
 Applying Rigidity to Standardizing
OBO Foundry Candidate Ontologies

A. Patrice Seyed, Stuart C. Shapiro

Department of Computer Science and Engineering, University at Buffalo, State University of New York, USA

Abstract. The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative
effort for developing interoperable, science-based ontologies. OBO uses the Basic Formal
Ontology (BFO) as its upper ontology. Ontologies developed for OBO use include some that
have been ratified, and others holding the status of candidate. There are no formal,
principled criteria that a candidate ontology must meet for ratification. To help address
this problem, we propose a formal integration between Rigidity, a major component of
OntoClean’s approach to quality assurance of ontologies, and BFO’s theory of types. This
work augments ongoing efforts to build software designed to evaluate and standardize
OBO Foundry candidate ontologies.

Keywords: ontology, criteria, OBO Foundry, BFO, OntoClean

1 Introduction

The Open Biomedical Ontology (OBO)
Foundry1 initiative is a collaborative effort for
developing interoperable, science-based onto-
logies. A recently adopted principle for these
ontologies is that they use the Basic Formal
Ontology (BFO) [1] as their upper ontology.
Some OBO Foundry ontologies have been
ratified, and others hold the status of
candidate. Rigidity is a major component of
the OntoClean approach for detecting when
the taxonomic relation is being used
improperly [2]. A property is Rigid, if it is
essential to all its instances; Non- Rigid, if
non-essential to some instance; or Anti-Rigid,
if non-essential to all instances.

BFO is only partially logically axiomatized
[1]. Domain experts developing OBO Foundry
candidate ontologies must regularly query
BFO-trained ontologists in order to adhere to
BFO’s principles. Currently, there are no
formal, principled criteria that a candidate
ontology must meet for ratification. To address
this problem, we propose a formal integration
between OntoClean’s theory of Rigidity and
BFO’s theory of types. We also propose an
approach for evaluating OBO Foundry
candidate ontologies based on this integration.

1 http://www.obofoundry.org

2 Formal Theory of Classes

OntoClean uses properties as its categorical
unit, which are the intension, or meaning, of
general terms. BFO uses types, which are
defined as that in reality to which the general
terms of science refer (B. Smith, personal
communication). We unify property and types
under class. In what follows, we assume a
first-order, sorted logic.

Although there are many theories of
existence, we introduce a relation, exists_at
(x,t), which is non-committal and means that,
under a certain ontological theory, object x is
within its domain and x’s existence spans
some time, t. Everything exists at some time:

Axiom 1. ∀x∃t(exists_ at(x,t))

 member_of(x,A,t) means that object x
satisfies the definition of class A at t. With the
member_of(x,A,t) relation, there is no
commitment about the nature of A. Therefore,
membership at a time does not presuppose
that existence spans that time:

Axiom 2. ¬∀xt(∃A member_of(x,A,t))
 → exists_ at(x,t))

 A particular class might or might not
satisfy the unary predicate Instantiated,
which means there is some member of A at t

175

ICBO: International Conference on Biomedical Ontology

July 28-30, 2011 · Buffalo, NY, USA

http://www.obofoundry.org/

that exists at t:

Definition 1. Instantiated(A) =def
∃xt(member_of(x,A,t) ∧ exists_at(x,t))

If a class does not have any members at
any time, it satisfies the predicate Empty:

Definition 2. Empty(A) =def
¬∃xt(member_of(x,A,t))

Empty (Full_Eye_Transplant) holds because
no such procedure has been performed yet.

If a class has as members only those
objects that exist at all times at which they
are members, it satisfies the predicate
Members_Exist:

Definition 3. Members_Exist(A) =def

 ∀xt(member_of(x,A,t) → exists_at(x,t))

Assuming a class Animal is defined to have
as members animals only at times they are
alive, Members_Exist (Animal) holds.2

3 Reformulating Rigidity

Rigidity has been defined in terms of S5 modal
logic. As part of our integration, we provide
just the underlying intuitions of those modal
formalisms, prior to reformulating Rigidity in
our formal system. Each object that has a
Rigid property has that property at all times
at which the object exists. We formalize this in
terms of classes, instead of properties, by the
predicate Rigid:

Definition 4. Rigid(A) =def
 ∀x(∃t(member_of(x,A,t))

→ ∀t1 (exists_at(x,t1) → member_of(x,A,t1)))

Rigid (Person) means that all members of the
class Person are people at all times at which
they exist.

