A SCRABBLE CROSSWORD GAME PLAYING PROGRAM

Stuart C. Shapiro

Department of Computer

Science

State University of New York at Buffalo

Amherst,

A program that plays the SCRABBLE Crossword Game has oeen designed and
in Pascal on a CYBER 173. The heart of the design is the data struc-

67 on a DECSystem-10 and

New York 14226

implemented in SIMULA

ture for the lexicon and the algorithm for searching it. The lexicon is represented as a
letter table, or trie using a canonical ordering of the letters in the words rather than the
original spelling. The algorithm takes the trie and a collection of letters, including blanks,
and finds all words that can be formed from any combination and permutation of the letters.
Words are found in approximately the order of their value in the game.

1 INTRODUCTION game between any number of players, and each

The SCRABBLE Crossword Game is a well known wrote a program player.

game considered to require a fair amount of In the sections that follow, we will briefly

intelligence, strategic and tactical
facility with words, and luck. Unlike most games
in the artificial intelligence literature, it
can be played by two or more players and is
neither a zero sum game nor a game of perfect
information. For these reasons, minimax search-
ing procedures do not seem applicable. When
humans play the game, a large easily accessible
vocabulary seems to be the most important deter-
miner of victory. One might, therefore, think
that it would be easy to write a program that
plays the SCRABBLE Crossword Game at the cham-
pionship level. We are examining this question
by concentrating our efforts on the design of
the lexicon and the algorithm for searching it
and paying much less attention to the strategies

skill,

and tactics of actual play.
Our lexicon differs from those usually used in
natural language processing programs because of

the use to which it is to be put. Usually one is
confronted with a possible word. One must deter-
mine if it is a word, and, if so, segment it in-
to affixes and stem, and retrieve lexical infor-
mation associated with the stem. The problem for
the SCRABBLE Crossword Game lexicon is, given a
set of letters, find all the words that can be
made from any combination and permutation of
them. This is a very different problem.

We have designed a program that plays the
SCRABBLE Crossword Game and implemented two
versions. At Indiana University, Howard Smith
implemented a program in SIMULA 67 [2,3] on a
DECSystem-10. At SUNY/Buffalo, Michael Morris
and Karl Schimpf implemented a version in
Pascal [6] on a CDC CYBER 173 that manages a

797

describe the game manager, basing the descrip-
tion on the Pascal version, which is more gen-
eral than the SIMULA version. We will then
describe the lexicon data structure and search
algorithm in more detail. Finally, we will
briefly describe the three program players that
have been written.

2. THE GAME MANAGER

Figure 1 shows the overall organization of the
system, assuming one human player and one pro-
gram player. In reality, there may be any

number of human players and any number of pro-
gram players as long as there are at least two

players.

The game manager module handles all interaction
with human players and either deals tiles or
accepts tiles picked by human assistants. After

Program Player

Lexicon
Manager

Figure l: Overall system organization

each move, it reports the move to the board
analyzer modules of all program players in the
game, so they may ''start to think about their
next plays' while the humans are playing.

2.1
The referee checks proposed plays for legality

The Referee

and computes the score of legal plays. If a
human proposes a word not in the lexicon, the
referee asks if it is really a word. If the
human says it is, it is added to the lexicon.
Otherwise the play is considered illegal.

Program players may use the referee to find
legal plays and to choose the best among several
legal plays.

2.2 The Human Opponent

A human player interacts with the game manager
in a notation close to the official notation of
the SCRABBLE Crossword Game Players, Inc. [I].
The word is typed with each letter already on
the board preceeded by a "$". When a blank tile
is played, a "@'" is typed followed by the letter
it is being used as. The location of the word is
indicated either by a row and the beginning and
ending columns (e.g. 8K-N), or by a column and
the beginning and ending rows (e.g. C2-7).

2.3 The Lexicon Manager

The lexicon manager is used by the referee to
check whether words and crosswords are contained
in the lexicon, and to add words which a human
player claimed are words, but were not already in
the lexicon. The program players use the lexicon
manager to find words to play. A human player may
use the lexicon manager to interact with the
lexicon without ending the game.

