ASSOCIATIVE NETWORKS

THE SNePS SEMANTIC NETWORK
PROCESSING SYSTEM

Stuart C. Skapiro

1. INTRODUCTION

Semantic networks have been used as representations of knowledge
since the mid 1960s. Quillian’s 1966 semantic memory, described in Quil-
lian [1968], is considered the first semantic network, but it had roots in Ra-
phael’s 1964 SIR [Raphael, 1968} and in the work of Reitman [1965]. An ex-
cellent historical review is in the chapter by Brachman in this volume.

One can define a semantic network as a labeled directed graph in which
nodes represent concepts, arc labels represent binary relations, and an arc
labeled R going from node n to node m represents that the concept repre-
sented by n bears the relation represented by R to the concept represented
by m. Each concept represented in the network is represented by a unique
node.

The notion of “concept” is vague, but one can think of it as including
anything about which information can be stored and/or transmitted.
Various semantic networks have included as concepts concrete and ab-
stract individuals, prototypical and generalized individuals, actions, sets,
propositions, facts,>beliefs, roles, relations, hypothetical worlds, and
others. Since Woods [1975] first pointed it out, it has been generally recog-
nized that each node represents an intensional rather than an extensional
concept. Furthermore, two concepts that are extensionally equivalent but
intensionally distinct may be represented by different nodes.

Since each concept represented in the network is represented by a node,
it follows that the relations represented solely by-arc labels are not concep-
tual. I refer to such relations as structural relations since they are used to
form the basic structure of the semantic network, and distinguish them
from conceptual relations, which are represented by nodes. This distinction
is discussed further in Shapiro [1971a,b], where stractural relations are
also called item relations and conceptual relations are also called system rela-
tions.

There are four levels at which semantic networks can be discussed: an
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abstract graph level, a two-dimensional pictorial level, a one-dimensional

symbolic level, and a computer implementation level. These levels,
though related, are independent in the sense that two semantic networks
can differ on one or more levels and be the same on the other levels. Often
the levels are not dearly distinguished, and one must be careful not to
conclude from a discussion at one level what another level must be like.
Similarly, when comparing different semantic networks, one must bé
careful to note on which levels they differ and on which, if any, they are
the same.

This chapter describes the SNePS semantic network processing system,
which is a direct descendent of MENTAL [Shapiro, 1971a,b]. SNePS is
currently implemented in ALISP [Konolige, 1975] and runs interactively
on the CDC CYBER 173 at the State University of New York at Buffalo.

Three levels of SNePS are described: the abstract graph level, the pictorial’

Jevel, and the linear symbolic level. For the latter, the SNePS User Lan-
guage, SNePSUL, is used.

2. BASIC REPRESENTATION

2.1. Abstract Graph Level

A SNePS semantic network is a labeled directed graph in which nodes
represent concepts and arcs represent nonconceptual binary relations

between concepts. Each concept is represented by a unique node. When-

ever an arc representing a relation R goes from node n to node m, there is
an arc representing the converse relation of R, R¢, going from m to n. An
arc is labeled with a symbol intended to be mnemonically suggestive of
the relation the arc represents.

I distinguish three kinds of arcs: descending, ascending, and auxiliary. For
each relation represented by descending arcs, there is a converse relation
- represented by ascending arcs and vice versa. Together, descending and
ascending arcs are the regular semantic network arcs referred to above.
Auxiliary arcs are used for hanging nonnodal information on nodes and
for typing the nodes as discussed below. If a descending arc goes from
node n to node m, I say that nimmediately dominates m. If there is a path of
descending arcs from node n to node m, I say thatn dominates m.If Ris an
arc label and n is a node, I shall use the notation R{(n) for the set of nodes

into which arcs labeled R go from n. In what follows, we shall often use

the phrase ““the relation R when we mean “an arc labeled R.”

There are three kinds of nodes: constant, nonconstant, and- auxiliary.
Auxiliary nodes are connected to each other and to other nodes only by
auxiliary arcs. Auxiliary nodes do not represent concepts but are used by
the SNePS system or the SNePS user to type nonauxiliary nodes or to
maintain a reference to one or more nonauxiliary nodes. Constant nodes
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represent unique semantic concepts. Nodes that dominate no other node

are called atomic nodes. Atomic constants are called base nodes and atomic

nonconstants are called variable nodes or variables. Variables are distin-

guished by being in the auxiliary relation VAR to the auxiliary node T.

Variable nodes are used in SNePS like variables are used in normal predi-

cate logic notations. Nonatomic nodes are called molecular nodes. They are

often used for representing propositions. There is a set of descending rela-"
tions called binding relations that act like quantifiers in normal symbolic

logic formalisms. A molecular node that immediately dominates one or
‘more variables and no other variable may have at most one binding rela-

tion to an arbitrary number of its dominated variables, which are referred
to as bound by that molecular node. The remaining dominated variables

are referred to as free in the molecular node, which has an auxiliary :SVAR
to each of them. If a node m immediately dominates a set of variable nodes
{v,, . . ., v} and a set of molecular nodes {n,, . . ., mg} and V=

{vi, . . ., v} U:SVAR(nj) U - - - U :SVAR(n,) is nonempty, m may
have at most one binding relation, say Q, to one or more variables in V.

