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Abstract.  The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative 
effort for developing interoperable, science-based ontologies. OBO uses the Basic Formal 
Ontology (BFO) as its upper ontology. Ontologies developed for OBO use include some that 
have been ratified, and others holding the status of candidate. There are no formal, 
principled criteria that a candidate ontology must meet for ratification. To help address 
this problem, we propose a formal integration between Rigidity, a major component of 
OntoClean’s approach to quality assurance of ontologies, and BFO’s theory of types. This 
work augments ongoing efforts to build software designed to evaluate and standardize 
OBO Foundry candidate ontologies. 
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1  Introduction 

The Open Biomedical Ontology (OBO) 
Foundry1 initiative is a collaborative effort for 
developing interoperable, science-based onto-
logies. A recently adopted principle for these 
ontologies is that they use the Basic Formal 
Ontology (BFO) [1] as their upper ontology. 
Some OBO Foundry ontologies have been 
ratified, and others hold the status of 
candidate. Rigidity is a major component of 
the OntoClean approach for detecting when 
the taxonomic relation is being used 
improperly [2]. A property is Rigid, if it is 
essential to all its instances; Non- Rigid, if 
non-essential to some instance; or Anti-Rigid, 
if non-essential to all instances. 

BFO is only partially logically axiomatized 
[1]. Domain experts developing OBO Foundry 
candidate ontologies must regularly query 
BFO-trained ontologists in order to adhere to 
BFO’s principles. Currently, there are no 
formal, principled criteria that a candidate 
ontology must meet for ratification. To address 
this problem, we propose a formal integration 
between OntoClean’s theory of Rigidity and 
BFO’s theory of types. We also propose an 
approach for evaluating OBO Foundry 
candidate ontologies based on this integration.   

1  http://www.obofoundry.org 

2  Formal Theory of Classes 

OntoClean uses properties as its categorical 
unit, which are the intension, or meaning, of 
general terms. BFO uses types, which are 
defined as that in reality to which the general 
terms of science refer (B. Smith, personal 
communication). We unify property and types 
under class. In what follows, we assume a 
first-order, sorted logic. 

Although there are many theories of 
existence, we introduce a relation, exists_at 
(x,t), which is non-committal and means that, 
under a certain ontological theory, object x is 
within its domain and x’s existence spans 
some time, t. Everything exists at some time: 

Axiom 1.   ∀x∃t(exists_ at(x,t)) 

 member_of(x,A,t) means that object x 
satisfies the definition of class A at t. With the 
member_of(x,A,t) relation, there is no 
commitment about the nature of A. Therefore, 
membership at a time does not presuppose 
that existence spans that time: 

Axiom 2.   ¬∀xt(∃A member_of(x,A,t))  
  → exists_ at(x,t)) 

 A particular class might or might not 
satisfy the unary predicate Instantiated, 
which means there is some member of A at t 
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that exists at t: 

Definition 1.  Instantiated(A) =def   
∃xt(member_of(x,A,t) ∧ exists_at(x,t)) 

If a class  does  not  have any members  at  
any time,  it satisfies  the  predicate Empty: 

Definition 2.  Empty(A) =def   
¬∃xt(member_of(x,A,t)) 

Empty (Full_Eye_Transplant ) holds because 
no such procedure has been performed yet. 

If a class has as members only those 
objects that exist at all times at which they 
are members, it satisfies the predicate 
Members_Exist: 

Definition 3.  Members_Exist(A) =def   

 ∀xt(member_of(x,A,t) → exists_at(x,t)) 

Assuming a class Animal  is defined to have  
as members animals only at times they are 
alive, Members_Exist (Animal) holds.2 

3  Reformulating Rigidity 

Rigidity has been defined in terms of S5 modal 
logic. As part of our integration, we provide 
just the underlying intuitions of those modal 
formalisms, prior to reformulating Rigidity in 
our formal system. Each object that has a 
Rigid property has that property at all times 
at which the object exists. We formalize this in 
terms of classes, instead of properties, by the 
predicate Rigid: 

Definition 4.  Rigid(A) =def  
  ∀x(∃t(member_of(x,A,t))  

→ ∀t1 (exists_at(x,t1)  → member_of(x,A,t1))) 

Rigid (Person) means that all members of the 
class Person are people at all times at which 
they exist. 

