
Visually Interacting with a Knowledge Base
Using Frames, Logic, and Propositional Graphs

Daniel R. Schlegel and Stuart C. Shapiro

Department of Computer Science and Engineering
and Center for Cognitive Science

and Center for Multisource Information Fusion
University at Buffalo, The State University of New York, Buffalo NY 14260, USA

{drschleg,shapiro}@buffalo.edu

Abstract. The knowledge base of a knowledge representation and reasoning sys-
tem can simultaneously be thought of as being logic-, frame-, and graph-based.
We present a method for naturally extending this three-fold view to methods for
visual interaction with the knowledge base in the context of SNePS 3 and its
newly developed user interface. Addition to, and querying of, the knowledge base
are tasks well suited to a frame or logical representation. Visualization and explo-
ration on the other hand are best done through the use of propositional graphs. We
show how these interaction techniques, which are extensions of the underlying
knowledge base representation, augment each other to allow users to manipulate
and view large knowledge bases.

1 Introduction

The knowledge base (KB) of a knowledge representation and reasoning (KR) system
can be conceived of simultaneously as a set of logical expressions, as a set of frames,
and as a graph. This allows the user interface for the system to present and allow inter-
action with the KB in any of these three different ways. The KB of the SNePS 3 KR
system [17] is no exception, and the recently developed SNePS 3 user interface makes
use of all three paradigms to provide the user with what we think are the most helpful
ways to graphically interact with the KB. In this paper, we focus on the presentation of
a SNePS 3 KB as a graph, and on the way that conceiving of it as a set of frames and
logical expressions influences the visualization of the graph.

The SNePS 3 graphical user interface (GUI), shown in Fig. 1, highlights the visual-
ization of a SNePS 3 KB as a propositional graph. It allows the user to add to the KB
using either the logic or frame paradigm, and to query and select a part of the KB for
graphical display using frames in a relational database-esque visual query by example
(QBE) way. The user can also explore the KB by expanding or hiding specific parts
of the graph that are currently visible. Binary relations in the graph can be collapsed
to provide a less cluttered display without changing the semantics of the graph. In this
way, most of the interaction with the knowledge base in terms of asserting and querying
is carried out in a frame-based way, but visualization of the result is largely graph-based.

In Sect. 2 we introduce SNePS 3, its three-fold knowledge base representation, and
the relationships between those three views. We discuss frame-based and graph-based

M. Croitoru et al. (Eds.): GKR 2011, LNAI 7205, pp. 188–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Visually Interacting with a Knowledge Base 189

Frames

Logical Interaction

Graph View

Fig. 1. The SNePS 3 GUI supports graph-, logic-, and frame-based interactions

interactions with the knowledge base in Sects. 3 and 4, respectively. Section 5 discusses
the issues surrounding large KBs, and Sect. 6 introduces the concept of collapsing bi-
nary relations in the graph. Finally the usefulness of the system will be considered along
with a comparison with ontology editing software in Sect. 7.

SNePS 3 is implemented in Common Lisp. The GUI is implemented in Java. The
Lisp-Java interface is implemented using jLinker [5].

2 SNePS 3

2.1 Logical Expressions

A SNePS 3 KB may be thought of as a set of logical expressions. For example, the first
eight lines of Fig. 2 show a user using the logical interaction pane of the SNePS 3 GUI
to assert four atomic propositions, and the GUI echoing them back, each labeled with
an internal name of the form wfti!. The choice of “wft” to begin the name will be
explained shortly. The “!” is appended to the name to indicate that the proposition is
asserted (considered to be True in the KB). The syntax used for logical expressions is
a version of CLIF [8], and includes: not; if; the set-oriented connectives and, or,
nand, nor, xor, iff, andor, and thresh [19]; and arbitrary and indefinite terms
[18].1

To facilitate metaknowledge—knowledge about knowledge [20], propositions are
considered to be first-class objects in the semantic domain, and all well-formed SNePS