These variables are referred to as bound by m. The remainder, V — Q(m),

are free in m and have the arc :SVAR to each of them from n. A node n
such that :SVAR(n) is nonempty is a nonconstant molecular node and is
called a pattern node. Pattern nodes are comparable to well-formed for-
mulas with free variables. A molecular node n for which :SVAR(n) is
empty is a molecular constant or assertion node.

Temporary molecular and variable nodes can be created. Temporary
molecular nodes have no ascending arcs coming into them from the nodes
they dominate. Temporary nodes are not placed on any permanent system
list and are garbage-collected when no longer referenced. They are invisi-
ble to all the semantic network retrieval operations. I shall refer to nontem-
porary nodes as permanent nodes. Temporary nodes are used to build pat-
terns of network structures, which can be matched against the network
but do not match_themselves. Occasionally, a structure of temporary
nodes is used as & template for building a permanent structure resembling
it.

2.2. Pictorial Level

The discussion so far has treated SNePS as an abstract graph. I can also
discuss it diagrammatically or picterially. In the diagrams, a base node is
drawn as an oval inside of which is an identifier meant to be suggestive of
the concept the node represents. A permanent assertion node is drawn as
a circle inside of which is an arbitrary identifier of the form Mn; a perma-
nent variable node as a circle inside of which is an arbitrary identifier of
the form Vn; a permanent pattern node as a circle inside of which is an ar-
bitrary identifier of the form Pn. A temporary variable node is shown as
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an identifier of the form Qn; a temporary molecular node as an identifier
of the form Tn; an auxiliary node as a mnemonically suggestive identifier.
Temporary and auxiliary nodes are drawn without enclosing circles. Fig-
ure 1 shows a network with various kinds of nodes and arcs. In future fig-
ures, the :VAR and :SVAR arcs will be omitted since they can be recon-
structed from the information shown. For the same reason, the ascending
- arcs will be omitted. '

2.3. Linear Symbolic Level—The SNePS User Language

At the linear symbolic level, I shall use the SNePS User Language,
SNePSUL. Presentation of SNePSUL will give the reader an idea of what
_ can be done in SNePS. It will also show the relationship between the
linear symbolic form and the two-dimensional pictorial form, and will-
allow the former to be used in some examples, when the latter would be
too complicated for easy understanding. :

SNePSUL is embedded in LISP and consists of a set of functions for
which the unquote convention (see Bobrow and Raphael [1974]) holds. An
atom refers to itself unless it is unquoted. A list is either a reference to a
SNePSUL function or a list of elements, which can be atoms, unquoted
atoms, or SNePSUL function references.

SNePS itself is a read—evaluate~print loop, which assumes that each ex-
pression it reads is in SNePSUL. However, LISP may be accessed from
SNePSUL and vice versa. Unless otherwise noted, all examples will show
interaction with SNePSUL. The SNePSUL prompt is #= for the first line of
an expression and = for subsequent lines. '

Fig. 1. An example of various kinds of nodes and arcs.

Descending arcs MEMBER, CLASS
Ascending arcs MEMBER-, CLASS-
Auxiliary arcs VAL, :VAR, :SVAR
Base nodes MOBY-DICK, WHALE
Assertion node M1

Variable node V1

Pattern node P2

Temporary variable Q1
Temporary pattemn T2
Auxiliary nodes XY, T
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2.3.1. Defining Arc Labels

Since SNePS is not a particular semantic network but a system for build-
ing, operating on, and experimenting with semantic networks, the user is
responsible for choosing arc labels. The function DEFINE declares the
labels of descending and ascending arcs. The syntax is

(DEFINE R, RE R Rf . . )

Here, R,, R, etc., are declared to be labels of descending arcs, with RE,
RSE, etc., the corresponding ascending arc labels. An error message is
given if any label is already in use. The system remembers the relation-
ship between an arc label and the label of the converse arc by making each
an auxiliary node with the auxiliary arc :CONV from each to the other.
‘That is, for each i, :CONV(R)) = {R{} and :CONV(RF) = {Ri}

When defining a set of arcs, one should keep in mind that it is a basic
precept of semantic networks that all concepts, including assertions, are
represented by nodes. Figure 2 shows three possible ways of representing
“Socrates is a man,” using ISA as an example of any binary relation. One
can analyze the differences in these representations as follows. In Fig. 2a,
there is a node representing Socrates and a node representing the set of
men, but no node representing the assertion that Socrates is a man. SNePS
retrieval functions will allow the retrieval of all members of the set of men
and all the sets of which Socrates is a member, but not the specific asser-
tion that Socrates is a man. In Fig. 2b, there are nodes representing Soc-
rates, the set of men, and the assertion that Socrates is a man, but no
node representing set membership as a conceptual relation. SNePS re-
trieval functions will allow the same retrievals as in Fig. 2a, plus the asser-
tion that Socrates is a man, but not the relationship between Socrates and
the set of men. In Fig. 2c, there are nodes representing Socrates, the set of

(a)

i

(SocraTes —13R MAN
<

o)

v o &

(“soceares ) (Cisa ) ({Uman )

)

Fig. 2. Three ways of representing “Soc-
rates is a man.”
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men, the ISA relation, and the assertion that Socrates is a man. SNeDS re-
trieval functions will allow the same retrievals as in Fig. 2b, plus retrieval
of the relationship between Socrates and the set of men. In this chapter,
set membership will be represented as in Fig. 2b.