As an amendment to the original formula-
tion of Rigid, [3] proposes that Rigid 
properties are only instantiated by actually 
existing objects. We have captured this 
intuition separately from Rigid, under the 
Members_Exist predicate. Also, because 
unexemplifiable properties are trivially Rigid, 
[3] constrains the theory (as suggested by [4] 

2 For organisms we equate existence with living. 

and [5]) to properties for which there exists 
some instance. We have separately defined 
this notion, also, under the Instantiated 
predicate. 

Non-Rigid is the negation of Rigid, which 
we apply for our class formulation under the 
predicate Non-Rigid: 

Definition 5. Non-Rigid(A) =def ¬Rigid(A) 

Assuming that a person is a member of 
Student only while a registered student, Non-
Rigid (Student) holds. 

Anti-Rigid is true of a property, if, for 
every object that has that property, it is 
possible that it does not have that property at 
some time. An object may have an Anti-Rigid 
property at all times at which it exists. BFO is 
not concerned with what could have been, but 
rather what has been or currently is; therefore, 
Anti-Rigid is irrelevant to our theory. 

4   Integrating Rigidity with 
BFO Theory of Types 

The objects of BFO’s domain are partitioned 
into particulars and types. Particulars are 
entities confined to specific spatial, 
spatiotemporal, or temporal regions (e.g., a 
specific grasshopper in front of me, its life, or 
the time interval that its life spans, 
respectively). Under BFO’s theory, existence of 
a particular is based on it being observable at 
some level of granularity and/or causal by some 
scientifically-based measure. Numbers, for 
example, do not exist in BFO. Type (A) means 
that A is a class that meets the criteria for 
being a type, which we provide in what follows. 

Not all classes thought to be types satisfy 
our reformulation of Rigid, for example Embryo 
and Fetus. If an organism maintains its 
identity through its development from an 
embryo into a fetus, then both classes are Non-
Rigid. If these classes are not in fact types, 
then our axiomatization is clear. However, 
whether these sorts of classes are types or not 
is still debated by the OBO Foundry 
community; therefore, this issue remains 
unresolved. For the purposes of our method, we 
exclude these controversial classes from our 
domain; hence, types satisfy Rigid: 

Axiom 3.  ∀A(Type(A) → Rigid(A))  
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Types must also be instantiated [6]: 

Axiom 4.    ∀A(Type(A) 
 → Instantiated(A)) 

Types are therefore non-empty:3 

Theorem 1.  ∀A(Type(A) → ¬Empty(A)) 

Another criterion for every class that is a type 
is that every member of the class at a time 
exists at that time. Therefore, every type 
satisfies Members_Exist: 

Axiom 5.  ∀A(Type(A)  
 → Members_Exist(A)) 

 instance_of(x,A,t) means that particular x 
is an instance of type A at time t. If a general 
term refers to a class that is a BFO type, then 
each of the members of the class instantiates 
the type: 

Definition 6.  instance_of(x,A,t) =def   
 member_of(x,A,t) ∧ Type(A)  

While there is no restriction on what objects 
can be members of a class, particulars, not 
types, are instances of a type: 

Axiom 6.  ∀AB(Type(A) ∧ Type(B)  

 → ¬∃t(instance_of(A,B,t))) 

A class which satisfies Instantiated but not 
Members_Exist satisfies the predicate Partial: 

Definition 7.  Partial(A) =def  
Instantiated(A) ∧ ¬Members_Exist(A) 

 isa (A,B ) means that all instances of type 
A are instances of type B: 

Definition 8.  isa(A,B) =def 
∀xt(instance_of(x,A,t) → instance_of(x,B,t)) 

 isa is a relation between types: 

Axiom 7.  ∀AB(isa(A,B)  

 → Type(A) ∧ Type(B)) 

It is the “backbone” BFO relation for scientific 

3  Informal proofs corresponding to the theorems 
presented here are provided at http://www.cse. 
buffalo.edu/∼apseyed/icbo2011proofs.pdf. 

classification, i.e., building taxonomies. isa is 
provably reflexive, transitive, and anti-
symmetric. 