As an amendment to the original formula-
tion of Rigid, [3] proposes that Rigid
properties are only instantiated by actually
existing objects. We have captured this
intuition separately from Rigid, under the
Members_Exist predicate. Also, because
unexemplifiable properties are trivially Rigid,
[3] constrains the theory (as suggested by [4]

2 For organisms we equate existence with living.

and [5]) to properties for which there exists
some instance. We have separately defined
this notion, also, under the Instantiated
predicate.

Non-Rigid is the negation of Rigid, which
we apply for our class formulation under the
predicate Non-Rigid:

Definition 5. Non-Rigid(A) =def ¬Rigid(A)

Assuming that a person is a member of
Student only while a registered student, Non-
Rigid (Student) holds.

Anti-Rigid is true of a property, if, for
every object that has that property, it is
possible that it does not have that property at
some time. An object may have an Anti-Rigid
property at all times at which it exists. BFO is
not concerned with what could have been, but
rather what has been or currently is; therefore,
Anti-Rigid is irrelevant to our theory.

4 Integrating Rigidity with
BFO Theory of Types

The objects of BFO’s domain are partitioned
into particulars and types. Particulars are
entities confined to specific spatial,
spatiotemporal, or temporal regions (e.g., a
specific grasshopper in front of me, its life, or
the time interval that its life spans,
respectively). Under BFO’s theory, existence of
a particular is based on it being observable at
some level of granularity and/or causal by some
scientifically-based measure. Numbers, for
example, do not exist in BFO. Type (A) means
that A is a class that meets the criteria for
being a type, which we provide in what follows.

Not all classes thought to be types satisfy
our reformulation of Rigid, for example Embryo
and Fetus. If an organism maintains its
identity through its development from an
embryo into a fetus, then both classes are Non-
Rigid. If these classes are not in fact types,
then our axiomatization is clear. However,
whether these sorts of classes are types or not
is still debated by the OBO Foundry
community; therefore, this issue remains
unresolved. For the purposes of our method, we
exclude these controversial classes from our
domain; hence, types satisfy Rigid:

Axiom 3. ∀A(Type(A) → Rigid(A))

176

Types must also be instantiated [6]:

Axiom 4. ∀A(Type(A)
 → Instantiated(A))

Types are therefore non-empty:3

Theorem 1. ∀A(Type(A) → ¬Empty(A))

Another criterion for every class that is a type
is that every member of the class at a time
exists at that time. Therefore, every type
satisfies Members_Exist:

Axiom 5. ∀A(Type(A)
 → Members_Exist(A))

 instance_of(x,A,t) means that particular x
is an instance of type A at time t. If a general
term refers to a class that is a BFO type, then
each of the members of the class instantiates
the type:

Definition 6. instance_of(x,A,t) =def
 member_of(x,A,t) ∧ Type(A)

While there is no restriction on what objects
can be members of a class, particulars, not
types, are instances of a type:

Axiom 6. ∀AB(Type(A) ∧ Type(B)

 → ¬∃t(instance_of(A,B,t)))

A class which satisfies Instantiated but not
Members_Exist satisfies the predicate Partial:

Definition 7. Partial(A) =def
Instantiated(A) ∧ ¬Members_Exist(A)

 isa (A,B) means that all instances of type
A are instances of type B:

Definition 8. isa(A,B) =def
∀xt(instance_of(x,A,t) → instance_of(x,B,t))

 isa is a relation between types:

Axiom 7. ∀AB(isa(A,B)

 → Type(A) ∧ Type(B))

It is the “backbone” BFO relation for scientific

3 Informal proofs corresponding to the theorems
presented here are provided at http://www.cse.
buffalo.edu/∼apseyed/icbo2011proofs.pdf.

classification, i.e., building taxonomies. isa is
provably reflexive, transitive, and anti-
symmetric.