What SNePS retrieval functions can retrieve is coextensive with what
the understander being modeled by SNePS can express {see the section on
generating, below). Thus, although Fig. 2a represents the knowledge that
Socrates is a man, it is inexpressible {(““unconscious’) knowledge. If it
cannot be expressed by the understander, it cannot be expressed to the

" understander, and, indeed, the network of Fig. 2a cannot be built in
SNePS, as will be explained in the discussion of BUILD.

The user chooses auxiliary arc labels by defining them with the function
DEFINE-AUX, which takes a set of labels to be defined. Several auxiliary
arcs are used by the system itself and are predefined as if

(DEFINE-AUX :CONV :VAL :VAR :SVAR)

~

had already been executed.
2.3.2. Adding Information

The main function for adding information to the network is BUILD,
whose syntax is : -

(BUILD R, nodeset, R, nodeset, . . )

Each R; is the label of an ascending, descending, or auxiliary arc that has
already been defined. Each nodeset is a node or set of nodes. BUILD
creates a new node that has arcs R; to the nodes of nodeset;, R, to the
nodes of nodeset,, etc. If the new node dominates any variable nodes,
.SVAR arcs will be added automatically as appropriate. The identifier of
the new node is created by the system, and a list of that identifier is re-
turned as the value of BUILD. Table I shows the effect of the different pos-
sible forms for the.nodesets.

Temporary nodes are created with the TBUILD function. The syntax is
the same as that for BUILD, the only difference being that the newly
created node is temporary rather than permanent. Figure 3 shows the
SNePS session for building the network of Fig. 1.

Notice that when a new node is created by the #atom, $atom, or Joatom
form, atom becomes an auxiliary node with the auxiliary arc :VAL to the
new node. This auxiliary node is called a SNePSUL variable, and is quite
different from a variable node. Variable nodes are like variables in predi-
cate logic. SNePSUL variables are like variables of a programming lan-
guage. Another way to set the value of a SNePSUL variable is by ap-
pending to any nodeset an equal sign followed by the variable. At the top
Jevel, an enclosing set of parentheses is required. This technique is dem-
onstrated in Fig. 4. (From now on figures will be cumulative and diagrams
of the network will show new material enclosed by dashed lines.)
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TABLE 1 .
Effect of the Different Possible Forms of nodeset; in the SNePSUL
Function Call BUILD . . . R,nodeset; . . .)
Form of nodeset; New node gets arc(s) labeled R; to
~atom ) the node whose identifier is atom .
g atom a new base node, which is also made the value
of ;:VAL(atom)
Satom a new variable node, which is also made the value
. of :VAL(atom)
Y%atom . a new temporary variable node, which is also
: made the value of :VAL(atom)
*atom k all the nodes in :VAL(atom)
list whose first element is the the set of nodes returned as the value of the
name of a SNePSUL function function call
list whose first element is not the. the set of nodes obtained by treating each element
name of a SNePSUL function of the list as a form given in this table
(1 LISP S-expression) the set of nodes obtained by evaluating the LISP

S-expression and treating the value as a form
given in this table.

Several SNePSUL variables are maintained by the system:

NODES the set of permanent nodes
VARBL the set of permanent variable nodes
DRELST  the set of descending arc labels
ARELST  the set of ascending arc labels
AUXRELST the set of auxiliary arc labels

There is no way in SNePSUL to add a nonauxiliary arc between two
already existing nodes. This enforces the notion that any information
given to the system is a concept and so must have a node representing it.
The new node created by BUILD serves this purpose. Specifically, it is im-

possible to have a nonauxiliary arc between two nodes neither of whose ~

identifiers were created by the system. For this reason the network of Fig.
2a could not exist in SNePS.

#x(DEFINE MEMBER MEMBER- CLASS CLASS-)
(MEMBER MEMBER-)
(CLASS CLASS-)
(DEFINED)
#x(BUILD MEMBER MOBY-DICK CLASS WHALE)
M1)
*+(BUILD MEMBER MOBY-DICK CLASS $X)
(r2)
+x(TBUILD MEMBER %Y CLASS WHALE)
(T2)
Fig. 3. SNePS session building the network of Fig. 1.
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#((BUILD MEMBER ORCA CLASS WHALE) = NEW)
(M3)

Fig. 4. Use of the equal sign for setting S$NePSUL variables. (a) SNePSUL interaction; (b)
modified network with the new material enclosed by dashed lines.

2.3.3. DUMP and DESCRIBE

Pieces of the network may be examined via the functions DUMP and
DESCRIBE, which have the same syntax: '

({DUMP

DESCRIBE }“deSEtl R nodesetk)

For each node, DUMP prints the node’s identifier, all arcs emanating from
it, and the set of nodes to which each arc goes. DESCRIBE only prints
descending and auxiliary arcs, but prints the information for all molecular
nodes dominated by the nodes given. Figure 5 demonstrates the use of
DUMP and DESCRIBE.

2.3.4. Deleting Information

There are three functions for removing information from the network.
(ERASE node, .-~ . node,) removes each node; from the network along
with any other nodes that thereby become isolated.