1 SNePS 3 examples shown in this paper will be limited to ground atomic propositions.



190 D.R. Schlegel and S.C. Shapiro

Fig. 2. A set of assertions in the text-based logical interface to SNePS 3

logical expressions, including those that look like formulas, are terms [16]. So what look
like predicates (for example, “Call”, “Isa”, “LocationOf”, and “SourceOf” in
Fig. 2) are actually proposition-valued functions. Even “logical connectives” are func-
tion symbols. The internal names of SNePS 3 expressions start with “wft” as a re-
minder that they are “well-formed terms.” This is illustrated in the last assertion of
Fig. 2, which is intended to represent the proposition that Ahmed is the source of the
proposition that the location of Ziyad is Ramadi. Taken together, the assertions of Fig. 2
are intended to mean that “Sufian, a person in Adhamiya, called Ziyad, a person who,
according to Ahmed, is in Ramadi, saying ‘My brother sends greetings.’ ”

2.2 Frames

Before a function symbol can be used, it must be associated with a caseframe. A case-
frame has a name, specifies a semantic type and slot for each argument of the function,
and is associated with one or more function symbols. If the caseframe is associated with
a single function symbol, that function symbol is used as the name of the caseframe.
The case of a caseframe associated with multiple function symbols is discussed below.
The function symbol Isa is predefined in SNePS 3 as associated with a caseframe
whose slots are member and class and whose semantic type is Proposition. The
slots in a caseframe are ordered to correspond with the order of the arguments of the
function it is meant to represent.

The user interface allows for the definition of such a caseframe. Figure 3, for ex-
ample, shows the Call caseframe being defined. The user selects the slots they are
interested in and moves them to the right column. The order they are in from top to
bottom represents the order of the slots in the caseframe. This defnition is automati-
cally converted to its appropriate representation in the logical interface to SNePS 3 and
displayed in the user interface (see Fig. 4). A port of SNePS 3 to the Clojure [7] pro-
gramming language is in progress, and will allow the user interface to interact with the
underlying data structures of SNePS without this extra translation step. Also displayed
in the user interface is the current listing of defined caseframes, which in Fig. 5 now
includes the Call caseframe.

Additional slots may be defined by the user. A slot definition includes a name, the
minimum and maximum number of terms that may fill the slot, and the semantic type



Visually Interacting with a Knowledge Base 191

Fig. 3. The user interface for defining the Call caseframe of type Proposition, populated
with the slots Communicator, Addressee and Communication

Fig. 4. The logical interface displaying the execution of the input in Fig. 3 in the logical language

Fig. 5. The list of defined caseframes, including the Call caseframe



192 D.R. Schlegel and S.C. Shapiro

of the fillers. However, explaining the details of slot definitions would go beyond the
scope of this paper.

A frame is an instance of a caseframe. That is, the term (F x1 ... xn) is repre-
sented by an instance of the caseframe whose name is F, whose semantic type is the
type specified when defining F, and whose slots, s1, ..., sn are filled by the represen-
tations of x1, ..., xn, respectively. So wft2 is a frame whose member slot contains
the filler Sufian, and whose class slot contains the filler Person. In this exam-
ple, Call is associated with a frame whose slots are Communicator, Addressee,
and Communication (eg. wft1), LocationOf is associated with a frame whose
slots are Resident and Location (eg. wft3), and SourceOf is associated with a
frame whose slots are Source and Theme (eg. wft6).2

Caseframes, motivated by Fillmore’s case theory [3], are comparable to relational
database schemas, with slot names corresponding to attributes, and frames to rows of
a relational database table. There are several differences, however: a SNePS frame slot
may be filled with another frame; and a SNePS frame slot may have multiple fillers.
Multiple fillers of a slot are considered to form a set (neither order nor multiplicity are
significant), and are interpreted conjunctively. If one frame has two fillers in one slot
and three in another, the frame is semantically equivalent to six frames with only one
filler in each of the two slots.3

So far, we have discussed caseframes that are each associated with a single function
symbol. However, there are times when using a different caseframe for each function
symbol seems overly profligate. It is important to be able to derive a unique function
symbol for each frame, both to create the logical expression corresponding to the frame,
and to create a collapsed version, as discussed in Sect. 6. Therefore, to use a single
caseframe for a set of related function symbols, we store the correct function symbol in
one of the slots of each frame instance of the caseframe.

For example, consider a small KB containing the dependency parse (see [9]) for a
single sentence. In a dependency parse, each clause and phrase is represented as a head
word with various dependency relations to the other words and phrases in it. Thus, a
dependency parse is a set of relationships of the sort Dependency relation drel holds
between head word head and dependent word dep. Each of these can be represented
as an instance of the caseframe with the slots drel, head, and dep, but we could
write it as a logical expression using the filler of the drel slot as the function symbol,
the filler of the head slot as the first argument, and the filler of the dep slot as the
second argument.