Under OntoClean’s modal formulations, no
Anti-Rigid property is a parent of a Rigid
property (although a Rigid property may have
a Non-Rigid parent, and vice versa). Although
Anti-Rigid is irrelevant to our theory, by our
reformulation of Non-Rigid, no Non-Rigid
class is part of an isa hierarchy:

Theorem 2. ∀A(Non-Rigid(A)

 → ∀B(¬isa(A,B) ∧ ¬isa(B,A)))

 disa (A,B) (‘d’ for “direct”) means there is
no other type “in between” A and B in the isa
hierarchy:

Definition 9. disa(A,B) =def isa(A,B) ∧ A≠B

 ∧ ∀C(isa(A,C) ∧ isa(C,B) → C=A ∨ C=B)

 disa is provably irreflexive, intransitive,
and asymmetric, and isa is its transitive
closure.

The root type of the BFO upper ontology is
Entity; Continuant and Occurrent are its
subtypes. Continuants (e.g., a heart) can exist
fully at different time instants, while
occurrents (e.g., the process of a heart beating)
unfold over time.

Following Aristotle’s division of objects into
substances and accidents, the two subtypes of
Continuant are IndependentContinuant (IC)
and DependentContinuant (DC), respectively.
(For reasons of space, we omit treatment of the
DC subtype GenericallyDependentContinuant
(GDC), and restrict our discussion to the DC
subtype SpecificallyDependentContinuant
(SDC).) The shape of a specific cell instan-
tiates SDC, and “depends on” a specific cell,
which instantiates IC. depends_on (x,y,t)
means that the specifically dependent
continuant x exists at t only if the independent
continuant y exists at t:4

Axiom 8. ∀xy(∃t(depends_on(x,y,t))

 → ∀t1 (exists_at(x,t1) → exists_at(y,t1)))

It also means that x cannot migrate to another
independent continuant:

4 This relation is frequently given as ‘inheres’ in the
BFO literature.

177

http://www.cse.buffalo.edu/%E2%88%BCapseyed/icbo2011proofs.pdf
http://www.cse.buffalo.edu/%E2%88%BCapseyed/icbo2011proofs.pdf

Axiom 9. ∀xy(∃tt1 depends_on(x,y,t)

 ∧ depends_on(x,z,t1)) → y=z)

Depends_On (A,B) means that for every
instance of A there is some instance of B
where the former instance depends on the
latter:

Definition 10. Depends_On(A,B) =def
 ∀xt(instance_of(x,A,t) →

∃y(instance_ of(y,B,t) ∧ depends_on(x,y,t)))

If we assume the class Student has as
members people at times at which they have
the role of student, Student satisfies Non-
Rigid and is not a type. However if the class is
“re-conceived” as having as members
individual student roles that are instances of
SDC, then the class does satisfy Type and
Depends_On (Student, Person) holds. At each
time t at which some person x is a student,
there exists some y that is a student role and
is dependent on x:
∃y(instance_of(y,Student,t)

 ∧ depends_on (x,y,t))).

BFO’s theory of types is also committed to
the Disjointness Principle,5 that two types
have no instances in common unless one is a
subtype of the other:

Axiom 10. ∀AB(∃xt(instance_of(x,A,t)

 ∧ instance_ of(x,B,t))

 → isa(A,B) ∨ isa(B,A))

The Single Inheritance Principle follows, that
no type has more than one direct supertype:

Theorem 3. ∀AB(disa(A,B)

 → ∀C(disa(A,C) ↔ C=B))

A version of this principle is advocated by [7]
for primitive class hierarchies, in order to
keep ontologies modular. The Disjointness

5 Our work is based on BFO version 1.1, which we
consider stable and “frozen” for our research.
Recent work [8] indicates this principle only
applies to the asserted isa hierarchy. This topic
remains under debate.

Principle assists in maintaining the
ontological partioning of types into DC, IC,
and Occurrent. Candidates (i.e., classes
proposed as types in an OBO Foundry
candidate ontology) conceived such that they
that violate the Disjointness or Single
Inheritance principles do not satisfy Type.

We propose that the subtyping relation
between upper ontology types is disa, based
on the assumption that the types of BFO’s
upper ontology fall within a finite domain. If
additional types are added, then it is a
different ontology.