(REMVAR variable, . . . variabley) unassigns each of the listed
SNePSUL variables.
(DELREL label, . . . labely) undefines each of the arc labels and their

converses by removing them from the values of DRELST, ARELST, and
AUXRELST. However, if any arcs with these labels already exist in the
network, the arcs are not removed.

2.3.5. Finding Nodes

The function FIND performs a pattern match on the network and returns
a list of the matched nodes. The syntax is the same as for BUILD, but spe-
cifies a node to be found rather than a node to be built. Figure 6 shows
some simple uses of FIND.
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«x(DEFINE AGENT AGENT- VERB VERB- OBJECT OBJECT-)
(AGENT AGENT-)

(VERB VERB-)

(OBJECT OBJECT-)

(DEFINED)

«»(DUMP(BUILD AGENT JOHN VERB KNOWS OBJECT *NEW) =NEW)
(M4(AGENT(JOHN))(VERB(KNOWS))(OBJECT(ME})))
(M3(MEMBER(ORCA))(CLASS(WHALE))(OBJECT-(M4)))

(DUMPED)

++(DESCRIBE M4)
(M4(AGENT(JOHN))(VERB(KNOWS))(OBJECT(M3)))
(M3(MEMBER(ORCA))(CLASS(WHALE))
(DUMPED)

W
Fig. 5. Demonstration of DUMP and DESCRIBE. The material enclosed by dashed lines in
(b) was added by the instructions of (a).

it should be noticed that (FIND R, nodeset, R nodeset,) finds all nodes
with an' R, arc to any node in nodeset, and an R, arc to any node in node-
set,. So (FIND R+{N,; Nj)) returns RC (N,) U R® (N,), whereas (FIND R
N, R N,) returns R¢ (N;) N R (N),

Besides the forms listed in Table I, a nodeset in a FIND may be of the
form ?atom. This represents a pattern variable that can match any node.

#+(DESCRIBE (FIND MEMBER MOBY-DICK CLASS WHALE))
(M1(MEMBER(MOBY~DICK))(CLASS(WHALE)))

=x(FIND MEMBER- (FIND CLASS WHALE))

(MOBY-DICK ORCA)

#x(DESCRIBE (FIND VERB KNOWS OBJECT (FIND CLASS WHALEY)))
(M4(AGENT(IOHN))(VERB(KNOWS))(OBJ'ECT(MZ'))))
(M3(MEMBER(ORCA))(CLASS(\NHALE)))

Fig. 6. Some examples of FIND.
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+<(FIND VERB KNOWS OBJECT(FIND MEMBER ?KNOWN-WHALE CLASS WHALE)) .
(M4} ' ' :
sox *KNOWN-WHALE
(ORCA)
Fig. 7. Simple use of a variable pattern in a2 FIND.

When SNePS has finished evaluating the top level FIND, the atom is given
the list of nodes that it matched as its SNePSUL value. Figure 7 shows a
simple use of this feature. Figure 8 shows a more complicated use of the
pattern variable, where it is used to specify a node at the intersection of
two paths. :

A node may be found that satisfies one specification, but does not sat-
isfy another with the aid of the infix set difference operator "

#»x(BUILD AGENT JOHN VERB KNOWS OBJECT M4)
(M3)

++(BUILD AGENT HENRY VERB KNOWS OBJECT M4)
(M6)

»x(DESCRIBE(FIND AGENT-2X VERB KNOWS

* OBJECT(FIND AGENT ?X VERB KNOWS)))
(M5(AGENT(JOHN)VERB(KNOWS))(OBJECT(M4)))
(MHAGENT(JOHN))(VERB(KNOWS))(OBJECT(M3)))
(M3(MEMBER(ORCA)}(CLASS(WHALE))

dok 5K

(JOHN)

KNGWS

b

Fig. 8. Using a variable pattern to specify a node at the end of two paths. (a) The SNePSUL
dialogue, (b) the network with material resulting from (a) enclosed by dashed lines.
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«(FIND MEMBER- (FIND CLASS WHALE) - (FIND OBJECT- (FIND VERB KNOWS)}))
{(MOBY-DICK)

Fig. 9. A use of the set difference operator.

This operator is demonstrated in Fig. 9, where we find whales that no
one knows are whales. One can also specify a set of nodes except those
‘with certain arcs emanating from them, with the infix “\ operator. The

value of (nodeset N\ (Ry . . ., Ry) is (nodeset — {n|R(n) # ¢, 1=
“i= k}). Figure 10 demonstrates this operator.
The function (FINDORBUILD R, nodeset, . . . R, nodeset,) first tries

to find the specified node(s) but if none exist, it builds one. FINDOR-
BUILD is used instead of BUILD when we wish to share nested molecular,
structures but are not sure if appropriate ones already exist.

3. INFERENCE

3.1. Representation of Deduction Rules

Automatic inference may be triggered by using the function DEDUCE, a
generalization of FIND, or the function ADD, a generalization of BUILD.
In order for these to accomplish anything, deduction rules must exist in the
network. A deduction rule is a network structure dominated by a rule
node. A rule node represents a propositional formula of molecular nodes,
using one of the four connectives: \/-entailment, N-entailment, AND-OR,
THRESH. A rule node r may also have either AVB(x) or EVB(r) nonempty,
where AVB and EVB are the two binding relations representing universal
and existential quantification, respectively.

