generatlion subsystem of a_natural language understanding system
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ABSTRACT N
-2
Generatlon of English surface strings from a semantic n%§work é
is vlewed as the creation of a linear surface string that describes §
a node of the semantic network. The form of the surface string is ﬁ
contbolled by a recyrsive augmented transition network grammar, §
which i1s capable of examining the form and content of the semantic 5
. ::
. : 1
network connected to the semantic node being ‘described. A single #
ncde of*phe gremmar network may result in different forms of sur-
) s
face strings depending on the semantic node 1t is given, and a
single semantic node may be described by different surface strings .

depending on the grammar node.it 1s given to. Since generation
from a semantic network rather than from disconnected phrase markers,

the surface str'iLnt> may be generated directly, left to rignt.
Introduction : i
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In this paper, we discuss the approach belng taken in the English

presently under develocvment .at Indiana University: The core of
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the understander 1s a semantic network processing system, SNeP3
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(Shaﬁirc, 1975), which is a descendant of the MENTAL semantic sub-
i L .

system (Shapiro, 13971a, 197 ‘) of the MIND system (Kay, 1973).

The role of the generator is to describe, in Engiish, any of the

nodes in the semantic network; all of which represens concepts of
a
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the undarstanding avatom
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Our system bears a superficial resemblance to that described

Cd ) 56 2
év and'cther~ccmputatioms are requirad in the process of pasting these ,E
& trees tqg.iher in approp{iate piaces until a single phrase marker g
is attained which will lead to the surface string. Since we are é
;ere“auing from a semantic network, all the pa sting tecgether is ’ E

already done. Grabbing the network by the'node of interest and 4

letting the network-dangle from it gives a structure wé}ch'may be - “g

searched appropriately in order to generate the sﬁrface striﬁg g
directly in left to right fashion: ‘ . %

;

in Simmons and Slocum, 1972 and in Simmons, 1973, That system,

hj>ever, stowes surface information such as tensg and vo*cn in iES

omy

semantic network and its ATN takes as 1nput a linear list contain-
ing the semantic node-and a- generation pattern censisting of a -
series of constraints ?3 the modality" ( \oimmcn; et al., 1973, p. 92)
The generator described in Schank et al., 1973, translates from ’

a "conceptual structure" 1nto & netvork of the form of Simmons! -

network which 1s then given to a version of uimmons’/gene“ation

program‘ The two stages use different mechanisms. Our systen

" amounts to a unificatio of these fwo stages.

The generator, as described in this paper, as well as SNePS.,

a parser and an inference mechanism have been written in LISP 1.6
and are running interactively on a DEC systen-lo on the Indiana
Univg%sity Computing Wetwork ' - - ) : )

Representation in the Semantic Network ' ' {/ o

Conceptual information derivea from parsed sentences or deduced
from other information (or input directly via the SHePS user's lan-

guageJ 1s stored in a semantic network. The nodes in the netyork

’

represent concepts which may be Qiscussed‘and reasoned about. The
, .

edges represent semantic but non-conceptual b1 nary relatlons

between nodes. There are also auxilliary nodes wnich NePS can. .
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use or which the user can use as SNePS variable

compl te diqcuawicn of SNaPo and uhp nn*}ﬂ*y pi= S
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ahe senantic network reprcsentation veing used doss not in- 67

clude Information considered to be features of the surface,etring,
SUsh 8s tense, voice or main vs. relative clause. Instead ofﬂgense,
poral informatlion 1s stored relative to a growing time line

{1 3 rmanner similar to that of Bruce,—l9?’2irj From_this 1nformatlon

2 tense can be generated Ior an output Jentence, but it may be 2

-,

feo

< €4,
’~
b-l

rent tense than that of the orlginal input sentenqe if time |

7]

orogressed in the interim. The voice of a generated sentence

is usuéllg determined by the top level céll to the generator func- .
ticn. -However, sometimes it is getermined by the geherator gram-
mar. For example, when generating a.relativefeiauSe; volce 1s
determined by whether the noun being modifiled 1s the agept or obf‘
Ject of the action described by the relative cleuee. The main
¢clause or a generated sentence depends on which semantic node is

.