To define such a caseframe, the user opens the pull-down menu under the “Name”
button of the caseframe-definition dialog box, and selects “Function Symbols”, as shown
in Fig. 6. In this case, dependency relations used by the Stanford Typed Dependency
Parser [10] have been typed into the “Function Symbols” box, specifically amod, aux,
ccomp, complm, det, expl, nn, nsubj, pobj, and prep, and the slots drel,
head, and dep have been specified, in that order. This indicates that the dependency

2 The Call, LocationOf and SourceOf frames are based on the Contacting, Residence,
and Source of getting frames of FrameNet [4,15], but simplified for this paper.

3 This actually depends on the definitions of the slots, but is the default situation, and the only
one we will consider in this paper.



Visually Interacting with a Knowledge Base 193

Fig. 6. Defining a caseframe which has multiple function symbols

relation whose logical expression is (nsubj called Sufian) (there is a clause
whose main verb is “called” and whose subject is “Sufian”) is to be represented by
a frame whose drel slot contains nsubj, whose head slot contains called, and
whose dep slot contains Sufian.

The name of the first slot, the one holding the function symbol, is used as the name
of a caseframe that is associated with multiple function symbols. In the example shown
in Fig. 6, the name of the caseframe being defined will be drel.

2.3 Propositional Graphs

A SNePS 3 KB may be conceived of as a graph. Every term, whether an individual
constant, an arbitrary or indefinite term,4 or a functional term (whether or not denoting
a proposition), corresponds to a node in the graph. Slot names label directed arcs that
go from nodes corresponding to frames (functional terms) to the nodes that correspond
to the fillers of that slot in that frame (arguments of the function). This is illustrated in
Fig. 7, which shows the same KB created in Fig. 2. Recall that an exclamation mark,
“!”, is appended to the wft names indicating those propositions that are asserted in the
KB. For example, wft6 is asserted to indicate that it is true that Ahmed was the source
of the information that Ziyad is in Ramadi, but wft5 is not asserted, indicating that
Ahmed’s information is not (yet?) believed. The graph is rendered within the GUI by
the JUNG (Java Universal Network/Graph) system [22]. When the user rolls the cursor
over a node, it’s wft name and the logical expression corresponding to it are shown in
the status line, as illustrated in Fig. 7.

4 Arbitrary and indefinite terms are not illustrated in this paper.



194 D.R. Schlegel and S.C. Shapiro

Fig. 7. A graphical view of the SNePS 3 KB created in Fig. 2, meaning “Sufian, a person in
Adhamiya, called Ziyad, a person who, according to Ahmed, is in Ramadi, saying ‘My brother
sends greetings.’ ” The cursor is on the node labeled wft6!, so the wft name and the logical
expression corresponding to this node are shown in the status line.

Frames associated with multiple function symbols are converted to propositional
graphs using the same rules as frames associated with single function symbols, only the
function symbol itself is now a slot filler, and so appears as a node in the graph. For
example, Fig. 8 shows the dependency relations in the sentence There is a large protest
at the courthouse using the same dependency relations shown as function symbols in
Fig. 6. In the graph each frame is represented as a wft node with three arcs labeled
drel, head, and dep going to the three slot fillers.5

A SNePS 3 graph may also be considered a hypergraph with labeled nodes and edges.
The wft nodes correspond to hyperedges, with the benefit, however, that they can have
arcs pointing into them (for example, wft5 of Fig. 7). We believe that visualizing
the graphs as in Figs. 7 and 8 is clearer than replacing the wft nodes with contours.
However, a simplification is discussed and illustrated in Sect. 6 below.

3 Frame-Based Interaction

The addition of new knowledge to the KB requires that all slots of the desired caseframe
are filled with the proper number of fillers, specified during the definition of the slots
themselves. This number can vary between instances of a single caseframe. This would
be difficult to enforce if new knowledge were added by drawing in the Graph View

5 We actually use word tokens, with relationships to their word types, to accommodate sentences
with multiple occurrences of word types.