This representation derives from that of Shapiro {1971a,b] and was fur-
ther influenced by Kay [1973], Hendrix [1975a,b], and Schubert [1976]. It
differs from the representation of Shapiro [1971a,b] by not using nodes to
represent quantifiers, and from all the earlier work by the use of the new
connectives, except for /\-entailment, which is the same as the generalized
material implication of Schubert [1976, p. 173]. The match routine used by
SNePS to locate relevant deduction rules is described in Shapiro [1977]
and Shapiro and McKay {1979].

The four connectives all take sets of nodes as arguments and may be ex-
plicated as follows.

1. \s-entailment:{A,, . . . ,A}Vv—>{C; . .., Cplistruejustincase
cach A;, 1 =i <n,entailseach G, 1 =j =m.

#x(FIND MEMBER- (FIND CLASS WHALE) \{ (OBJECT-))
(MOBY-DICK)

Fig. 10. A use of the arc restriction operator -
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Fig. 11. Fig. 12.
Fig. 11. The network representation of {A,, . . . , A3 V—=>{Cy . . ., C.t
Fig. 12. The network representation of {A;, . . . , A3 A= {C,, .. ., CA}
2. N-entailment: {A;, . .., AJ A= {Cy, . .., Cn}is true just in

case each C;, 1=j=m, is entailed by the conjunction of the A

1=i=n ‘ -
3. AND-OR:; XX{P, ..., P,}istrue justin case atleasti and at most
j of the P are true.

" 4. THRESH: ,0{P,, . . ., P,}is truejust in case either fewer thani of

the P are true or they all are.

Figures 11-14 show how these connectives are represented in the net-
work. Each choice of parameters for AND-OR and THRESH gives, in ef-
fect, a different connective. Some familiar ones are shown in Table II. Spe-
cifically, we shall abbreviate ;X}(P) by ~P.

Figure 15 illustrates how a negation can be stored in SNePS. In that fig-
ure, M7 represents “John loves Jane” and R1 represents “John does not
love Jane.” Since ARGC (M?7) is not empty, M7 is not considered “asserted
in the network.” Figure 16 shows a network for “Mary thinks that John
loves Jane, but he doesn’t.” There, M8 and R1 are asserted in the net-
work, while M7 is not. Figure 17 shows two alternative ways of represent-
ing ““Mary thinks that John doesn’t love Jane, but he does.” In Fig. 17a, R2
acts as an assertion operator, asserting in the network that John loves Jane,
while M9 asserts that Mary thinks that John doesn’t love Jane. R1 is not as-
serted in Fig. 17."In Fig. 17b, M10 provides the assertion that John loves
Jane. The technique of Fig. 17a has the benefit that it makes explicit that
the very assertion (M7) that Mary thinks is not true is true. The technique

Fig. 13. Fig. 14.
Fig. 13. The network representation of ,X6{P,, . . ., P.}.
Fig. 14. The network representation of .0, {F;, . . ., P}
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TABLE I1
Some Familiar Connectives Represented by AND-OR and THRESH

Formula Meaning
SXe (P, ..., P P,and - - - and P,
RS SURN P, andlor - - - andlor P,
ROHR ) ST - neither P, nor - + * nor P,
SXPL . P exactly one of Pyor - - - or P,
0Py, - .., Pa} not (P, and « - - and P,)
0Py, - - LB} P,and - - - andP,areall equivalent

of Fig. 17b, however, has the benefit that John loves Jane is asserted in the
_ standard manner, namely, that there is a node in (FIND AGENT JOHN

VERB LOVES OBJECT JANE) that is not dominated by any other node. In
SNePS, R2 would be treated as a deduction rule capable of immediately
deriving a node like M10. R1, if dominated by no other node, would also
be treated as a deduction rule, but would derive itself, namely R1, the
negation of M7. This discussion was motivated by the example of Scragg
[1976, pp. 108-110], where “Peter said he went to the store, but he didn’t”
is handled as in Fig. 16, but “‘Peter said he didn’t go to the store, although
he did” is not discussed.

The LISP function (TOP? N) is provided, which returns T if the node N
is asserted in the network, and NIL if it is not. The SNePSUL functions
FORBTOP and FORBNOTOP are like FINDORBUILD but the former only
finds nodes satisfying TOP?, while the latter only finds nodes not satisfy-
ing TOP? It is important to use FORBNOTOP when attempting to share
dominated structures so that an asserted node does not become acciden-
tally unasserted. Similarly, it is important to use FORBTOP when at-
tempting to find-or-build a new asserted node.