We also define a relation disjoint_from
which holds between types A and B iff A and
B do not share any instances at any time:

Definition 11. disjoint_from(A,B) =def
∀xt(instance_of(x,A,t) → ¬ instance_ of(x,B,t))

Axiom 11. ∀AB(disjoint_from (A,B)

 → Type(A) ∧ Type(B))

We can show that for two direct subtypes of a
third type, if the two types are not identical,
then they are disjoint:

Theorem 4. ∀AB((∃C(disa(A,C) ∧

 disa(B,C)) ∧ A≠B) → disjoint_from(A,B))

We can also prove that sibling BFO upper
ontology types (e.g., Continuant and
Occurrent) and, more generally, any types not
related by isa, are disjoint types:

Theorem 5. ∀AB((Type(A) ∧ Type(B)) →

(isa(A,B) ∨ isa(B,A)) ⊕ disjoint_from(A,B))

5 Applying Rigidity and Other
 Type Criteria to Standardizing
 Candidate Types

Isolating violations of the Disjointness
Principle will assist a modeler in deter-
mining if their candidates are types. These
violations follow the pattern:

isa (A,B) ∧ isa (A,C)

where it does not hold that:

178

isa (B,C) ∨ isa (C,B)

which can be inferred under closed-world

reasoning, or, it may be that the negation of

both disjuncts holds. The potential ontology

changes that alleviate this violation include:

1. isa (B,C) or isa (C,B) holds.

2. isa (A,B) or isa (A,C) is removed, includ-

ing the choice that isa is changed to

another relation, e.g., Depends_On).

3. A is partitioned into multiple candidates,

some of which are subtypes of B and some

of C.

One reason for solution #1 is that one (or

both) of the disjuncts holds, but the disjunct(s)

has not been specified yet by the modeler. A

common reason for solution #2 is that one

candidate, B, is a type, and the other, C, is a

Non-Rigid class. #3 is appropriate if a

candidate is evaluated to have as members

instances of disjoint upper ontology types

(which we term Heterogeneous).

We aim to assist a modeler in creating an

ontology that does not violate the Disjointness

Principle, by preemptively addressing the

modeling choices #1, #2, and #3 above. We

present a decision tree (see Figure 1)6 that

assists a modeler in evaluating whether a

candidate is a type according to criteria

provided in the previous section (satisfying

Instantiated, Members_Exist, and Rigid)

and, if not, assists in redefining the candidate

such that it is consistent with BFO. We

assume that a modeler presents her

candidates one at a time to a procedure that

uses the decision tree to classify each in turn.

A candidate that satisfies any combination of

Empty, Partial, Heterogeneous, or

¬Members_Exist satisfies ¬Type and requires

further inspection and re-conceptualization for

it to satisfy Type.

In Figure 1, the descriptions of the answer

choices for Question 2 correspond to more

commonly modeled types under IC, DC, and

Occurrent, namely MaterialEntity, SDC, and

Process. This approach excludes rarely modeled

types from our evaluation work, such as

6 Redundant subtrees for Question 2 choices a, b, or

c are combined. Variables that represent modeler-

input terms appear in square brackets.

SpatialRegion, TemporalRegion, and

SpatioTemporalRegion.7 There are certain

other types, (e.g., GDC) that will appear in an

expanded version of the tree, in future work.

The classification of candidates under domain-

level types already classified via applications

of the decision tree will also be addressed in

future work.

5.1 Use Case

Figure 2 shows two candidates, their assumed

definitions, and a modeler’s response to each

question presented to her.8 The candidate’s

class label is used within Question 1; for

example, for Candidate 1, the question asked is

“What is an example of a compound?” Because

Question 7 is reached and answered by “no”,

Compound is a type under our approach.

Because of the answer “a” given for Question 2,

Compound is classified under BFO’s

MaterialEntity type.

For Candidate 2, because the answer given

for Question 6 is “yes”, Reactant satisfies

¬Type, because it satisfies Non-Rigid.

Question 8 attempts to confirm if the modeler’s

class definition implicitly refers to some

specifically dependent continuant. If this

question is answered with “yes”, then the

candidate is a type if re-conceived as a subtype

of SDC. Question 9 is asked to determine the

classification of the members of A (as it was

originally conceived) under MaterialEntity. In

this case, the modeler chose Compound, and as

a result Depends_on (Reactant, Compound) is

asserted. Figure 3 shows the resulting ontology

portion, where the upper ontology types are

shaded.