Under OntoClean’s modal formulations, no 
Anti-Rigid property is a parent of a Rigid 
property (although a Rigid property may have 
a Non-Rigid parent, and vice versa). Although 
Anti-Rigid is irrelevant to our theory, by our 
reformulation of Non-Rigid, no Non-Rigid 
class is part of an isa hierarchy: 

Theorem 2.  ∀A(Non-Rigid(A)  

 → ∀B(¬isa(A,B) ∧ ¬isa(B,A))) 

 disa (A,B ) (‘d’ for “direct”) means there is 
no other type “in between” A and B in the isa 
hierarchy: 

Definition 9.   disa(A,B) =def  isa(A,B) ∧ A≠B 

  ∧ ∀C(isa(A,C) ∧ isa(C,B)  → C=A ∨ C=B) 

 disa is provably irreflexive, intransitive, 
and asymmetric, and isa is its transitive 
closure. 

The root type of the BFO upper ontology is 
Entity; Continuant and Occurrent are its 
subtypes. Continuants (e.g., a heart) can exist 
fully at different time instants, while 
occurrents (e.g., the process of a heart beating) 
unfold over time. 

Following Aristotle’s division of objects into 
substances and accidents, the two subtypes of 
Continuant are IndependentContinuant (IC) 
and DependentContinuant (DC), respectively. 
(For reasons of space, we omit treatment of the 
DC subtype GenericallyDependentContinuant 
(GDC), and restrict our discussion to the DC 
subtype SpecificallyDependentContinuant 
(SDC).) The shape of a specific cell instan-
tiates SDC, and “depends on” a specific cell, 
which instantiates IC. depends_on (x,y,t) 
means that the specifically dependent 
continuant x exists at t only if the independent 
continuant y exists at t:4 

Axiom 8.   ∀xy(∃t(depends_on(x,y,t))  

 → ∀t1 (exists_at(x,t1)  → exists_at(y,t1))) 

It also means that x cannot migrate to another 
independent continuant: 

4  This relation is frequently given as ‘inheres’ in the 
BFO literature. 
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Axiom 9.   ∀xy(∃tt1 depends_on(x,y,t)  

 ∧ depends_on(x,z,t1)) → y=z) 

Depends_On (A,B) means that for every 
instance of A there is some instance of B 
where the former instance depends on the 
latter: 

Definition 10. Depends_On(A,B) =def  
 ∀xt(instance_of(x,A,t) → 

∃y(instance_ of(y,B,t) ∧ depends_on(x,y,t))) 

If we assume the class Student has as 
members people at times at which they have 
the role of student, Student satisfies Non-
Rigid and is not a type. However if the class is 
“re-conceived” as having as members 
individual student roles that are instances of 
SDC, then the class does satisfy Type and 
Depends_On (Student, Person) holds. At each 
time t at which some person x is a student, 
there exists some y that is a student role and 
is dependent on x:  
∃y(instance_of(y,Student,t)  

 ∧ depends_on (x,y,t))). 

BFO’s theory of types is also committed to 
the Disjointness Principle,5 that two types 
have no instances in common unless one is a 
subtype of the other: 

Axiom 10. ∀AB(∃xt(instance_of(x,A,t) 

 ∧ instance_ of(x,B,t))  

 → isa(A,B) ∨ isa(B,A)) 

The Single Inheritance Principle follows, that 
no type has more than one direct supertype: 

Theorem 3.       ∀AB(disa(A,B)  

 → ∀C(disa(A,C) ↔ C=B)) 

A version of this principle is advocated by [7] 
for primitive class hierarchies, in order to 
keep ontologies modular. The Disjointness 

5  Our work is based on BFO version 1.1, which we 
consider stable and “frozen” for our research. 
Recent work [8] indicates this principle only 
applies to the asserted isa hierarchy. This topic 
remains under debate. 