A rule node that dominates one or more pattern nodes may have either
AVB or EVB arcs to.one or more of the variable nodes free in those pattern
nodes. The restriction to either AVB or EVB arcs, but not both, is neces-

Fig. 15. “John does not love Jane.”
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Fig. 16. “Mary thinks that John loves Jane, but he doesn’t.”

sary so that quantifier strings of the form V3 and 3V may be distin-

guished. Multiple AVB or EVB arcs are allowed since within quantifier
strings of the form Vx, - - - Vx,and 3x, - - - Ix, orderis irrelevant. Bind-
ing arcs may emanate only from rule nodes. This reflects the notion that in
the formula Q(x; - - * x,)A, where Q is ¥ or 3 and A is any formula, the
quantifier clause Q(x, * - - x,) may be associated with the main connec-
tive of A. If A has no main connective, either because it is atomic or be-
cause it is of the form Q(y; * - ~¥wB, the formula can be represented as
Gk - - xa){{ A {ALL

Figure 18 shows the SNePSUL instructions for building the deduction
rules for “Every man loves some woman,” and for the definition of transi-
tive relations. A few comments are in order about the form chosen for
these rules. If SNePS is asked to deduce instances of R(x) using the rule,
Vx({P(x)} V= {Q(x), R(x)}), and P(a) is true, it will build R(a) in the net-
work, but not bother building Qf{a). However, if the rule had been
Vx({P(x)} V= 2X03{Q(x), R(x)}) it would build both Q(a) and R(a). That is
the reason for the form of the rule in Fig. 18a. If, for example, one asks
whom Bill loves, one would not want to introduce a new Skdlem constant t
and record “BILL LOVES t’ without also recording "t € WOMAN".
When SNePS uses a rule of the form {P, Q} /\— {R}, parallel processes are
used to deduce P and Q. However, even though the rule {P} v— {Q}\/—
{R}} is formally equivalent, in this case SNePS establishes a process to de-
duce Q only after a deduction of P has been successful. The form of the
rule in Fig. 18b forces SNePS to first check that a relationship is transitive
before using the transitivity rule further. The way parallel processes are
used to carry out deductions is discussed more fully in Shapiro and McKay
[1979]. ,

The rule in Fig. 18b looks like a second-order rule, but strictly speaking,
it is not. Relations such as ON are represented by semantic nodes as are
other individual concepts, and so variables can range over them. We can
consider each case frame, i.e., each combination of descending arcs, to be a
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Fig. 17. Two ways of representing “Mary thinks that John doesn’t love Jane, but he does.”
(a) with an assertion operator, (b) with a duplicated molecular node.

different predicate in the network. Thus, if we represent the proposition
ON(BLOCK]1,BLOCK2) by the node constructed by (BUILD AGENT
BLOCK1 VERB ON OBJECT BLOCK?2), it is accurate to say that we are as-
serting the proposition AGENT—VERB—OB}ECT(BLOCKl,ON,BLOCKZ).
We never quantify predicates of the type of AGENT-VERB-OBJECT, even
though we do quantify individuals like ON that are used as predicates in
other notations.
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*»(BUILD AVB $X
ANT(BUILD MEMBER #X CLASS MAN)
CQ(BUILD EVB SY MIN 2 MAX 2
ARG{(BUILD MEMBER *Y CLASS WOMAN)
(BUILD AGENT =X VERB LOVES
OBJECT *Y))))
(M11) R
(2)
*(BUILD AVB SR
ANT(BUILD MEMBER =R CLASS TRANSITIVE)
CQ(BUILD AVB($X SY $Z)
&ANT ((BUILD AGENT X VERB R OBJECT yY)
(BUILD AGENT »Y VERB *R OBJECT #Z))
CQ(BUILD AGENT %X VERB *R OBJECT #Z)))
(M17)
(b)
Fig. 18. SNePSUL BUILDS for (a) Every man loves some woman: ¥x({x € MAN} v— {Ey
X%y € WOMAN, xLOVESy}}). (b) The definition of transitivity:
VR({R & TRANSITIVE} v— {¥(x, v, 2)({R(x, y), R(y, z)} A= {R(x, Z)D}.

3.2. Backward Inference

Deduction rules are used for backward inference via the SNePSUL func-
tion (DEDUCE numb R, nodeset, - - - R, nodeset,). This causes the tem-
porary node (TBUILD R, nodeset, - - - R, nodeset,) to be built and turned
over to the deduction system, which uses a multiprocessing system to de-
duce both positive and negative instances of it. The parameter numb con-
trols how many answers are desired. If numb is omitted, all answers are
found. If numb is 0, the DEDUCE is equivalent to a FIND—only explicit
answers are found. If numb is a positive integer, deduction ceases as soon
as at least numb answers are found. Otherwise, numb is a list of two
numbers (apos nneg), and deduction ceases as soon as at least npos posi-
tive instances and nneg negative instances are found. For example, to
cease deduction as ‘soon as three positive instances are found, numb
should be (3 0); to stop as soon as one answer, either positive or negative,
is found, numb should be 1. Since several instances may be found at the
same time, the number of answers found may sometimes exceed the
number requested. If fewer than the requested number of answers are de-
ducible, all will be returned. :

Table IIf summarizes the rules of inference used for each of the four con-
nectives.