Visually Interacting with a Knowledge Base 195

c

Fig. 8. The propositional graph for the dependency tree of “There is a large protest at the court-
house”

pane; the caseframe would have to be drawn one piece at a time, leading to periods
where the graph being edited would be syntactically invalid and inconsistent with the
KB that supports it. Keeping the user informed as to the ways the graph is incorrect
and how the issues should be resolved is difficult. Our solution to this problem is for the
user to add knowledge using either a frame-based interface or the traditional logic-based
interface. In the logical interface discussed in Sect. 2.1, information is added to the KB
using logical representations of frames. In fact, when terms are asserted or defined in
the KB using the frame-based user interface, they are converted to the logical language
first and displayed in the logical interface portion of the GUI.

The frame-based interface is illustrated in Fig. 9. Users select the caseframe which
they wish to add an instance of to the KB. This automatically provides a frame-based
view of the slots which require fillers. Conceptually, frames are often seen as tables of
slots and fillers, and this is the metaphor we use here. As previously mentioned, the
slots in a SNePS 3 frame may be filled by more than one term. For example, a single
instance of the Isa caseframe can be used to say that both Toto and Fido are instances
of both Dog and Pet. The interface shows this by showing multiple slot-filler rows with
the same slot name. If users want to add additional fillers to a slot, they select the slot,
add it, and type in the additional filler. The user also specifies whether the new frame is



196 D.R. Schlegel and S.C. Shapiro

Fig. 9. A frame-based interface for assertions to the KB, showing multiple fillers for each of two
slots

to be asserted, and, if so, whether to perform forward inference on it. The user may also
specify a “wrapper” for the term definition, which is used for defining arbitraries and
indefinities, not discussed here. In using an interface such as this, the inputs required by
the user become obvious and easily machine verifiable. No changes to the graph, and
hence KB, are made until the change is guaranteed to result in a valid assertion to the
KB.

Queries can be performed on the KB and the results displayed in the graph using
Query By Example [23]. This is the same as the visual QBE interface designed for
database systems wherein the user is shown an empty row for a table and can enter
values into fields they are interested in in order to formulate a query. This speaks to the
general similarity of a KB with a database system wherein frames are like rows in a
database table and the caseframe defines the table itself.6

Using the QBE interface, as shown in Fig. 10, users first choose the caseframe they
are interested in, and enter fillers for none, some, or all of the slots shown. All slots not
filled will be converted to variables {?w1, .., ?wn}. The system converts the text entered
into the logical language and queries the KB. The resulting matches are displayed in the
graph. If previously the entire KB was displayed in the Graph View pane this is treated
as a filter, and the rest of the KB is hidden. Otherwise, the results are added to the Graph
View pane.

6 The analogy begins to break down when we consider two abilities which differentiate a case-
frame from a database table: the ability to have multiple fillers of a slot, and the ability to fill a
slot with an instance of another frame.



Visually Interacting with a Knowledge Base 197

Fig. 10. The QBE dialog box indicating a query for instances of the Isa caseframe with the class
Person

In this example, the user is interested in instances of the Isa caseframe in which
the class slot has the filler Person. We will apply this frame-based query to the KB
containing the knowledge about the call Sufian made to Ziyad discussed earlier. Since
the entire graph was shown before the query, it’s assumed the user means to show only
the results of the query. The system queries the KB for matches to the query and displays
only those on the graph, as seen in Fig. 11. Inference is not performed in querying the
KB unless the appropriate check box is ticked. This graph contains only the graphical
representations of Isa frames in which the slot for class has the filler Person. We
could now continue querying in this way to add relations to the graph until we have
what is useful to us. It’s also possible to add a single node (or list of nodes) to the graph
rather than a relation using the interface shown in Fig. 12. The user interface enforces
the notion that the graph visible to the user should be syntactically valid at all times,
and will display a wft node only with all edges out of it visible.

Users may explicitly use variables in their query by pre-pending a question mark,
“?”, to the variable symbol, a feature useful for querying metaknowledge. For example,
a user may view the graph with all instances of the SourceOf caseframe where the
Source slot contains Ahmed and the Theme slot contains (LocationOf Ziyad
?x) to display all relations representing locations Ahmed has said Ziyad has been. The
user can enter this portion of the query either manually by typing it in to the appropriate
filler cell in the table, or by double clicking the cell to display a dialog for specifying
the nested term, as shown in Fig. 13.