 

Principle assists in maintaining the 
ontological partioning of types into DC, IC, 
and Occurrent. Candidates (i.e., classes 
proposed as types in an OBO Foundry 
candidate ontology) conceived such that they 
that violate the Disjointness or Single 
Inheritance principles do not satisfy Type. 

We propose that the subtyping relation 
between upper ontology types is disa, based 
on the assumption that the types of BFO’s 
upper ontology fall within a finite domain. If 
additional types are added, then it is a 
different ontology. 

We also define a relation disjoint_from 
which holds between types A and B iff A and 
B do not share any instances at any time: 

Definition 11. disjoint_from(A,B) =def  
∀xt(instance_of(x,A,t) → ¬ instance_ of(x,B,t)) 

Axiom 11.  ∀AB(disjoint_from (A,B)  

 → Type(A) ∧ Type(B)) 

We can show that for two direct subtypes of a 
third type, if the two types are not identical, 
then they are disjoint: 

Theorem 4.     ∀AB((∃C(disa(A,C) ∧  

 disa(B,C)) ∧ A≠B) → disjoint_from(A,B)) 

We can also prove that sibling BFO upper 
ontology types (e.g., Continuant and 
Occurrent) and, more generally, any types not 
related by isa, are disjoint types: 

Theorem 5.    ∀AB((Type(A) ∧ Type(B)) → 

(isa(A,B) ∨ isa(B,A)) ⊕ disjoint_from(A,B)) 

 
5 Applying Rigidity and Other 
 Type Criteria to Standardizing 
 Candidate Types 

Isolating violations of the Disjointness 
Principle will assist a modeler in deter- 
mining if their candidates are types. These 
violations follow the pattern: 

isa (A,B) ∧ isa (A,C) 

where it does not hold that: 
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isa (B,C) ∨ isa (C,B) 

which can be inferred under closed-world 

reasoning, or, it may be that the negation of 

both disjuncts holds. The potential ontology 

changes that alleviate this violation include: 

1.  isa (B,C) or isa (C,B) holds. 

2.  isa (A,B) or isa (A,C) is removed, includ-

ing the choice that isa is changed to 

another relation, e.g., Depends_On). 

3.  A is partitioned into multiple candidates, 

some of which are subtypes of B and some 

of C. 

One reason for solution #1 is that one (or 

both) of the disjuncts holds, but the disjunct(s) 

has not been specified yet by the modeler. A 

common reason for solution #2 is that one 

candidate, B, is a type, and the other, C, is a 

Non-Rigid class. #3 is appropriate if a 

candidate is evaluated to have as members 

instances of disjoint upper ontology types 

(which we term Heterogeneous). 

We aim to assist a modeler in creating an 

ontology that does not violate the Disjointness 

Principle, by preemptively addressing the 

modeling choices #1, #2, and #3 above. We 

present a decision tree (see Figure 1)6 that 

assists a modeler in evaluating whether a 

candidate is a type according to criteria 

provided in the previous section (satisfying 

Instantiated, Members_Exist, and Rigid) 

and, if not, assists in redefining the candidate 

such that it is consistent with BFO. We 

assume that a modeler presents her 

candidates one at a time to a procedure that 

uses the decision tree to classify each in turn. 

A candidate that satisfies any combination of 

Empty, Partial, Heterogeneous, or 

¬Members_Exist satisfies ¬Type and requires 

further inspection and re-conceptualization for 

it to satisfy Type. 

In Figure 1, the descriptions of the answer 

choices for Question 2 correspond to more 

commonly modeled types under IC, DC, and 

Occurrent, namely MaterialEntity, SDC, and 

Process. This approach excludes rarely modeled 

types from our evaluation work, such as 

                                                           
6  Redundant subtrees for Question 2 choices a, b, or 

c are combined. Variables that represent modeler- 

input terms appear in square brackets. 