Figure 19 shows a deduction using the rule in Fig. 18a, and Fig. 20
shows a deduction using the rule in Fig. 18b to deduce four positive in-
stances. When a deduction is interrupted, as in Fig. 20, sufficient informa-
tion to resume the deduction is stored as the SNePS value of LASTINFER.
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TABLE 111
Rules of Inference for the Four Connectives

Deduction Rule As soon as are found Deduce
Vx{Aux), - . . ALX))

V=G (x), L, S0} 1of AQ@), . . ., Axfa) Cn(a)
Vx{A(x), . . ., Aux)} ’ )
A—={C\(x), . . .., Calx)} nof Aia), . . ., Ax(a) Cn(a)
Vx X0Py(x), . . -, Pal0)} jof Pya), . . ., Pry(a) ~Pq(a)
. n-— 1 Of ~Pl(a)r vt ~Pn—1(a) Pn(a)
YV, O4Pi(x), . . -, Pa(x)} iof Py(a), . . ., Poy(a) P.(a)

i—-1ofP,@), ..., P '

and 1 of ~P,@), . . ., ~Pusfa) ~P.(a)

The deduction may be resumed by evaluating
(RESUME numb *LASTINFER),

as shown in Fig. 21.

3.3. Restricted Forward Infexjence

When the multiprocessing deduction system uses an inference rule, an
INFER process is created for each antecedent proposition. For example, if
the rule V(x, y) X00a®(x, ¥), - - -/ P,(x, y)) is to be used to deduce
P,(a, z), an INFER process is created for each Pi(a, z),1 =i =n — 1. Each
INFER process {5 connected to a data collector process that stores all de-
duced instances of P;(a, z). While these processes are retained, if Pi(a, y)
becomes a subgoal of another deduction, the results stored in the data col-
lector are used and repeated deduction of the same information is

#*(BUILD MEMBER JOHN CLASS MAN)
(M18)

#=(BUILD MEMBER HENRY CLASS MAN)
(M19)

++(DESCRIBE(DEDUCE AGENT %X VERB LOVES OBJECT %Y))
(M24(AGENT(HENRY))(VERB(LOVES))(OBJECT(M21)))
(M22(AGENT(JOHN))(VERB(LOVES))(OBJECT(M20)))
(DUMPED)

#x(DESCRIBE (FIND CLASS WOMAN) \ (:5VAR))
(M23(MEMBER(M20)}(CLASS WOMAN))
(M25(MEMBER(M21))(CLASS WOMAN)))
Fig. 19. A use of rule Fig. 18(a), “’Every man loves a woman.” The data base includes the
network of Fig. 16, but not of Fig. 17.
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++(BUILD AGENT A VERB SUPPORTS OBJECT B)
(M26)
*+(BUILD AGENT B VERB SUPPORTS OBJECT C)
(M27)
#+(BUILD AGENT C VERB SUPPORTS OBJECT D)
(M28)
«x(BUILD MIN 0 MAX 0
ARG(BUILD AGENT B VERB SUPPORTS OBJECT E))
(M30)
++(BUILD MEMBER SUPPORTS CLASS TRANSITIVE)

(M31) :
*«(DESCRIBE(DEDUCE(4 0)AGENT %X VERB SUPPORTS OBJECT %Y))
(M32(AGENT(B))(VERB(SUPPORTS))(OBJECT(D)))
(M30(MIN(O)(MAX(0))(ARG(M29)))
(M29(AGENT(B)) (VERB(SUPPORTS))(OBJECT(E)))
(M28(AGENT(C))(VERB(SUPPORTS)HOBJECT(D)))
(M27(AGENT(B))(VERB(SUPPORTS))(OBJECT(C))) -
(M26(AGENT(A))(VERB(SUPPORTS))(OBJECT(B)))
(DUMPED)

Fig. 20. A use of the transitivity rule Fig. 18b asking for four positive answers.

avoided. Processes are presently retained for the duration of the run in
which they are created. . - :

The SNePSUL function ADD is identical to FORBTOP, except that if a
new node is built, it is matched against the network to find INFER proc-
esses for which the node is a new answer. If any are found, the new node
is added to the appropriate data collectors from which it is passed to the
deductions interested in it. In other words, structures built using ADD
will cause forward inferences to be made just in case these structures are
relevant to a question asked previously in the session. Figure 22 demon-
strates this facility.

~ 4. PARSING AND GENERATING

SNePSUL functions may be activated as actions on the arcs of an aug-
mented transition network (ATN) grammar, so that natural language sen-
tences can be parsed directly into SNePS networks. To facilitate this, the
ATN interpreter was modified so that the nodes built while traversing an
arc are deleted when back-tracking occurs on the arc.

The ATN interpreter was also modified so that when a SNel’S node is

++(DESCRIBE (RESUME =LASTINFER))
(M34(AGENT(A))(VERB(SUPPORTS)OBJECT(D)))
(M33(AGENT(A)(VERB(SUPPORTS))(OBJECT(C)))
(DUMPED)

Fig. 21. Resuming the deduction of Fig. 20.




The SNePS Semantic Network Processing System : 197

#+(DESCRIBE (ADD MEMBER SAM CLASS MAN))
(M37(AGENT(SAM))(VERB(LOVES))(OBJECT(M35)))
(M35(MEMBER(SAM))(CLASS(MAN)))

(DUMPED)

++(DESCRIBE (FIND MEMBER M36))
(M38(MEMBER(M36))(CLASS(WOMAN)))
(DUMPED)

Fig. 22. A demonstration of restricted forward inference.

given, ATN grammars can construct a natural language string that ex-
-presses the concept represented by the node. Space limitations preclude
a further discussion of these facilities here. They are described in Shapiro
{1975, 1979]. v _
Tying the generator to the nodes is an important mechanism in en-
" forcing the requirement that the set of intensional concepts represented in
the network is coextensive with the set of constant nodes. If the system is
to express a concept (an idea?), there must be a node representing it to
give to the generator. Also, the generator must be able to create a string
expressing the concept represented by each constant node.

