Proceedings of the Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010)

Set-Oriented Logical Connectives: Syntax and Semantics

Stuart C. Shapiro
Department of Computer Science and Engineering and Center for Cognitive Science
The State University of New York at Buffalo
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

Abstract

Of the common commutative binary logical connectives, only
and and or may be used as operators that take arbitrary num-
bers of arguments with order and multiplicity being irrele-
vant, that is, as connectives that take sets of arguments. This
is especially evident in the Common Logic Interchange For-
mat, in which it is easy for operators to be given arbitrary
numbers of arguments. The reason is that and and or are as-
sociative and idempotent, as well as commutative. We extend
the ability of taking sets of arguments to the other common
commutative connectives by defining generalized versions of
nand, nor, xor, and 1ff, as well as the additional, pa-
rameterized connectives andor and thresh. We prove that
andor is expressively complete—all the other connectives
may be considered abbreviations of it.

1. Introduction

A commonly used syntax for formulas of Propositional
Logic is the Common Logic Interchange Format (CLIF)
(ISO/IEC 2007). Assuming that a,b,c,p1,...,p, are
CLIF well-formed formulas (wffs), examples of non-atomic
expressions in CLIF are: (not a),
(and p1...pn), (Or pP1...Pn),
(1ff a D).

CLIF uses “Cambridge prefix” notation, the benefits of
which are a simple, consistent syntax, and that operators
may easily be given arbitrary numbers of arguments. We
may well then ask why and and or are the only two logi-
cal connectives in CLIF that can take an arbitrary number of
arguments. One quick answer is that not only takes one ar-
gument, and 1 f is not commutative. However, these reasons
do not apply to i f £, nor to the other common connectives,
nor, nand, and xor.

Not only do and and or take arbitrary numbers of argu-
ments, they take sets of arguments. (By definition, (and)
isTand (or) is F) That is, order and multiplicity are irrel-
evant among the arguments: (and a b ¢) is the same as (or,
atleast, is equivalent to) (and cba);and (or aabcbcea)
is the same as (or, at least, is equivalent to) (or a bc).!

(i1f a b), and

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'The two examples of each pair might literally be the same if
the KR system gives them the same internal representation.

593

What is special about and and or is that they are associa-
tive and idempotent, as well as being commutative. Consider
a fully parenthesized expression all of whose operators are
the same associative, commutative, idempotent, binary op-
erator. Because the operator is associative, inner parentheses
may be removed; because it is commutative, the order of the
operands may be permuted; because it is idempotent, mul-
tiple occurrences of any one operand may be exchanged for
just a single occurrence. Because and and or are associa-
tive, commutative, and idempotent, they may be given arbi-
trary numbers of arguments, with the order and multiplicity
being irrelevant. That is, they may be considered connec-
tives that take sets of arguments. However, xor and i ff
are associative, but not idempotent, and nor and nand are
neither associative nor idempotent.

Even more surprising is that wffs consisting of one of
these connectives multiple times do not have the semantics
most people assume. For example: for nor, (F | T | F) =
T;fornand, (T | T |T) =T forxor,( TOT®T)=T
andforiff,( F& FeT)=T.

2. Generalizing

We now introduce generalized versions of nor, nand, xor,
and i f £ that have the semantics we want. From here on, we
use nor, nand, xor, and 1 £f to mean these generalized
versions. We will use 7, 7, and n as metalinguistic variables
ranging over nonnegative integers, a, b, ¢, p1, ..., Pn as
metalinguistic variables ranging over wffs, and the metalin-
guistic relations = for logical equivalence and |= for logical
entailment. Except where otherwise noted, we will assume
that p1, and ..., and p,, are not necessarily distinct wffs.

Syntax: (con p;...p,),n > 0, where con is either nor,
nand, xor,or 1ff.

Semantics: For each connecitve, the general case and the
base case of an empty set of arguments are shown.

e (nor pi...py) is True if p1, and ..., and p,, are all
False; otherwise it is False.
(nor) = True.

e (nand p;...p,)isFalseif py, and..., and p,, are all
True; otherwise it is True.
(nand) = False.



e (xor p1...p,) is True if exactly one p; €
{p1,...,pn} is True; otherwise it is False.
(xor) = False.

e (iff pi1...py) is True if py, and ..., and p,, are all
True or are all False; otherwise it is False.
(1££f) = True.

Theorem 1. When restricted to two arguments, the gener-
alized nor, nand, xor, and 1 ff are equivalent to the re-
spective standard binary connectives.

Proof. By inspection of the syntax and semantics. |

Theorem 2. For any wff, a, (nor a) = (not a).