glven to the generator in the top level call. Other nodes con-
nected to it may result in relative eleuses being generatea. These
roles may Be reversed 1h other top level calls to the genefator. .
The?generator 1s driven by two sets of dafa} the semantic net-
work and a grammar in the form of a recursive augmented transition o
network (ATN) similar to phat'of Woods, 1973. The eages on
our ATN are somewhat different from those ogégbods«since our view
isrthat the generator is a tranducer,from a network into a linear
string, whereas a parser-is a transducer from a lineer st?ing into
a tree or network. The changes this entalls are diseﬁssed below.
During any point in gederation, the generator is working'on sbme
particular semantic node. ?unctions on the edges of tﬁe-ﬁTh can d’,)
examine the network connected to this node and fail or succeed
accordingly. In this way, nodes of the ATN can "decide" what sur-
face form is most appropriate for describing a semantic node, while
different ATN nodes may generate different surface forms to des-
cribe the same semantlc node. .

A common assumption among lingulsts is that generation begins

with a set of disconnected deep phrase markers.
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Figure .1: Semantic Network Representation for "Charlie believes
that a dog kissed sweet young Lucy," "Charlie 1s a person,™and
"Lucy is a person." ‘

~afzrmation considered to be features of surfacelstrings are not
stored in the semantic network,'ﬁut are used Sy the parser in con-
structing the netwo#éxﬁrﬁﬁ the input sentence and by the generator

for generating a surface string from the network. For example,

tense 1s mapped into and from %gmporal relatlions between a node
. .

representing that some actlon has, is, or will\égizr and a growing

time line. Restrictive relative clauses are used by the parser

3

to 1dentify a node being discussed, while non-restrictive relative

clauses may result in new Iinformatlon being added to the network.

-

The example used in thils paper is desligned to 1llustrate the™
generation issues beiﬁg‘ﬂiscussed. Although 1t also illdstfates

our geheral apprbach to representational 1ssues, some detalls w1ll
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5 *(bw~u MOU25) : . - : ‘
= (CHARLIE IS BELIEVING THAT A DOG KISSED-SWEET YOUNG LUCY) oz
® (SNEG M0023) . . - .

(A DOG KISSED SWEET YOUNG LUCY) ro -
& (SNEG MOOOT)
2 (LJRRLTE WHO IS BELIEVING THAT A DOG KISSED SWEET YDUNG LUCY)
i3 * (SNES 10005

. (CHARLIE IS A PEKSON WHO 1S BELIEVING_THAT A DOG KISSED SWEET YOUNG LUCY)
% (SNEG MOOO0S) .
(CHARLIE WHO IS BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY IS A PERSON)
B (SNEG M000S) : ,
(THE BELIEVING THAT A DOG KISSED SWEET YOUNG LUCY BY’ CHARLIE)
¥ (SNEG MOO1l)
(A ohc WHICH KISSED SWEET YOUNG LUCY)
®(SNEG M0O1O0) SN
(THAT WHICH KISSED SWEET YOUNG LUCY IS A DOG) -
# (SNEG M0012) ,
(THE KISSING OF SWEET YOUNG LUCY BY A DOG)
# (SNEG M0020) -
(SWEET YOUNG LUCY WHO WAS KISSED BY A BOG) }
# (SNEG MOO14)
(LUCY IS A.SWEET YQUNG PERSON WHO wAs KISSED BY A DOG)
¥ (SNEG MOO015)
(SWEET YOUNG LUCY WHO WAS KISSED BY A DOG IS A PERSON)
& (SNEG M0OO17)
(SWEET LUCY WHO WAS XISSED BY A DOG IS YOQUNG) ,
# (SNEG M0019)
( YOUNG LUCY WHO WAb KISSED BY A DOG IS SWEET)
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Figure 2: Results of calls to the generator with nodes from
Figure 1l- User input is on lines beginning with ¥,

*

cerfainly change as work progresses. Figure'l shows fhe semantic
network representation for the 1nformation in the.sentences, "Charlie
believes that a dog kissed sweet young Lucy,"” "Charlie 1s a person,"

and "Lucy is a person." ‘Converse edges are not shown, but

in all cases the label of a converse edge s the label of the for-

e ward edge with '*' appended except for EEFORE, whose converse edge

1s labelled AFTER. LEX pointers point to ncdes containing lexical

-entries. STIME points to the starting time of an action and ETIME

RN,

to its ending time. Nodes representing instants of time are re-
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lated to each other by the BEFQRE/AFTER edges. The auxiliary node
NOW has a :VAL pointer to the current instant of time.