198 D.R. Schlegel and S.C. Shapiro

Fig. 11. The result of finding instances of the Isa caseframe with the class Person in the calling
KB shown in Fig. 7

Fig. 12. An interface to display a single node or list of nodes in the graph

4 Graph-Based Interaction

At any time, the Graph View pane may be showing: the entire KB graph, after the
user clicked on “Show All”; nothing, after the user clicked on “Hide All”; selected
sub-graphs, after using the QBE interface; or even isolated base nodes (nodes with
out-degree 0), after using the “Node” tab of the QBE dialog box. The one constraint,
however, is that whenever a wft node is displayed, so are all its outgoing arcs and the
nodes they go to, because otherwise, the displayed graph would not be syntactically
correct.

When some nodes are shown in the Graph View pane, the user may explore the KB
graphically by right-clicking on a node. A context-sensitive popup menu then appears
as shown in the left-most part of Fig. 16 with the following choices, but only those that
are relevant.

Show All In Edges (n edges). All the in edges are shown, along with the wft nodes
they come from, their out edges, etc. n is the number of in edges that exist in the
KB, but are not currently shown.

Show In Edges By Relation A dialog box appears which lists all the caseframes of
frames this node is currently a filler in, but which are not currently shown. The user
can select any number of caseframes, and the corresponding wft nodes are shown.

Hide All In Edges (n edges). All the in edges are hidden, along with the wft nodes
they come from, their out edges, their in edges, etc. n is the number of in edges
currently shown.



Visually Interacting with a Knowledge Base 199

Fig. 13. The user interface to fill a slot with a frame. The user has double clicked in the Filler
field of the Theme slot.

Hide In Edges By Relation. A dialog box appears which lists all the caseframes of
frames this node is currently a filler in, and which are currently shown. The user
can select any number of caseframes, and the correspondingwft nodes are hidden.

Hide Node. The node is hidden, along with all its out edges, all its in edges, the wft
nodes the in edges come from, etc.

Consider the example shown in Fig. 11. If we were interested in all the knowledge
about Sufian, we could right-click on the node Sufian, select “Show All In Edges”,
and obtain the graph in Fig. 14. If we were only interested in some of the knowledge
attached to Sufian we could look at the status bar when mousing over the Sufian
node to notice that it is an argument in the Call, LocationOf, and Isa relations,
as shown in Fig. 15. If we were only interested in knowledge attached to Sufian in
Call relations we could then use the process shown in Fig. 16. In this way the user can
begin with a QBE-based query and only expand nodes of interest.



200 D.R. Schlegel and S.C. Shapiro

Fig. 14. An expansion of the graph shown in Fig. 11 showing all the relations attached to the node
Sufian

Fig. 15. When the cursor is positioned over a node, the status bar shows the relations (caseframes)
the node is an argument (a filler) in. In this case it shows that Sufian is an argument in the Call,
Isa, and LocationOf relations.



Visually Interacting with a Knowledge Base 201

Fig. 16. The process to expand only the Call relation attached to Sufian in the graph shown in
Fig. 15. The user right-clicks on the Sufian node, selects “Show In Edges By Relation”, selects
“Call”, and clicks “OK” to get the graph shown on the right.

This example is of course quite trivial given the size of the graph in Fig. 7. In a much
larger KB this becomes extremely useful as a method to visualize specific portions of a
KB.

5 Use for a Large Knowledge Base

In order to see the usefulness of QBE on a larger scale, we consider a knowledge base
from a current project on soft information fusion [12,13] containing 2,075 terms con-
sisting of place names and various pieces of information about each place from the
NGA GEOnet Names Server [11]. When these terms are added to the knowledge base
and visualized, the graph shown in Fig. 17 is produced. Large KBs are very difficult to
work with conceptually as there is a significant burden on the user to understand the
complex structure. The purpose of visualizing a KB should be to give the user a way
to see the parts of the KB which are interesting to them, while reducing this burden as
much as possible. As you can see, visualizing an unmodified graphical version of the
entire KB is unhelpful - it’s impossible to pick out even a single relation.

Very rarely is a user or knowledge engineer really interested in the entire KB at one
time, so constraining the display would be useful. Assume we are really only concerned
with places that are countries, and we’d like to see the nodes for all of those. We can
do this with a simple QBE frame-based query (by selecting the Isa caseframe, enter-
ing Country in the Filler field of the class slot, and leaving the Filler field of the
member slot empty). The graph is then restricted to showing only the relevant knowl-
edge, as shown in Fig. 18.