Proof. In every model in which a is True, both (nor a)
and (not a) are False; in every model in which a is False,
(nor a)and (not a) are True. O

3. andor
The connectives and, or, not, nor, xor, and nand are
all special cases of one parameterized connective, andor.
pn),0<i<j<n.
Semantics: (andor (¢ j) pi...pn) is True if at least

min(i, |{p1...pn}|) and at most min(j, |{p1 ...pn}|) of
pi € {p1,...,pn} are True; otherwise it is False.
(andor (0 0)) = True.

Theorem 3 shows that and, or, not, nor, xor, and
nand are special cases of andor.

Syntax: (andor (ij)p1..

Theorem 3.

1. (and pi...pn) = (andor (m n) pi...pn)
2. (or p1...pn) = (andor (1 n) p1...pn)
3. (not a) = (andor (00)a)

4. (nor p1...pn) = (andor (00)py...py)
5

6.

nand p1...pn) = (andor (On—1)p1...ps)
. (xor p1...pn) =(andor (11)p1...pn)

Proof. Straightforward from the semantics. O

Not only can every wff using and, or, not, nor, nand,
and xor be translated, preserving semantics, into a wif us-
ing only andor, but also every wif using only andor can
be translated, preserving semantics, into a wff using only
and, or, and not.

Theorem 4. > For any integers, j, k,n such that 0 < j <
k <n, and any distinct wffs, p1, ..., Pn,

(andor (j k) pi...pa) = VIAGUI-V(P—p)}) | p €

Uf:j choose(i,P)},

where:

e P= {pl . 'pn};

e for any positive integer, i, and set of wffs, P, choose(i, P)
is the set of all the subsets of P of size i,

e for any wff, p, —p = (not p);

e and for any set of wffs, P ={q1,...qu},

2Without loss of generality, this theorem considers the distinct
wifs, p1, ..., pn, among the set of arguments.

594

VVP=(or qi,...qn)
AP = (and q,...q)

Proof. (andor (j k) p1...pn) is True just in case for
some 7,7 < i < k, the wffs in some subset of P of size

i are True, and all the rest are False. Uf:j choose(i,P) is

the set of all subsets of P of size between j and k, inclu-
sive. So (andor (j k) p1...pn) is True just in case any
pE Uf:j choose(i, P) is a set of True wffs and all the wifs
in p — P are False. All the wffs in p — P are False iff the
wif = \/(P — p) is True. So the given p is True and all the
wffs in p — P are False iff the wif A(p U {=\/(P —p)})
is True. Therefore, (andor (j k) p; ...py) is True just in
k ‘ .
case \/{A(pU{=V(P—p)}) | p € Ui_; choose(i,P)} is
True. |

andor is expressively complete, in the sense that any wff
of Propositional Logic is equivalent to one that uses andor
as its only connective.

Theorem S. andor is expressively complete.

Proof. By Theorem 3, any formula containing any of the
connectives not, and, or, nor, or nand can be replaced
by a logically equivalent formula using only andor. Since
not and and; not and or; nor; and nand each form an
expressively complete set of connectives, andor is expres-

sively complete. O
4. thresh

Justas (nand ...) = (not (and .)) and (nor

.) = (not (or .)), we can define a connec-

tive equivalent to (not (andor (¢ j)...)), which,
for historical reasons, we call thresh.

Syntax: (thresh (ij)p1...pn),0<i<j<n.
Semantics: (thresh (¢ j) pi...pn) is True if ei-
ther fewer than min(i, |{p1...pn}|) or more than

min(j, |[{p1...pn}]) of p; € {p1,...,pn} are True; oth-
erwise it is False.
(thresh (0 0)) = False.

Theorem 6. (thresh (i j) pi1...pn)
(andor (1 j) Dp1...Pn))

(not

Proof. (andor (¢ j) pi...pn) is True just in case at
least min(i, |[{p1 ... pn}|) and at most min(j, |[{p1...pn}|)
of p; € {p1,...,pn} are True. So (not (andor (i j)
P1...pn) ) is Trueif either fewer than min (i, |{p1 ... pn}|)
or more than min(j, |{p1...pn}]) of pi € {p1,...,0n}
are True, which are just the situations in which (thresh
(¢ j) p1...pn) is True. O

Corollary 1. (andor (i j) p1...pn)
= (not (thresh (i j) p1...Pn))

Proof. Follows immediately from Theorem 6, and the fact
that (a = —b) = (—a = D). O

It is easy to show that thresh generalizes and, or,
nand, nor, and the identity function. However, thresh
also generalizes 1 £ .



Theorem 7. 3 For any integer, n > 2, and any distinct wffs,

P1y---5Pn»
(iff p1...pn) = (thresh (1 n—1) p1...pn).

Proof. (thresh (1 n —1) p1...py,) is True just in case
either fewer than 1 or more thann — 1 of py, and...., and p,,
are True. That means that it is True just in the situations in
which either p;, and ..., and p,, are all False, or they are all
True, which are just the situations in which (1 £f py...py,)
is True.

