Schlegel and Stuart C. Shapiro
University at Buffalo

Buffalo, New York, USA
{drschleg | shapiro}@buffalo.edu

Abstract

The knowledge base of a knowledge representa-
tion and reasoning system can simultaneously be
thought of as being logic, frame, and graph-based.
We present a method for naturally extending this
three-fold view to methods for visual interaction
with the knowledge base in the context of SNePS 3
and its newly developed user interface. Assertions
to, and search of, the knowledge base are tasks well
suited to a frame or logical representation. Visu-
alization on the other hand is best done through
the use of propositional graphs. We show how
these interaction techniques, which are extensions
of the underlying knowledge base representation,
augment each other to allow knowledge engineers
to manipulate and view large knowledge bases.

1 Introduction
The knowledge base (KB) of a knowledge representation and
reasoning (KR) system can be conceived of as a set of logi-
cal expressions, as a set of frames, or as a graph. The choice
determines how the user interface presents the KB to the user
or knowledge engineer. The KB of the SNePS 3 KR system
[Shapiro, 2000] can be thought of as all three simultaneously,
and the recently developed SNePS 3 user interface makes use
of all three paradigms. In this paper, we focus on the pre-
sentation of a SNePS 3 KB as a graph, and on the way that
conceiving of it as a set of frames and logical expressions in-
fluences the visualization of the graph.

The SNePS 3 graphical user interface (GUI, Figure 1) high-
lights the visualization of a SNePS 3 KB as a propositional
graph. It allows the user to add to the KB using either the
logic or frame paradigm, and to select a part of the KB for
graphical display using frames in a relational database-esque
visual query by example (QBE) way. The user can also hide
or show specific instances of a relation through interactions
with the graph itself. Binary relations in the graph can be col-
lapsed to provide a less cluttered display without changing
the semantics of the graph. In this way, most of the interac-
tion with the knowledge base in terms of assertion and search
is carried out in a frame-based way, but visualization of the
result is largely graph-based.

Figure 1: The SNePS 3 GUI supports graph, logic, and frame
interactions.

In Section 2 we introduce SNePS 3, its three-fold knowl-
edge base representation, and the relationships between those
three views. We discuss frame-based interactions with the
knowledge base in Section 3 and collapsing binary relations
in the graph in Section 4. Finally the usefulness of the sys-
tem will be discussed along with a comparison with ontology
editing software in Section 5.

2 SNePS 3

2.1 Logical Expressions

A SNePS 3 KB may be thought of as a set of logical expres-
sions. For example, the first eight lines of Figure 2 show a
user using the logical interaction pane of the SNePS 3 GUI
to assert four atomic propositions, and the GUI echoing them
back, each labeled with an internal name of the form wfti!.
The choice of “wft” to begin the name will be explained
shortly. The “!” is appended to the name to indicate that
the proposition is asserted (considered to be True in the KB).
The syntax used for logical expressions is a version of CLIF
[ISO/IEC, 2007], and includes: not; if; the set-oriented
connectives and, or, nand, nor, xor, iff, andor, and
thresh [Shapiro, 2010]; and arbitrary and indefinite terms



Figure 2: A set of assertions in the text-based logical interface
to SNePS 3.

[Shapiro, 2004].1
To facilitate metaknowledge—knowledge about knowl-

edge [Shapiro et al., 2007], propositions are considered to be
first-class objects in the semantic domain, and all well-formed
SNePS logical expressions, including those that look like for-
mulas, are terms [Shapiro, 1993]. So what look like predi-
cates (for example, “Call”, “Isa”, “LocationOf”, and
“SourceOf” in Figure 2) are actually proposition-valued
functions. Even “logical connectives” are function symbols.
The internal names of SNePS 3 expressions start with “wft”
as a reminder that they are “well-formed terms.” This is il-
lustrated in the last assertion of Figure 2, which is intended
to represent the proposition that Ahmed is the source of the
proposition that the location of Ziyad is Ramadi. Taken to-
gether, the assertions of Figure 2 are intended to mean that
“Sufian, a person in Adhamiya, called Ziyad, a person who,
according to Ahmed, is in Ramadi, saying ‘My brother sends
greetings.’ ”

2.2 Frames
Before a function symbol can be used, it must be associated
with a caseframe. A caseframe has a semantic type t, spec-
ifies a slot si for each argument xi of the function, and is
associated with one or more function symbols. Isa is pre-
defined in SNePS 3 as associated with a caseframe whose
slots are member and class and whose semantic type is
Proposition. The slots in a caseframe are ordered as they
are upon its definition, corresponding to the order of the ar-
guments of the function it is meant to represent.