- Y

Flgure 2 shows the generator's output for many of the nodes of

Flgure 1. Eigure 3 shows the lexlcon used in the example.’
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Z((CTGY.V) (INF.BELIEVE) - “i
{TRES.BELISVES)(25AST.SELISVED) (PASTP. BELILVVD)(PREJP BELIEVING)))
\CH'°LIE§&FT3Y.3?R)(PI.CnnRLIE))) .
(ZJ54\CTGYYK) (SING.DOG) (PLUR.DOGS))) -
ISS{{3TGY.V) (INF.XISS)
{PRTS . KISSES) (PAST.XISSED)(PASTP.KISSED)(PRESP.KISSING))) ;
UCY (W CTSY.NPRY(FI.LUSY))) [ :
ERRON{{OTSY. NV (SING.PERSON) (PLUR. P;OPLE))) ! £
WEETLCTOY .ADS ) (FILSWIET))) 3
QUNG{(CTGY.ADJI)(PI.YOUNG))) [

-

Zigure 3: The lexicon used in the example of Figures 1 and 2. - :

?

sgneration as Parsing

Normal parsing involves taking input from a linear string and

producing a tree or network structure as output. - Viewing this S -

~

tn terms of an ATN grammar as-described 1n Woods, 1973, there 1i1s a

well-defined next input Tunction which simply places successive f\\\-

words into the * register. The output function, howevér,\fs more

complicated, using BUILDQ to build pieces of trees, or, as in ‘our

parééf; a BUILD function to build pieces of network.

Ig;we.now consider generating in éﬁesg'terms, we see that there
i1s no simple next input function. The generator will focus on/// ) 3
some semantic node for a while, recursively shifting its attention\//% (

to adjacent nodes and back. Since there ar everal adjacent nodes,

o~

connected by variéysiy labelled edges, the‘é?ammar author must
A

specify which edge to follow when the generator is to move to another
semantic node. For these réasons, the same focal semantic node
1s used when traversing edges of the grammar network and a new se-

is specified by giving a path from the current semantic

mantic node

The reglster SNODE is

node when pushing to a new grammgr node.

.used to hold the current semanti

node.

The output function of generation is straightforward, simply

being concatenation onto a growing string. Since the output string

is analogous to the parser's input string, we store it in the reg-

-
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test {action]®*(TO gnode))
[3;t10n]'(”0 gnode))
wforn (word®*) test [action]®*(TO gnode))

€y}
<N
Zn
5 3

~~ r\r'- N~
. e .

gg

4

NOTMEM wform (word®) test [action]®(TO gnode)) '
TRANSR ({regname] regname regname) test [action]¥(TO gnode))
GZN.gnode sform [action]¥regname [action]*(TO gnode))

sfcra = wform e
SNODE

wiorz ::= (CONCAT form form%*)

(GETP sarc [sform]) \)
(GETR regname) :

(LEXLOOK 1lfeat [s;orn])
sexp

form ::= wform
sform

action ::= (SETR regname form
(ADDTO regname forn*) . ™~ ‘
(ADDON regname form#) ' -
sexp ’ / ' :

vest 1ix (MEMS form formi~ | -
o (PATH sform sarc¥® sform) ‘ i ’///

form
sexp .

gnode ::= <.any LISP atom which represents a grammar node>
word ::= <any LISP atom>
regname‘; = <any non-numeric LISP’ atom used as a regilster name>

sarc ::= <any LISP atom used as a semantic arc 1abel>

1feat ::= <any LISP atom used as a lexical feature>
sexp' ;:= <any LISP s-expression>

Figgre 4: Syntax of edges ofvgenerator ATN grammaps ' LT

-
R

.ister ¥. ~When a pop occurs, 1t is always the current value of ¥
that 1s returned.

Figure 4 shows the syn?ax of the generator ﬁTN grammari Object
language symbols are ), (:}and elements in cégltal letters.. Meta-"
language symbéls are in lower case, Square brackets enclose op-

~tional elements. Elements followed by # may be repea§ed one oOr more

times. Angle brackets enclose informal English descrlptions.

Semantics of Edge Functions <

In this section, the semantics of the grammar arcs, forms and

tests are presgnted and compared to those of Woodsg! ATHs .+ The

—

t All comparisons are with Woods, 1973. -
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g " TEST(GETF VERB) ;

~(SREG —~
TEST(GETF ADJ) ym( SADJ

TEST(GETE NAME) =SNANE) *
TEST(GETF MEHMBER) : sﬁsw

SRR W VS R e o L T ol e o, D g i

d N gy v

o,

Lot e
pd St

\

TEST(GETF VERB)(SETR REF NIL) _ ~yer—
~ TEST(GETF VERB*)

e NV | %
JUMP
) ' ]
3UMP(SETR * A(//// NO GRAMMAR NODE FOUND)) ENﬁ

.-

. Figure'ﬁz The default entry into the grammar network.’

essential differences are those required by the differences between

generating and parsing as discussed in the previous section.