3. THE LEXICON
3.1 The Data Structure

1ne lexicon was designed Lor the particular
problem, ''given a collection of letters, find
all words that can be formed from any combina-
tion and permutation of the letters, and find
these words in approximately the order of their
value in the SCRABBLE Crossword Game''. Two key
ideas were combined in the design of the data
structure - letter tables [4, 5, 8], or tries
{7], and canonical ordering.

_ . ecﬁ Pecks, Speck
K] e P E E}fi
v Tick »Ticks, Stick
T 1 S
—tb —=
\J ark reg er,Brake
B R A S Breaks,
yd i e pg I d B b mn g Bakers,Brakes
4 il gMile iles, Smile 4 5miles
M L 1 f’u _W;; s F[S
ot > o>t—> s >
Figure 2: An example Key : Tetter | words
lexicon trie tail success

798

Each node in the lexicon trie contains a letter,
a list of words, a success pointer and a fail
pointer. If L is the sequence of letters con-
tained in all nodes on the success path from the
root to some node, n, excluding the letter in n,
and | is the letter in n, then the list of words
in n is all words that are permutations of the
letters in L plus £, the success pointer points
to a subtrie containing words formed from L, £,
plus other letters, and the fail pointer points
to a subtrie containing words formed from L,
other letters, but not |. The order of letters
on both success and fail paths is the canonical
order discussed below. Figure 2 shows a small
lexicon trie.

3.2 The Search Algorithm

Briefly, the algorithm for searching the
lexicon is to take a set of tiles, order them
according to the canonical ordering, search the
fail path of the root until the letter of the
first tile matches the letter in a node, then
search the success subtrie with the remaining
tiles of the set. Then, to get words formed
from subsets of the original set, ignore the
letter that matched the node and also search
the fail subtrie. So, if the lexicon of Figure
2 is searched with the letters KCPTIE, "peck"
will be found, and then, ignoring "p", "tick"
will be found.

So that words can be found in approximately the
order of their values in the SCRABBLE Crossword
Game, the major sort used in the canonical order
ing is the value of the letters in that game.
Since when a letter of a lexicon node is in the
search set both its success and fail subtries
are searched, but if it is not only its fail
subtrie is searched, the secondary order is
frequency of the letter in the game set, least
frequent first. The tertiary sort is frequency
in English, most frequent first, to help mini-
mize the size of the lexicon trie. Contrary to
this ordering, "S" was placed last, because of
the large number of words that can have "S"
added and remain words. For example, Figure 2
has 21 nodes, but if "S" were placed before

L » where it belongs, the same lexicon would
have 32 nodes. The final ordering used was
"'"QZXJKHFYWVCMPBGDLUTNRIOAES".

Four details were ignored in the above brief
description of the search algorithm. First,

longer words, like "smiles" are more valuable
than shorter words using the same letters, like
"mil", so words on the same success branch are

collected in the order of leaf toward root,
rather than root toward leaf. Second, the
search set of tiles may contain blanks, which
can match any letter. Blanks are initially
placed first in the search set so they can
match nodes high in the lexicon trie, and later

shuffled down in the search set to match lower
nodes. Third, the search set can contain letters
that are required to be in found words, so are
never ignored by the search algorithm. Fourth,
the search terminates after each word is found
in case that word is acceptable to the player and
no further search is required. If this is not the
case, the search can be resumed from where it

best of the Pw plays, or, if these are all
illegal, they exchange their racks. Joanne first
tries playing parallel to existing words, con-
sidering upto w2 words formed entirely from the
rack.

Table 1 shows the results of interactive games of
SIMSCRB against humans DRF and SJ, and batch
games of Gerry against itself and Joanne against

left off. The SIMULA 67 version uses the detach itself. The programs play approximately at human
facility for this purpose. Space precludes pre-
senting the complete algorithm here. It can be TABLE 1
found as procedure findwords2 in [9") . Summary of Four Games
3.3 Use of Secondary Storage Player Number of & Number of Score Before Avg. Score Final