As you can see the resulting graph is much easier to understand; an underlying struc-
ture is visible and a node of interest is easier to pick out. The user could easily find and
expand a country node if she were interested in the relations attached to it. One poten-
tial problem with this view is that the propositional graph contains many wft nodes
which may not be helpful to the user of the graph. Under some situations these can be
removed by redrawing, or collapsing the graph.

6 Collapsing the Graph

It is important to display the wft nodes in the graph either if the function has more than
two arguments, as is the case for wft1 in Fig. 7, or if the term is, itself, an argument of



202 D.R. Schlegel and S.C. Shapiro

Fig. 17. A large network of places and knowledge about them from the NGA GEOnet Names
Server

Fig. 18. The KB shown in Fig. 17 filtered by QBE to show only places that are countries



Visually Interacting with a Knowledge Base 203

Fig. 19. A collapsed version of the graph shown in Fig. 7 in which binary relations are redrawn
without their wft nodes

another function, as is the case for wft5. However, in the case of functional terms that
have just two slots and that are not fillers of other slots, such as wft2, wft3, wft4 and
wft6, the wft nodes just clutter the display. In this case, the wft node with its two
outgoing arcs can be converted into a single arc labeled by the function symbol. This
is referred to as “collapsing” the graph. The resulting collapsed graph is semantically
equivalent to the uncollapsed version, it is only an alternate way of visualizing the
knowledge in the KB. Figure 19 is a collapsed version the graph shown in Fig. 7.7

Because the graph representation is backed by frames with ordered slots, the GUI
can automatically determine which parts of the graph can be collapsed, the direction
of the new arcs, and their labels. Any frame with only two slots and only one filler
per slot can be collapsed. The arc is drawn from the filler of the first slot to the filler
of the second slot, and the label of the new arc is the function symbol associated with
the frame (the frame’s name). If the new collapsed arc replaces a wft node which is
asserted, the function symbol has an exclamation point, “!”, appended to it. The arrow
head used on the collapsed arcs is a different style from that used on uncollapsed arcs
as a visual reminder to the user that it is a collapsed arc.

In the case of a caseframe associated with more than one function symbol, if there
are three slots, and only one filler in each, then the collapsed arc is drawn from the filler
of the second slot to the filler of the third slot, and labeled with the filler of the first
slot, the frame’s name. Figure 20 shows the collapsed version of the dependency graph
shown in Fig. 8.

Notice that, in contrast to some other systems, for example those assumed by [1],
not all SNePS 3 wft nodes can be collapsed in this way. This is due to the increased
expressibility of SNePS 3: the ability to represent n-ary relations for n > 2, and the
ability to express propositions about propositions (and about other functional terms).

We can apply this to the NGA GEOnet KB to which we applied a QBE filter earlier
(shown in Fig. 18) to increase the usability of that graph further. In collapsing this graph,

7 An inspiration for collapsing the graph in this way was NETL’s handle nodes [2].



204 D.R. Schlegel and S.C. Shapiro

c

Fig. 20. The collapsed version of the graph shown in Fig. 8

the binary relation Isa is visualized by only two nodes instead of three as shown in Fig.
21 and the graph is now easier to view and manipulate.

As you can see, this increases the usability of the graph interface even beyond that of
using QBE alone, allowing for very quick visualization of important data from complex
hierarchies. These techniques together are more useful than automatic clustering of en-
tire sections of a graph or using a zooming function. Automatic clustering can change
the semantics of the graph and hide important knowledge and structural features. Scal-
ing a graph on the other hand does not change the semantics, but it still hides relevant
parts of the graph along with irrelevant parts, degrading the users experience.

7 Evaluation

The user interface discussed here has been used for visualizing and interacting with
graphs on the order of several thousand nodes. The techniques are known to scale to this
level, and we are confident they will scale beyond it as work continues with increasingly
larger knowledge bases. Any limitations in scale we believe will be due to the JUNG
visualization system rather than the techniques discussed here. Unfortunately we were
unable to find user interfaces for generalized KR systems suitable for comparison with
the SNePS 3 user interface. Instead, we will discuss the concepts developed here in the
context of ontology editors since they face many of the same challenges discussed here.
We looked at several ontology editors [6,14,21] and found that all of them provide the
same basic functionality in mostly similar ways, so we will discuss this in the context
of Protégé, which appears to be the most popular.