Our use case addresses the modeling of

Rigid and Non-Rigid candidates, and how a

Non-Rigid candidate can be redefined such

that it is consistent with BFO, proactively

preventing violations of the Disjointness

Principle. To extend our use case, if a third

candidate, Sodium Chloride, were introduced,

then the modeler would provide the same

answers as given for Compound, and Sodium

7 That the modeling of these types is rare is

apparent in the OBO Foundry’s Ontology for

Biomedical Investigations (see http://purl.obo

library.org/obo/obi.owl).
8 For illustrative purposes, we exclude elements

from our notion of reactant.

179

http://purl.obolibrary.org/obo/obi.owl)
http://purl.obolibrary.org/obo/obi.owl)

Figure 1. Decision Tree for Standardizing a Candidate Type

Question

Candidate 1: Compound Candidate 2: Reactant

Assumed Definition:
“A substance consisting of two or more different

elements combined in a fixed ratio” [10].

Assumed Definition:
“The electron donor in a redox reaction” [10].

1 “sodium chloride in this container” “sodium chloride in this container”
2 a a
3 yes yes
4 yes yes
5 yes yes
6 no yes
7 no -
8 - yes
9 - Compound

10 - -

Figure 2. Responses to Questions in Decision Tree

180

Chloride will be subtyped under
MaterialEntity (the modeler will be able to
subtype Sodium Chloride under Compound in
a future version of the decision tree).
Subtyping Sodium Chloride under the SDC
subtree, where Reactant is subtyped, will
simply not be presented as an option.

Figure 3. Ontology Portion After Evaluation

6 Conclusion and Future Work

The notion of class covers both OntoClean’s
notion of property and BFO’s notion of type. A
class might or might not satisfy Instantiated,
Empty, Heterogeneous, Partial, Members
_Exist, Rigid, or Non-Rigid, the latter two
capturing the intuitions of Rigidity within
our formal theory of classes. BFO’s notion of
type is captured by a class that satisfies
Instantiated, Members_Exist, and Rigid. A
domain modeler who wants her ontology to be
ratified for OBO use and thus BFO-compliant
must show that the candidate types of her

ontology are indeed types by these criteria.
In the future, we will address whether the

Disjointness Principle should be enforced for
only what is considered the “primitive”
backbone of an ontology. We will also expand
the decision tree to address Non-Rigid classes
that refer to some material entity (e.g., Endo-
crine System) or process (e.g., Fertilization),
where their members are conceived as the
parts or participants, respectively.

Acknowledgments

We would like to thank William J. Rapaport,
Alan Ruttenberg, Barry Smith, and the
anonymous reviewers for their comments on
previous drafts.

References

1. Spear, A.: Ontology for the Twenty First
Century (2007)

2. Welty, C. and Guarino N.: Supporting
ontological analysis of taxonomic relationships.
Data and Knowledge Engineering. vol. 39, no. 1,
51–74, (2001)

3. Welty, C. and Andersen. W.: Towards OntoClean
2.0: A framework for Rigidity. Applied Ontology.
vol. 1, no. 1, 107–116, IOS Press, Amsterdam
(2005)

4. Andersen, W. and Menzel, C.: Modal rigidity in
the OntoClean methodology. FOIS (2004)

5. Carrara, M.: Identity and Modality in OntoClean.
Applied Ontology. no. 1, vol. 1., 128–139 (2004)

6. Smith, B.: The Logic of Biological Classification
and the Foundations of Biomedical Ontology.
International Conference on Logic, Methodology
and Philosophy of Science. Elsevier-North-
Holland (2003)

7. Rector, A.: Modularisation of Domain Ontologies
Implemented in Description Logics and related
formalisms including OWL. KCAP (2003)

8. Smith, B. and Ceusters W.: Ontological realism:
A Methodology for coordinated evolution of
scientific ontologies. Applied Ontology. vol. 5, no.
3, 139–188 IOS Press (2010)

9. Campbell N. A., Reece, J. B.: Biology, 8th Edition.
Pearson, University of Chicago press (1990)

181