. i . Moves rds played duction oer word plaved Score
We have used two different schemes for maintain-|ppr | o‘zle jwo 21; * | &457 l 13.88 139
ing the lexicon on disk. The SIMULA 67 version |SIMSCRE 25 ! 16 | 210 13.13 208
uses a sequential file of characters and digits. :Juscu ig ' i: i gti ‘ }: o f;g
The letter of each node is followed by the list L -
of words, if any, and then by one of the digits g::z; ﬁ : . ;é ;;:; 2;;
0-3 indicating which kinds of subtries the Qode Joanne 1 3 T s 038 129!
has. If both are present, the success subtrie Joanne 2 30 20 208 10.4 20“:
proceeds the fail subtrie. This organization
allows the lexicon to be searched while the file level. The maior difference is the number of
is read in the forward direction only. However,) : ! . L

times the programs exchange tiles. This is part-

a node's entire success subtrie must be read to
find its fail subtrie. The SIMUIA version, with
a lexicon of about 1500 words, averaged about 42
CPU seconds per pair of moves (program and human).

The Pascal version uses a segmented file of re-
cords, where each record is a lexicon node con-
taining at most one word. If necessary, successive
records with dummy letters contain additional
words. Except for this, the root of the success
subtrie of a node immediately follows the node.
A node with no success subtrie is followed by an
end-of-segment mark. The root of the fail subtrie
of a node is the first node of some segment later
in the file, so that to find a node's fail sub-
trie, the entire success subtrie needn't be read,
just the first node of each intervening segment.
Currently, this lexicon contains 2126 words, in
4262 node records and 1666 segments. The Pascal
program averages about 29 CPU seconds per pair of
program vs. program moves when run in batch, but
has been too slow to run interactively due to
system overhead.

4. PROGRAM PLAYERS

Three program players have been written, SIMSCRB,
written by Howard Smith in SIMULA 67, and two
Pascal programs -- Gerry, by Michael Morris, and
Joanne, by Karl Schimpf. SIMSCRB only plays across
existing words, never extending a word or playing
parallel to a word. Joanne also considers parallel
plays, but not extending words. Gerry considers
all types of plays. Each board analyzer maintains
a list of playable positions ordered by expected
value of a play there. The programs consider the
best P positions and the first w words found in
the lexicon for each position. The chosen play is
the first that is worth at least m points, or the

799

ly due to small vocabularies,
wasting many of the
for which legal

ACKNOWLEDGEMENTS

Ben Shneiderman, Margaret Ambrose and Barbara
Rasche cooperated on an early version of the pro-
gram. Howard R. Smith implemented the SIMULA 67
version, and was partially responsible for the
lexicon search algorithm, Michael Morris Jr. and
Karl Schimpf implemented the Pascal version.

REFERENCES

[1]. Conklin, D.K.(Ed.) The Official SCRABBLE
Players Handbook. Harmony Books Division, Crown
Publishers, Inc., NY, 1976.

[2]. Dahl, O.-J., Myhrhang, B.;
Simula 67 Common Base Language.
puting Centre, Forskningsveien IB, Oslo 3, 1968.
[3]. Dahl, O.-J., and Nygaard, K. Simula-an
Algol-based simulation language. Comm. ACM 9,
(Sept., 1966), 671-678.

[4]. De La Briandais, R. File searching using
variable length keys. Proc. WJCC, AFIPS Press,
Montvale, NJ, 1959, 295-298.

[5]. Hays, D.G. Introduction to Computational
Linguistics. American Elsevier, NY, 1967, 92-94.
[6~]. Jensen, K. and Wirth, N. PASCAL User

Manual and Report. Springer-Verlag, NY, 1976.

[7]. Knuth, D.E. The Art of Computer Programming
Vol. 3/Sorting and Searching. Addison-Wesley,
Reading, MA, 1973, 481-487.

[81. Lamb, S.M and Jacobsen, W.H., Jr., A high-
speed large-capacity dictionary system. Mechani-
cal Translation, 6 (Nov., 1961), 76-107.

[9]. Shapiro, S.C. and Smith, H.R., A SCRABBLE
Crossword Game Playing Program. Tech Rpt. No. 119,
Dept. of Computer Science, SUNY/Buffalo, NY, 1977,

and partly to
limited pw tries on positions
moves could not be found.

Hygaard, K. The
Norwegian Com-