(TEST test [action]*(TO gnode))
=If. the test i1s successful (evaluates to non-NIL), the -actions
are performed and generation continues at gnode. If the test

fails, this edge 1is not taken. TEST is 'the same as Woods' TST, ' \\\
by . .

while TEST(GETF sarc) is énalogous to Woods'! CAT.

(JUMP [action]*(TO gnode) ) 2

Equivalent to (TEST T [action]#*(TO gnode)). JUMP is similar

in use to Woods' JUMP, but the difference from TEST T disappears

since no edge "consumes" anything. \\

~

(MEM wform (word*) test [action]*(TO gnode))
—

If the value of wform has a non-null intersection with the
1ist of words, the test is performed. If the test is also success- .
o . ful the lons are performed and generation continues at gnode.

if eithg¢r the intersection is null or the test fails, the edge
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ME‘U( SETR

VC)(PASS)T 2%§E>kGEN NCLNP{GETF OBJECT)
(ADDTO DONE SNODE ) # ‘jE
{

_GEN NCLNP(GET® AGENT)(ADDTO DONE SNODE)®

ra:ion of subjece of subject-verb-object sentence,

“re b (Jene

~This 1s similar in form to Woods' MEM, but mainly

used Tor testing registers.

(NOTMEM wform (word#) test (action]*(TO gnode))

This 1

%]

exactliy like MEM except the Intersection must be null.

(TRANSR ([regnamel] regname,, regname3) test [action]*{TO gnode))

It regnamel is present, the'éontgnts of regname2 are added

i
on the end of regnamel. Ir regname3 1s empty, the edge 1is not

taken. Otherwise, the first element regname3 is removed and

placed 1in regname2 and the test is perfd¥med. If the test fails,

;he°edge is not taken, but if 1t succeeds, the actions are performed

and generation continues at gndde. TRANSR is used to iterate through

.-

several nodes all in the same semantic relation with the maln se-

s
mantic node.

¥

, .
(GEN gnodel sform [action]*regname [laction]*(TO gnodez))

The first set of actions are performed and the generation is

called recursively with the semantic node that is tﬁévvéiue of sform

and at the grammar node gnodel. If this generation i¥ successful

(returns non-NIL), the result is placed in the register regnane,

the second set of actions are performed and generation continues

at gnodez. If the generatign fails, the edge is not taken. This

1s the same as Woods' PUSH btut requires a semantic node to be speci-

fled and allows any register to be used to hold the result. 1In-

stead of having a POP edge, a return automatically occurs when

‘&
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ﬁ&gPASTl)
GETT D

TRIP(FIND AFTER{*(GETF STIME))

BEFORE(+{GETF ETIME)))))

PR

1]
STIMEVEERORE ASTER(R :0Y))

LY Tk AR X P Wy IR ANY R A LW
,,,,, T >VEF )
":...“ Q‘.{Akb‘

STIME)AFTER BEFOKE(* (QNOW))

SWOULD)

{///CANNOT COMPUTE TENSE))

# RBEEN)

MEM(GETR VC){PASS)T(ADDON * @BE)
G2 ] ome |
MEM(GETR VC)(PASS)S(ADDON * @WILL @BE) \
MP(ADDON * GWILL) ' ‘
__ MEM(GETR VC)(PASS)T(ADDON * @WAS)
iﬁi!i!’<:::;UMP :

: ~=(PASD)
>~ MEF(GETR VC)(PASS)T(ADDON * @BEING) .
YEROGRIR JUMP (ADDON ¥ (LEXLOOK PRESP(GETF VERB)))

5AST JUMP(ADDON * (LEXLOOK PASTP(GETF VERB))) ‘:\\%
CEEEE::} JUMP{ADDON * (LEXLOOK INF(GETF VERB))) : SUROB
VPAST JUMP (ADDON * (LEXLOOK PAST(GETF VERB))) '

Figure f: Tense generation network.

transfer is made td the node END. At that point, the contents of

the register named % are returned. _ K

(CONCAT form foym¥*)
The for3§/é£e evaluated and concatenated in the order given.