The user interface we have developed allows the graphical
definition of such a caseframe. Figure 3 shows the graphical
definition of the Isa caseframe. The user selects the slots
they are interested in and moves them to the right column.
The order they are in from top to bottom represents the or-
dering of the slots in the caseframe. This graphical view is
automatically converted to its appropriate representation in
the logical interface to SNePS 3 and displayed in the user in-
terface (see Figure 4). Also displayed in the user interface is
the current listing of defined caseframes, which in Figure 5
now includes the Isa caseframe.

A frame is an instance of a caseframe. That is, the term
F(x1, ..., xn) is represented by the frame of type t whose

1SNePS 3 examples shown in this paper will be limited to ground
atomic propositions.

Figure 3: The user interface for defining a caseframe, popu-
lated with the slots member and class for defining the Isa
caseframe.

Figure 4: The logical interface displaying the execution of the
input in Figure 3 in the logical language.

Figure 5: The list of defined caseframes, including the Isa
caseframe.

slots are s1, ..., sn filled by the representations of x1, ..., xn,
respectively. So wft2 is a frame whose member slot con-
tains the filler Sufian, and whose class slot contains the
filler Person. In this example, Call is associated with a
frame whose slots are Communicator, Addressee, and
Communication (eg. wft1), LocationOf is associated
with a frame whose slots are Resident and Location
(eg. wft3), and SourceOf is associated with a frame
whose slots are Source and Theme (eg. wft6).2

2The Call, LocationOf and SourceOf frames are based



Caseframes, motivated by Fillmore’s case theory [Fill-
more, 1968], are comparable to relational database schemas,
with slot names corresponding to attributes, and frames to
rows of a relational database table. There are several dif-
ferences, however: a SNePS frame slot may be filled with
another frame; and a SNePS frame slot may have multiple
fillers. Multiple fillers in a slot are interpreted conjunctively.
If one frame has two fillers in one slot and three in another,
the frame is semantically equivalent to six frames with only
one filler in each of the two slots.

2.3 Propositional Graphs
A SNePS 3 KB may be conceived of as a graph. Every
term, whether an individual constant, an arbitrary or indef-
inite term,3 or a functional term (whether or not denoting
a proposition), corresponds to a node in the graph. Slot
names label directed arcs that go from nodes corresponding
to frames (functional terms) to the nodes that correspond to
the fillers of that slot in that frame (arguments of the func-
tion). This is illustrated in Figure 6, which shows the same
KB created in Figure 2. Recall that an exclamation mark,
“!”, is appended to the wft names indicating those propo-
sitions that are asserted in the KB. For example, wft6! is
asserted to indicate that it is true that Ahmed was the source
of the information that Ziyad is in Ramadi, but wft5 is not
asserted indicating that Ahmed is not (yet?) believed. The
graph is rendered within the GUI by the JUNG (Java Univer-
sal Network/Graph) system [The JUNG Framework Devel-
opment Team, 2010].

Figure 6: A graphical view of the SNePS 3 KB created in Fig-
ure 2, meaning “Sufian, a person in Adhamiya, called Ziyad,
a person who, according to Ahmed, is in Ramadi, saying ‘My
brother sends greetings.’ ”

A SNePS 3 graph may also be considered a hypergraph
with labeled nodes and edges. The wft nodes correspond to
hyperedges, with the benefit, however, that they can have arcs
pointing into them (for example, wft5 of Figure 6). We be-
lieve that visualizing the graphs as in Figure 6 is clearer than

on the Contacting, Residence, and Source of getting frames of
FrameNet [Fillmore, 1976; Ruppenhofer et al., 2006], but simpli-
fied for this paper.

3Arbitrary and indefinite terms are not illustrated in this paper.

replacing the wft nodes with contours. However, a simplifi-
cation is discussed and illustrated in §4 below.