SpatialRegion, TemporalRegion, and 

SpatioTemporalRegion.7 There are certain 

other types, (e.g., GDC) that will appear in an 

expanded version of the tree, in future work. 

The classification of candidates under domain-

level types already classified via applications 

of the decision tree will also be addressed in 

future work. 

5.1 Use Case 

Figure 2 shows two candidates, their assumed 

definitions, and a modeler’s response to each 

question presented to her.8 The candidate’s 

class label is used within Question 1; for 

example, for Candidate 1, the question asked is 

“What is an example of a compound?” Because 

Question 7 is reached and answered by “no”, 

Compound is a type under our approach. 

Because of the answer “a” given for Question 2, 

Compound is classified under BFO’s 

MaterialEntity type. 

For Candidate 2, because the answer given 

for Question 6 is “yes”, Reactant satisfies 

¬Type, because it satisfies Non-Rigid. 

Question 8 attempts to confirm if the modeler’s 

class definition implicitly refers to some 

specifically dependent continuant. If this 

question is answered with “yes”, then the 

candidate is a type if re-conceived as a subtype 

of SDC. Question 9 is asked to determine the 

classification of the members of A (as it was 

originally conceived) under MaterialEntity. In 

this case, the modeler chose Compound, and as 

a result Depends_on (Reactant, Compound) is 

asserted. Figure 3 shows the resulting ontology 

portion, where the upper ontology types are 

shaded. 

Our use case addresses the modeling of 

Rigid and Non-Rigid candidates, and how a 

Non-Rigid candidate can be redefined such 

that it is consistent with BFO, proactively 

preventing violations of the Disjointness 

Principle. To extend our use case, if a third 

candidate, Sodium Chloride, were introduced, 

then the modeler would provide the same 

answers as given for Compound, and Sodium  

                                                           
7  That the modeling of these types is rare is 

apparent in the OBO Foundry’s Ontology for 

Biomedical Investigations (see http://purl.obo 

library.org/obo/obi.owl). 
8  For illustrative purposes, we exclude elements 

from our notion of reactant. 
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Figure 1. Decision Tree for Standardizing a Candidate Type 
 

Question 

Candidate 1: Compound Candidate 2: Reactant 

Assumed Definition: 
“A substance consisting of two or more different 

elements combined in a fixed ratio” [10]. 

Assumed Definition: 
“The electron donor in a redox reaction” [10]. 

1 “sodium chloride in this container” “sodium chloride in this container” 
2 a a 
3 yes yes 
4 yes yes 
5 yes yes 
6 no yes 
7 no - 
8 - yes 
9 - Compound 

10 - - 

Figure 2. Responses to Questions in Decision Tree 
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Chloride will be subtyped under 
MaterialEntity (the modeler will be able to 
subtype Sodium Chloride under Compound in 
a future version of the decision tree). 
Subtyping Sodium Chloride under the SDC 
subtree, where Reactant is subtyped, will 
simply not be presented as an option. 
 

 
Figure 3. Ontology Portion After Evaluation  

6  Conclusion and Future Work 

The notion of class covers both OntoClean’s 
notion of property and BFO’s notion of type. A 
class might or might not satisfy Instantiated, 
Empty, Heterogeneous, Partial, Members 
_Exist, Rigid, or Non-Rigid, the latter two 
capturing the intuitions of Rigidity within 
our formal theory of classes. BFO’s notion of 
type is captured by a class that satisfies 
Instantiated, Members_Exist, and Rigid. A 
domain modeler who wants her ontology to be 
ratified for OBO use and thus BFO-compliant 
must show that the candidate types of her 

ontology are indeed types by these criteria. 
In the future, we will address whether the 

Disjointness Principle should be enforced for 
only what is considered the “primitive” 
backbone of an ontology. We will also expand 
the decision tree to address Non-Rigid classes 
that refer to some material entity (e.g., Endo-
crine System) or process (e.g., Fertilization), 
where their members are conceived as the 
parts or participants, respectively. 
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