5. Syntactic Sugar?

Since, by Theorems 3, 4, and 6, any formula containing
any of these set-oriented connectives may be translated into
one containing only and, or, and not, it may be felt that
the set-oriented connectives are “only” syntactic sugar. In-
deed, Theorem 4 shows a combinatorial increase in formula
length when andor is removed. However, that is precisely
the point. KRR systems should provide these connectives
to their users, allowing humans to express information con-
cisely, and leave it to the program to expand the wffs into
long ones that use the less expressive connectives.

6. Previous Literature

The generalized nor was defined by (Wittgenstein 1922,
5.502, 5.51). The logic gates AND, OR, NAND, and NOR
are defined as taking an arbitrary number of inputs in (Weik
1969). The generalized i f £ was defined in (Shapiro 1971),
where it was called MUTIMP. A logic gate equivalent to
andor was introduced in (Epstein 1958). Independently,
andor was introduced in (Bechtel and Shapiro 1976), along
with a thresh that only has the ¢ parameter. (Shapiro
1979) gives the syntax and semantics of versions of andor
and the one-parameter thresh. The generalized xor was
defined in (Hayes 1985, p. 72) and (Davis 1990, p. 32). The
syntax and semantics of the two-parameter thresh was de-
fined in (Choi and Shapiro 1992).

7. Conclusions

Of the common commutative binary logical connectives,
only and and or may be used as connectives that take
sets of arguments. This is especially evident in CLIF, a
format in which it is particularly easy for operators to be
given arbitrary numbers of arguments. This deficit may be
overcome by using the generalized versions of nand, nor,
xor, and 1 ff, and the parameterized connectives, andor,
and thresh, andor being expressively complete. The
only computational cost in using the set-oriented connec-
tives in existing reasoners is incurred when translating for-
mulas that contain them into wffs containing only the con-
nectives implemented in the reasoners. However, not us-
ing them means that the human user incurs the same cost
when formalizing information using the less expressive tra-
ditional connectives. The burden of formulating long for-
mulas using inexpressive connectives should be borne by

3Without loss of generality, this theorem considers the distinct
wifs, p1, ..., pn, among the set of arguments.

595

programs, not by people. For illustration, ubprover, a
pedagogical resolution refutation theorem prover using the
set-oriented connectives discussed in this paper is available
for downloadingat http://www.cse.buffalo.edu/
“shapiro/Software/.

8. Acknowledgments

The author appreciates the comments of Randall Dipert, Al-
bert Goldfain, William J. Rapaport, and A. Patrice Seyed on
earlier drafts of this paper, and the contributions of past and
present members of the SNePS Research Group in helping
to formulate, implement, and use these set-oriented connec-
tives.

References

Bechtel, R., and Shapiro, S. C. 1976. A logic for semantic
networks. Technical Report 47, Computer Science Depart-
ment, Indiana University, Bloomington, IN. Presented at the
1976 Computer Science Conference, Anaheim, CA, Febru-
ary 10-12, 1976.

Choi, J., and Shapiro, S. C. 1992. Efficient implementation
of non-standard connectives and quantifiers in deductive rea-
soning systems. In Proceedings of the Twventy-Fifth Hawaii
International Conference on System Sciences. Los Alamitos,
CA: IEEE Computer Society Press. 381-390.

Davis, E. 1990. Representations of Commonsense Knowl-
edge. San Mateo, CA: Morgan Kaufmann.

Epstein, G. 1958. Synthesis of electronic circuits for sym-
metric functions. IRE Transactions on Electronic Comput-
ers.

Hayes, P. J. 1985. Naive physics I: Ontology for liquids.
In Hobbs, J. R., and Moore, R. C., eds., Formal Theories of
the Commonsense World. Norwood, NJ: Ablex Publishing
Corporation. 71-107.

ISO/IEC. 2007. Information technology — Common Logic
(CL): a framework for a family of logic-based languages,
ISO/IEC 24707:2007(E). ISO/IEC, Switzerland, First edi-
tion. available from http://standards.iso/ittf/
license.html.

Shapiro, S. C. 1971. A net structure for semantic informa-
tion storage, deduction and retrieval. In Proceedings of the
Second International Joint Conference on Artificial Intelli-
gence. San Mateo, CA: Morgan Kaufmann. 512-523.

Shapiro, S. C. 1979. The SNePS semantic network process-
ing system. In Findler, N. V., ed., Associative Networks: The
Representation and Use of Knowledge by Computers. New
York: Academic Press. 179-203.

Weik, M. H. 1969. Standard Dictionary of Computers and
Information Processing. New York: Hayden Book Com-
pany.

Wittgenstein, L. 1922. Tractatus Logico-Philosophicus.
London: Routledge & Kegan Paul, Ltd. Translated by C.
K. Ogden.



	KR10
	Contents
	Index
	Help
	Terms
	KR Conferences