3 Frame-Based Interaction
The addition of new knowledge to the KB requires that all
slots of the desired caseframe are filled with the proper num-
ber of fillers, specified during the definition of the slots them-
selves. This number can vary between instances of a single
caseframe. This is difficult to enforce graphically; the case-
frame would have to be instantiated one piece at a time, lead-
ing to periods where the graph being edited would be syn-
tactically invalid and inconsistent with the KB that supports
it. Relaying in what ways the graph is incorrect and how the
issues should be resolved to the user is very difficult. Our so-
lution to this problem is for the user to add knowledge using
either the traditional logic based interface or a frame based
interface. As you can see in the logical interface as described
above, information is added to the KB using logical represen-
tations of frames, so the visual interface we have developed is
a conceptual extension of the logical language. In fact, when
assertions are added to the KB using the frame-based user in-
terface, they are converted to the logical language first and
displayed in the logical interface portion of the GUI.

The frame-based interface we have devised for assertions
can be seen in Figure 7. The user selects the caseframe which
they wish to add an instance of to the KB. This automati-
cally provides a frame based view of the slots which require
fillers. Conceptually frames are often seen as tables of slots
and fillers, and this is the metaphor we use here. As previ-
ously mentioned, the slots in a SNePS 3 caseframe may be
configured such that they may exist in the frame a variable
number of times. For example, a single instance of the case-
frame Isa can be used to say that both Toto and Fido are in-
stances of both Dog and Pet. In the interface the user may add
instances of slots to the frame which then must be assigned
values by the user. In using an interface such as this, the in-
puts required by the user become obvious and easily machine
verifiable. No changes to the graph, and hence KB, are made
until the change is guaranteed to result in a valid assertion to
the KB.

Queries can be performed on the KB and the results dis-
played in the graph using Query By Example [Zloof, 1975].
This is the same as the visual QBE interface designed for
database systems wherein the user is shown an empty row
for a table and can enter values into fields they are interested
in in order to filter results. This speaks to the general likeness
of a KB with a database system wherein frames are like rows
in a database table and the caseframe defines the table itself.4

Using our method, the knowledge engineer can display
only the parts of a graph matching certain parts of a rela-
tion. In Figure 8 the interface we use for the QBE process
is shown. The engineer first chooses the relation (caseframe)
they are interested in and chooses to provide fillers for none,
some, or all of the slots shown. All areas not completed in

4The analogy begins to break down when we consider two abili-
ties which differentiate a caseframe from a database table: the ability
to have a variable number of instances of a slot act as the fillers of a
frame, and the ability to fill a slot with an instance of another frame.



Figure 7: A frame-based interface for assertions to the KB.

the query interface will automatically be converted to vari-
ables {?w1, .., ?wn}. The system converts the text entered
into the logical language and queries the KB. The resulting
matches are displayed on the graph and all others are hidden.

In this example, the user is interested in only instances of
the Isa caseframe in which the slot for class has filler
Person. We will apply this frame-based query to the KB
containing the knowledge about the call Sufian made to Ziyad
discussed earlier. The system filters the graph, as seen in Fig-
ure 9, to contain only the graphical representations of Isa
frames in which the slot for class has the filler Person.

Figure 8: The QBE dialog box indicating a query for in-
stances of the Isa caseframe with the class Person.

In addition, the user may themselves use variables in their
query by prepending a question mark, “?”, to the vari-
able symbol, a feature useful for querying metaknowledge.
For example, a user may view the graph with all instances
of the SourceOf caseframe where the Source slot con-
tains Ahmed and the Theme slot contains (LocationOf
Ziyad ?x) to display all relations representing locations

Figure 9: The result of finding instances of the Isa case-
frame with the class Person in the calling example dis-
cussed earlier.

Ahmed has said Ziyad has been. At this time the user
must enter (LocationOf Ziyad ?x) into the filler of
the Theme slot manually, though it would be advantageous
to have an interface allowing for embedded queries.

The graph the user is interacting with may contain relations
not of interest, or perhaps not all the relations of interest. In
this case the user may show or hide the relations attached to
a node by right clicking a node and selecting the appropriate
option. They may choose to show or hide the remainder of
the relations with arrows either in to or out of the selected
node. This shows or hides entire frames from the graph view.
That is, it is never the case that a wft node with only some
of the arrows out of it will be visible. One place this has
particular use is once a QBE filter has been applied. Consider
the example shown in Figure 9. We can choose to show all of
the relations attached to the node Sufian if we are interested
in knowledge associated with him, resulting in Figure 10. In
this way the knowledge engineer can begin with a QBE-based
query and only expand nodes of interest.