The increased expressivity of the SNePS 3 logic differentiates this work from on-
tology editing tools. Ontologies limit themselves to the use of binary relations to show



Visually Interacting with a Knowledge Base 205

Fig. 21. A collapsed version of the graph shown in Fig. 18 to show places which are countries
with binary relations collapsed

the relationships between classes and individuals. In Protégé, to add a restriction be-
tween two classes, one needs only choose the initial class, the restricted property (such
as is-a or part-of), and the restricted filter (the second argument in the binary re-
lation). The interface is very simple for this—the user chooses from a tree of options.
The frame-based interface for adding an instance of a caseframe we use allows for n-
ary relations and adding instances of frames as the values for slots, requiring a more
complex interface. For purely binary relations the work done in the Protégé interface
works well, but it does not scale beyond that.

The methods of interaction with an ontology in Protégé are somewhat similar to what
we have discussed here. The addition of classes and instances to an ontology occurs
outside of any graph interface, and the graphs are used for visualization purposes only.
The ontology editors surveyed also have basic reasoning abilities and the ability to
present a query to the reasoner. The SNePS 3 user interface allows the user to pose a
query to the system, and specify whether or not inference should be used. If inference is
not used, QBE can be seen as a way to display a filtered version of the knowledge base.
When inference is used, it invokes the SNePS 3 reasoner8 to display all of the results of
the query.

8 Currently, the SNePS 3 reasoner supports forward and backward chaining on ground formulas
with set-oriented connectives [19] using a natural deduction proof system. A full reasoner
using the logic containing arbitrary and indefinite terms [18] is being designed.



206 D.R. Schlegel and S.C. Shapiro

The visualization requirements of a KR system and an ontology viewer are somewhat
different. Ontologies always have a defined root and lend themselves to a hierarchical
tree-like view, while this is not always the case in a propositional graph. This charac-
teristic leads to ontology editors which show a definable number of levels of the graph
in detail, along with some number of nodes along the path to the root (as in Protégé’s
OWLViz viewer). The graphs are also always shown with a view akin to what we call
the “Collapsed View” in the SNePS 3 interface, as there are only binary relations to be
shown. These features in combination allow ontologies which are very large (containing
millions of concepts) to be viewed easily. In order to view very large KBs, we require
the user to query the KB.

SNePS 3 and its user interface can be (and have been [13]) used for interaction
with ontology structures, providing for the most part a superset of the visualization and
interaction features provided by ontology editors.

8 Conclusions

The nature of SNePS 3 KBs being conceived of as simultaneously graph-, frame-, and
logic-based extends naturally into the interactions one may do graphically with such
KBs. Users are able to add knowledge to the KB and visualize it in a user-friendly way.
The combination of frame-based techniques for QBE, and graph-based techniques for
exploration has resulted in a highly usable method for interacting with KBs. The wft
nodes are important for n-ary relations when n > 2, and when they are functional
terms that are arguments in other functional terms, yet they may be collapsed when not
needed, in order to provide a simpler graph for the users to look at without sacrificing
semantics. It is now possible to view, modify, and understand a large KB without the
need to sift through complex text outputs or graphs which are too large to be viewed
easily. We believe the techniques given here are ideal for visualizing and interacting
with the data associated with a KR system.

Acknowledgments. We thank the SNePS Implementation Group for their feedback on
the user interface. This work has been supported in part by a Multidisciplinary Uni-
versity Research Initiative (MURI) grant (Number W911NF-09-1-0392) for ”Unified
Research on Network-based Hard/Soft Information Fusion”, issued by the US Army
Research Office (ARO) under the program management of Dr. John Lavery.