Performs a role analcgous to that of Woods' BUILDQ.

(GETF sarc [sform])

Returns a 1list of all semantic\nodes at the end of the seman-

tlc arcs labelled sarc from the semantic node which 1s

the value
. _ R T
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Tense Active Passive

past broke was broken

future " willl break will be broken
present progressive| 1s breaking 1s being broken

past progressive was breaking was belng broken
future progressive will be breaking{ will be being broken
past in future will have broken will -have been broken
future in past would break would be broken

Figure 8: The tenses of "break" which.the network of Figure 7
can generate. ’

~

~

cf sform. If sform is'missing, SNODE 1s assumed. Returns NIL if

there are no such semantic nodes. It is similar in the semantic

domain to Woods' GETF in the lexical domain.

(GETR regname) 5 T~
Returns the contents of register regname. It is essen l1ally

the same as Woods' GETR.

(LEXLOOK 1feat [sform]) [

Returns the value of the lexical feature, 1feat, of the 1¥#xical
entnyfassociated with the semantic node which 1's the value of sform.
If sform is missing, SNODE 1s assumed. If ho lexical entry Is ass
ciaéed with the semantic noge, NIL is returned. LEXLOOX 1is simila:*\)

to-Woods' GETR and as also in the lexical domain.

(SETR regname form)

The value of form is placed'in the register regname. It is

the same as Woods' SETR.

(ADDTO regname form*)

Equivalent to (SETR regname (CONCAT (GRTR regname) form*)).

(ADDON regname form*)

Equivalent to (SETR regname (CONCAT form? (GETR regname))).
(MEMS form form)

Returns.T if the values of the two forms have a non-null interzec~

tion, NIL otherwise.

ettt s YT D
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./’T"ST(GE"‘? AQGENT) (ADDON *# QBYm

REDAG a .,
, L JUMP
~

MEN({GETR VC)(PASS)T

= PREDOBJ

F AGENT) REG (ADDON ® (GETR. ch))

J

. : " ) \ . P

Yigure incenerating'th

surface object.

ro® \
sarc® sfo 2)

Returns T if a path descrided by the sequence of semantic ércs

>

* X
exists between the value of srorm1 and sformz. If /the sequence
the path described 1s_the same as that

indicated by safcl‘ sarce‘ co

(PATH sform’

is sarc, sarc’2 .-y Sarc .,

.

sarcn'., If no such path exists,

NIL is returned. (Remember, * means repeat one or more times,)

Discussion of an Example Grammar Network_ .

S

The top level generator.funcgzéQ, SNEG, is given as arguments

a semantic node and, optlonally, a grammar node. If the grahmar

node 1s not given, generation begins at the node Gl which should

be a small discrimination net to choose the preferred description  *

£or the given semantic node. This part of the example grammar is -

shown 1n‘Figure 5. In it we -see that the prefYerred description

]
for any semantic node 1s a sentence.

If no sentence can be formed

a noun phrase will be tried. Those are the only presently avail-

_— | | °

Semantic nodes with an outgoing VERB edge can ve described by -

able optlons,

a normal SUBJECT-VERB-OBJECT sentence. (For this example, we

have not used additional cases.) Firsf/;;;\gubject iS‘generagggjxﬁ ’
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5D GEN NP(CETF WKICH)[ADDTO DONE SNODE)*
(ADDON * 2IS(LEXLOOK PI(GETF ADJ)))

GEN NP(GETF NAMED) (ADDTO DO.E SNOCE)*® . S
(ADDTO *(LEXLOOK PI(GETF NAME)) QIS)

'-

CZEEEED'GEN NP (GETF MEMBER) (ADDTO DONE SNODE)*
(ADDON * 3IS Q@A(LEXLOOK SING(GETF CLASS)))

Figure 10: Generating the three "non-regular" sentences.

whlich depequ on whether the sentence is to be in active or passiVe
volce. Alfernatively, the cholce could be'expressed iﬁ terms of
whether the agent or object 1s to be the topic as suggested by Kayg‘
1975. Figufe 6 shows the getwork that generates the subjJect. The
register DONE holds semantic nodes for which sentences are being
generated for later checking to prevent infiﬁite recursion. Without
it, node,MOO23 of Figure 1 would be described as, "A dog which kissed

i

young SjLet Lucy who was kissed by a dog which kissed..."

e

The init%al part of the, PRED network 1s concerned with generat—'
ing the tense. Thils depends on the ?EFORE/AFTER path betwgen the
starting and/or ending timé of the action énd the current vglue of
NOW, which is given by the form (* @NOW). Figure 7 shows the tense
generaﬁion network. Figure 8 shows the tenses'this.network is able
to generéte.