Figure 10: An expansion of the graph shown in Figure 9
wherein relations attached to the node Sufian are shown.

This example is of course quite trivial given the size of the
graph being represented. In a much larger KB this becomes
extremely useful as a method to visualize specific portions
of a KB. The SNePS 3 user interface is currently being used



to visualize large propositional graphs for soft information
fusion [Prentice et al., 2010]. The graphs being visualized
are many thousands of nodes.

In order to see the usefulness of QBE on a larger scale,
we consider a knowledge base from this project containing
2,075 terms representing place names and various informa-
tion about the places from the NGA GEOnet Names Server
[National Geospatial-Intelligence Agency, 2011]. When
these terms are added to the knowledge base and visualized,
the graph shown in Figure 11 is produced. Large KBs are very
difficult to work with conceptually as there is a significant
burden on the knowledge engineer to understand the complex
structure. The purpose of visualizing a KB though, should be
to give the knowledge engineer an idea of the contents of the
KB while reducing this burden as much as possible. As you
can see, just visualizing the graphical version of the KB is
unhelpful - it’s impossible to pick out even a single relation.

Figure 11: A large network of places and knowledge about
them from the NGA GEOnet Names Server.

Very rarely is a knowledge engineer really interested in the
entire KB at one time though, and constraining the display
would be useful. Assume we are really only concerned with
places that are countries, and we’d like to see the nodes for all
of those. We can do this with a simple QBE-based query (by
filling Country in to the class slot of the Isa caseframe
in the user interface, and leaving the filler of the member
slot empty). The graph is then restricted to showing only the
relevant knowledge, as shown in Figure 12.

As you can see the resulting graph is much easier to under-
stand; an underlying structure is visible and a node of interest
is easier to pick out. The knowledge engineer could easily
find and expand a country node if she were interested in the
relations attached to it. You will notice though that the propo-
sitional graph contains many wft nodes which may not be
helpful to the user of the graph. Under some situations these
can be removed by redrawing, or collapsing the graph.

4 Collapsing the Graph
It is important to display the wft nodes in the graph either
if the function has more than two arguments, as is the case
for wft1 in our calling example, or if the term is, itself, an
argument of another function, as is the case for wft5. How-
ever, in the case of functional terms with just two slots that
are not fillers of other slots, such as wft2, wft3, wft4 and

Figure 12: The KB shown in Figure 11 filtered by QBE to
show only places which are countries.

wft6, the wft nodes just clutter the display. In this case, the
wft node with its two outgoing arcs can be converted into a
single arc labeled by the function symbol. This is referred to
as “collapsing” the graph. The resulting collapsed graph is
semantically equivalent to the uncollapsed version, it is only
an alternate representation of the knowledge in the KB. Fig-
ure 13 is a collapsed version the graph shown in Figure 6.

Figure 13: A collapsed version of the graph shown in Fig-
ure 6 in which binary relations are redrawn without their wft
nodes.

Because the graph representation is backed by frames with
ordered slots, the GUI can automatically determine which
parts of the graph can be collapsed, the direction of the new
arcs, and their labels. Any frame with only two slots can be
collapsed. The arc is drawn from the filler of the slot con-
taining the first argument of the function, to the filler of the
slot containing the second argument of the function, and the
label of the new arc is the function symbol associated with
the frame. The arrow head used on the new arcs is a different
style from that used on uncollapsed arcs as a visual reminder
to the user that it is a collapsed arc.

Notice that, in contrast to some other systems, for exam-



ple those assumed by [Bodenreider, 2002], not all SNePS 3
wft nodes can be collapsed in this way. This is due to the
increased expressibility of SNePS 3: the ability to represent
n-ary relations for n > 2, and the ability to express proposi-
tions about propositions.

We can apply this to the NGA GEOnet KB which we ap-
plied a QBE filter to earlier (and shown in Figure 12) to in-
crease the usability of that graph further. In collapsing this
graph, the binary relation Isa becomes only two nodes in-
stead of three as shown in Figure 14 and the graph is now
easier to view and manipulate.

Figure 14: A collapsed version of the graph shown in Fig-
ure 12 to show places which are countries with binary rela-
tions collapsed.