References

1. Bodenreider, O.: Experiences in visualizing and navigating biomedical ontologies and
knowledge bases. In: Proceedings of the ISMB 2002 SIG Meeting: Bio-ontologies, pp. 29–32
(2002)

2. Fahlman, S.: NETL: A System for Representing and Using Real-World Knowledge. MIT
Press, Cambridge (1979)

3. Fillmore, C.J.: The case for case. In: Bach, E., Harms, R.T. (eds.) Universals in Linguistic
Theory, pp. 1–88. Holt, Rinehart and Winston, New York (1968)



Visually Interacting with a Knowledge Base 207

4. Fillmore, C.J.: Frame semantics and the nature of language. In: Annals of the New York
Academy of Sciences: Conference on the Origin and Development of Language and Speech,
vol. 280, pp. 20–32 (1976)

5. Franz Inc., Oakland, CA: Allegro CL 8.2 Documentation (2010,
http://www.franz.com/support/documentation/8.2/doc/

6. Harris, N.: OBO-Edit (2011), http://oboedit.org/
7. Hickey, R.: Clojure (2011), http://clojure.org/
8. ISO/IEC: Information technology — Common Logic (CL): a framework for a family of

logic-based languages, ISO/IEC 24707:2007(E). ISO/IEC, Switzerland, 1st edn. (October
2007),
http://standards.iso/ittf/license.html

9. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition, 2nd edn. Prentice
Hall, Upper Saddle River (2000)

10. de Marneffe, M.C., Manning, C.D.: Stanford typed dependencies manual. Stanford Natural
Language Processing Group (September 2008),
http://nlp.stanford.edu/software/dependencies_manual.pdf

11. National Geospatial-Intelligence Agency: NGA GEOnet names server, GNS (2011),
http://earth-info.nga.mil/gns/html/

12. Prentice, M., Kandefer, M., Shapiro, S.C.: Tractor: A framework for soft information fusion.
In: Proceedings of the 13th International Conference on Information Fusion, Chicago, IL
(2010)

13. Prentice, M., Shapiro, S.C.: Using propositional graphs for soft information fusion. In: Pro-
ceedings of the 14th International Conference on Information Fusion, Edinburgh, UK (2011)

14. Revelytix, Inc.: Knoodl (2011), http://www.knoodl.com/
15. Ruppenhofer, J., Ellsworth, M., Petruck, M.R.L., Johnson, C.R., Scheczyk, J.: FrameNet II:

Extended theory and practice (2006) (unpublished manuscript)
16. Shapiro, S.C.: Belief spaces as sets of propositions. Journal of Experimental and Theoretical

Artificial Intelligence (JETAI) 5(2&3), 225–235 (1993)
17. Shapiro, S.C.: An Introduction to SNePS 3. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000.

LNCS(LNAI), vol. 1867, pp. 510–524. Springer, Heidelberg (2000)
18. Shapiro, S.C.: A logic of arbitrary and indefinite objects. In: Dubois, D., Welty, C., Williams,

M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth
International Conference (KR 2004), pp. 565–575. AAAI Press, Menlo Park (2004)

19. Shapiro, S.C.: Set-oriented logical connectives: Syntax and semantics. In: Lin, F., Sattler, U.,
Truszczynski, M. (eds.) Proceedings of the Twelfth International Conference on the Prin-
ciples of Knowledge Representation and Reasoning (KR 2010), pp. 593–595. AAAI Press,
Menlo Park (2010)

20. Shapiro, S.C., Rapaport, W.J., Kandefer, M., Johnson, F.L., Goldfain, A.: Metacognition in
SNePS. AI Magazine 28, 17–31 (2007)

21. Stanford Center for Biomedical Informatics Research: The Protégé ontology editor and
knowledge acquisition system (2011), http://protege.stanford.edu/

22. The JUNG Framework Development Team: JUNG - Java universal network/graph frame-
work (2010), http://jung.sourceforge.net/

23. Zloof, M.M.: Query by example. In: AFIPS, vol. 44 (1975)

http://www.franz.com/support/documentation/8.2/doc/
http://oboedit.org/
http://clojure.org/
http://standards.iso/ittf/license.html
http://nlp.stanford.edu/software/dependencies_manual.pdf
http://earth-info.nga.mil/gns/html/
http://www.knoodl.com/
http://protege.stanford.edu/
http://jung.sourceforge.net/

	Visually Interacting with a Knowledge Base Using Frames, Logic, and Propositional Graphs

	Introduction
	SNePS 3
	Logical Expressions
	Frames
	Propositional Graphs

	Frame-Based Interaction
	Graph-Based Interaction
	Use for a Large Knowledge Base
	Collapsing the Graph
	Evaluation
	Conclusions
	References