After the verb group is generated, the surface object 1s gener-
ated by describing either the semantigyagent or object. PFigure 9
shows this part of the netwsrk. .

The other three kinds of sentences are ror'describing nodes
representing: (1) that something has a particula; adjectlive attribu-
able to 1it, (2) that something has a name, (3) that something is a
member of sdme class. The networks for these are shown in Pligure

10. Agaln, the DONE register is used to prevent such sentences as

"Sweet young Lucy 13 sweet," "Charlie 1s Charlle."” and "A dos fc a ans ¥

e RTIW—.
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Figure 11: Generating nominalized verbs and sentences.

Fugure 5 showed three basic kinds of nou;\ghrases‘that cen be
geng{ated: the noun clause or nominalized senténce,gsuch as ”that
a dog kilssed swget young Lucy", the nominalized verb, such as "the
kissing of sweet young Lucy by a dog"; the regular noun phrase.

_The first two of these are generated by the network shown in Figufe
11,

Here DONE is,used to prevent, for example, "the kissing of sweet

young Lucy who bﬁs kissed by a dog by a dog.".
4

® The regular noun ﬁhrase network begins with another descrimina-

tion net which has the following priorities: use a name of the object;
" use a class the object belongs to; use scmething else'known about

the obJject. A lower_priority descripéion w11l be used il all higher

priority descriptions-are already in DONE. 'Figure 12 shows the be-

ginning of the noun phrase network. AdJectives are added before the

\\\~aﬁ5;/;P before the class name and a relative clause is added after.
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Figure 12: The beginning of the noun phrase network.

Filgure 13 shows the adjective string generator and Figure lu\shows

the relative clause generator. Notice the use of the TRANSREedgeS . N
f@ for iterating. At thi% time, we have no theorylfor determining the’

%§ number on.which ﬁdjectives and relative clauses to generate, so

arbitrarily we generate)all adjectives not already on DONE but only . ;f

one relative clause. We have not yet implemented any ordering of

Ay

adjectives. It is merely fortuitous that "sweet young Lucy" is

L e

I )
el ol

generated rather than "1oung'sweet Lucy”. The network 1s written

so that a relative clause for which the noun is the deep agénp is

-

" . preferred over one in which}the noun 1s the deep object. -ﬁoticeﬂ

that thisAchoice determines the voice of the embedded clause. The
form (S?RIP(EIND MEMBER (4 SNODE) CLASS (FIND LEX PERSON))) 1s a
call to a SNePS function that detefmine; if the object is known to
be a person, in which case "WHO" 1s used rather tﬁan "WHICH". This
determﬁggiidn 1s made by'referring ﬁo the semantic network rather

than by including a HUMAN feature on the lexical entries for LUCT
and - CHARLIE."
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1f that infornation derived f‘rom some main clausé.tsAlso, while ;{fgi\ig.'
d A O PR I S S T

'the generator is examining a semantic node‘all.the information~abouﬁ“‘, L.
. " )

that node 1s reachable from it and may be used dlrectly. There, ,,/J*“~~

b T et
is no need to examine disjoint‘deep phrase marker to’ er{where /
they can be attached to each other S0 ihat a cOmpley sentence~cag’be = )
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Additional work needs to be’ done in developing the style of AL
) ’ T gl 7
generation described in this paper. Experience with 1arger and &Q?; :
richer networks will lead to the following issues. descrihing a node '1'.;
by a pronoun when. that node has been described earlier in the string" T
?‘-& - e

regulating verbosity and conplexity, possibly by the use of resource

- B N

bounds simulating the limitations of short term memory- keepihg sub- ‘f,“'“

F Tagee

ordinate clauses and descriptions to the point o{;the conversation./L?{_}‘
bly by the use of a TO-DO register holding thenodes that)are i =
to be cluded in t%e string. = - ' o iv' - ff) 7 . .-
In“this’paper, only indefinite déscriptions were generated; Ha |
are worging on a routine that will identify;the brbgé}?gésﬁét of the
. - < p;

4

such that it uniquely identifies tbc node be*ng described
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Figure 1l4: The relative clause generator.
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