As you can see, this increases the usability of the graph
interface even beyond that of using QBE alone, allowing for
very quick visualization of important data from complex hier-
archies. These techniques together are more useful than auto-
matic clustering of entire sections of a graph or using a zoom-
ing function. Automatic clustering can change the semantics
of the graph and hide important knowledge and structural fea-
tures. Scaling a graph on the other hand does not change the
semantics, but it still hides relevant parts of the graph along
with irrelevant parts, complicating the work of the knowledge
engineer.

5 Evaluation
The user interface discussed here has been used for visualiz-
ing and interacting with graphs on the order of several thou-
sand nodes. The techniques are known to scale to this level,
and we are confident they will scale beyond it as work con-
tinues with increasingly larger knowledge bases. Any limita-
tions in scale we believe will be due to the JUNG visualiza-
tion system rather than the techniques discussed here. Unfor-
tunately we were unable to find user interfaces for generalized
KR systems suitable for comparison with the SNePS 3 user
interface. Instead, we will discuss the concepts developed
here in the context of ontology editors since they face many
of the same challenges discussed here. We looked at several

ontology editors [Stanford Center for Biomedical Informat-
ics Research, 2011; Harris, 2011; Revelytix, Inc., 2011] and
found that all of them provide the same basic functionality in
mostly similar ways, so we will discuss this in the context of
Protégé, which appears to be the most popular.

The increased expressivity of the SNePS 3 logic differ-
entiates this work from ontology editing tools. Ontologies
limit themselves to the use of binary relations to show the
relationships between classes and individuals. In Protégé, to
add a restriction between two classes, one needs only choose
the initial class, the restricted property (such as is-a or
part-of), and the restricted filter (the second argument in
the binary relation). The interface is very simple for this - the
user chooses from a tree of options. The frame-based inter-
face for adding an instance of a caseframe we use allows for
n-ary relations and adding instances of frames as the values
for slots, requiring a more complex interface. For purely bi-
nary relations the work done in the Protégé interface works
well, but it does not scale beyond that.

The methods of interaction with an ontology in Protégé are
somewhat similar to what we have discussed here. The ad-
dition of classes and instances to an ontology occurs outside
of any graph interface, and the graphs are used for visualiza-
tion purposes only. The ontology editors surveyed also have
basic reasoning abilities and the ability to present a query to
the reasoner. Querying a graph by performing reasoning is
something which we wish to incorporate into a future ver-
sion of the SNePS 3 interface. Currently QBE only filters the
graph itself (that is, the current contents of the KB). It would
be useful for the system to, at least optionally, perform in-
ference at query time. When doing this, we will want QBE
to become more expressive as well - allowing, minimally, for
conjunctive queries. As discussed earlier, we also would like
a graphical interface for filling a slot with another frame.

The visualization requirements of a KR system and an on-
tology viewer are somewhat different. Ontologies always
have a defined root and lend themselves to a hierarchical tree-
like view, while this is not always the case in a propositional
graph. This characteristic leads to ontology editors which
show a definable number of levels of the graph in detail, along
with some number of nodes along the path to the root (as
in Protégé’s OWLViz viewer). The graphs are also always
shown with a view akin to what we call the “Collapsed View”
in the SNePS 3 interface, as there are only binary relations
to be shown. These features in combination allow ontologies
which are very large (containing millions of concepts) to be
viewed easily.

SNePS 3 and its user interface can be (and have been [Pren-
tice and Shapiro, 2011]) used for interaction with ontology
structures, providing for the most part a superset of the visu-
alization and interaction features provided by ontology edi-
tors.

6 Conclusions
The nature of SNePS 3 KBs being conceived of as simulta-
neously graph, frame, and logic-based extends naturally into
the interactions one may do graphically with such KBs. Users
are able to add knowledge to the KB and visualize it in a



user friendly way. The combination of frame and graph based
techniques in QBE and binary relation collapsing respectively
has resulted in a highly usable method for interacting with
KBs. It is now possible to view, modify, and understand a
large KB without the need to sift through complex text out-
puts or graphs which are too large to be viewed easily. We
believe the techniques given here are ideal for visualizing and
interacting with the data associated with a KR system.

7 Acknowledgments
We would like to thank the SNePS Implementation Group
for their consistent feedback on the user interface. This work
has been supported in part by a Multidisciplinary University
Research Initiative (MURI) grant (Number W911NF-09-1-
0392) for ”Unified Research on Network-based Hard/Soft In-
formation Fusion”, issued by the US Army Research Office
(ARO) under the program management of Dr. John Lavery.

References
[Bodenreider, 2002] Olivier Bodenreider. Experiences in

visualizing and navigating biomedical ontologies and
knowledge bases. In Proceedings of the ISMB’2002 SIG
meeting: Bio-ontologies, pages 29–32, 2002.

[Fillmore, 1968] Charles J. Fillmore. The case for case. In
E. Bach and R. T. Harms, editors, Universals in Linguis-
tic Theory, pages 1–88. Holt, Rinehart and Winston, New
York, 1968.

[Fillmore, 1976] Charles J. Fillmore. Frame semantics and
the nature of language. In In Annals of the New York
Academy of Sciences: Conference on the Origin and De-
velopment of Language and Speech, volume 280, pages
20–32, 1976.

[Harris, 2011] Nomi Harris. OBO-Edit. http://oboedit.org/,
2011.

[ISO/IEC, 2007] ISO/IEC. Information technology — Com-
mon Logic (CL): a framework for a family of logic-based
languages, ISO/IEC 24707:2007(E). ISO/IEC, Switzer-
land, First edition, October 2007. available from http:
//standards.iso/ittf/license.html.

[National Geospatial-Intelligence Agency, 2011] National
Geospatial-Intelligence Agency. NGA GEOnet names
server (GNS). http://earth-info.nga.mil/gns/html/, 2011.

[Prentice and Shapiro, 2011] Michael Prentice and Stuart C.
Shapiro. Using propositional graphs for soft information
fusion. In Proceedings of the 14th International Confer-
ence on Information Fusion, 2011.

[Prentice et al., 2010] Michael Prentice, Michael Kandefer,
and Stuart C. Shapiro. Tractor: A framework for soft in-
formation fusion. In Proceedings of the 13th International
Conference on Information Fusion, 2010.

[Revelytix, Inc., 2011] Revelytix, Inc. Knoodl.
http://www.knoodl.com/, 2011.

[Ruppenhofer et al., 2006] J. Ruppenhofer, M. Ellsworth,
M. R. L. Petruck, C. R. Johnson, and J. Scheczyk.

FrameNet II: Extended theory and practice. Unpublished
manuscript, 2006.

[Shapiro et al., 2007] Stuart C. Shapiro, William J. Rapa-
port, Michael Kandefer, Frances L. Johnson, and Albert
Goldfain. Metacognition in SNePS. AI Magazine, 28:17–
31, Spring 2007.

[Shapiro, 1993] Stuart C. Shapiro. Belief spaces as sets of
propositions. Journal of Experimental and Theoretical
Artificial Intelligence (JETAI), 5(2&3):225–235, April–
September 1993.

[Shapiro, 2000] Stuart C. Shapiro. An introduction to SNePS
3. In Bernhard Ganter and Guy W. Mineau, editors, Con-
ceptual Structures: Logical, Linguistic, and Computa-
tional Issues, Lecture Notes in Artificial Intelligence 1867,
pages 510–524. Springer-Verlag, Berlin, 2000.

[Shapiro, 2004] Stuart C. Shapiro. A logic of arbitrary
and indefinite objects. In D. Dubois, C. Welty, and
M. Williams, editors, Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Ninth Interna-
tional Conference (KR2004), pages 565–575, Menlo Park,
CA, 2004. AAAI Press.

[Shapiro, 2010] Stuart C. Shapiro. Set-oriented logical con-
nectives: Syntax and semantics. In Fangzhen Lin, Ulrike
Sattler, and Miroslaw Truszczynski, editors, Proceedings
of the Twelfth International Conference on the Principles
of Knowledge Representation and Reasoning (KR2010),
pages 593–595, Menlo Park, CA, 2010. AAAI Press.

[Stanford Center for Biomedical Informatics Research, 2011]
Stanford Center for Biomedical Informatics Research.
The Protégé ontology editor and knowledge acquisition
system. http://protege.stanford.edu/, 2011.

[The JUNG Framework Development Team, 2010]
The JUNG Framework Development Team.
JUNG - Java universal network/graph framework.
http://jung.sourceforge.net/, 2010.

[Zloof, 1975] Mosh M. Zloof. Query by example. AFIPS,
44, 1975.