5. AN EXAMPLE APPLICATION—CLUE

The development of SNePS has been carried out with concern for logical
adequacy, for generality, and for the foundations of semantic networks as
representations of knowledge. Nevertheless, tests of application domains
are important. A SNePS-like collateral descendant of MENTAL [Shapiro,
1971a,b] is being used in SOPHIE, an Al-CAIl system (see ]. S. Brownet al.
[1974]), and a version of SNePS is being used in a natural language graph-
ics system [D.C. Brownet al., 1977]. Example domains in medical informa-
tion and art history are being planned. This section describes an applica-
tion to the game Clue, implemented by Bill Neagle. This example illus-
trates the interaction of SNePSUL and LISP, and the use of AND-OR,
FORBNOTOP, DEDUCE, and ADD.

Clue is a game of deductive reasoning marketed by Parker Brothers. The
game equipment consists of a board representing a house of nine rooms
(hall, study, billiard room, library, conservatory, ballroom, kitchen,
dining room, lounge), six tokens representing suspects (Miss Scarlet, Pro-
fessor Plum, Miss Peacock, Mrs. White, Mr. Green, Colonel Mustard), six
pieces representing weapons (rope, revolver, candlestick, lead pipe, knife,
wrench), one card for each of these 21 items, and an envelope. One room
card, one weapon card, and one suspect card are placed in the envelope
representing the location, weapon, and perpetrator of a murder. The re-
maining cards are shuffled and distributed to the players, each of whom
uses one of the suspect tokens to move around the board (up to six people
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can play). The object of the game is to deduce which cards are in the enve-
lope. Each player knows that the cards he holds are not in the envelope.
Players roll dice to move from room to room along corridors. When in a
room, a player may “suggest” that the murder was committed in that
room by any of the suspects using any of the weapons. Beginning on the
suggestor’s left, each player either states that he has none of the cards or
that he has at least one of them until a player states that he has at least one
card. This player shows one of these cards to the suggestor, refuting the
suggestion. The other players know only that one of the cards has been
shown, not which one. There is no rule preventing the suggestor from in-
cluding one or more of his own cards in his suggestion, so if every other
player denies having any of the three cards, they are either in the envelope
or held by the suggestor. The suggestor does not say whether he holds any
of the cards. On his turn, a player may make an “accusation,” stating
which three cards he believes to be in the envelope. He then looks in the
envelope. If he is right, he openly displays the cards and wins the game. If
he is wrong, he replaces the cards in the envelope and ceases to participate
in the game except for replying to other players’ suggestions.

We have written a LISP/SNePSUL program that can be used by a player
to deduce which cards are in the envelope. The initial game information is
established by a call to the LISP function CLUE, which takes as its orte
argumer!} an ordered list of the players. The following LISP lists are estab-
lished: '

PLAYERS the ordered list of players
HANDS the players and the ENVELOPE
SUSPECTS (SCARLET PLUM . . )
WEAPONS (ROPE REVOLVER . . )
ROOMS (HALL STUDY . . .)
CARDS a list of the 21 cards

The set of cards is also established in the SNePS network by evaluating
the LISP expression

(MAPC CARDS (LAMBDA (CARD)
(BUILD MEMBER ({1 CARD) CLASS CARD)))

Rules are built expressing such facts as that the envelope holds exactly
" one suspect, weapon, and room, that each card is held by exactly one
hand, and that the kth player (of n players) holds exactly numdealt(player;)
cards, where ’

1 ifk =18 modn
1a¢r = ’
numdealt(player,) = [18/n] + {0, otherwise

These rules are built by the LISP function BUILD-BETWEEN, defined as
follows:
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(DE BUILD-BETWEEN (I ] SET PRED)
(BUILD MIN (1 H MAX (1T ])
ARG (1 (MAPCAR SET
(LAMBDA(X)
(APPLY FORBNOTOP
(SUBST X '+ PRED)))))

This function builds a rule saying that between I and J elements, x, of SET
are such that PRED(x). Rules of this sort suggest a parameterized existen-
tial quantifier, 3. The rule 3i(x) ,3(A(x), C(x)) would assert that at leasti
and at mostj objects satisfy both A(x) and C(x). Inclusion of this quantifier
in SNePS is planned.

The rules stated above are built as follows:

_ (BUILD-BETWEEN 1 1 SUSPECTS '(HOLDER ENVELOPE OBJECT +))
(BUILD-BETWEEN 11 WEAPONS '(HOLDER ENVELOPE OBJECT +))
(BUILD-BETWEEN 1 1 ROOMS '(HOLDER ENVELOPE OBJECT +))
(BUILD AVB $X

ANT (BUILD MEMBER #X CLASS CARD)
CQ (1 (BUILD-BETWEEN 1 1 HANDS
"(HOLDER + OBJECT #X))))
(MAPC PLAYERS .
(LAMBDA (PLAYER) .
(BUILD-BETWEEN (NUMDEALT PLAYER)
" (NUMDEALT PLAYER) CARDS
'(HOLDER (1 PLAYER) GBJECT +))))

Note the use of the connectives XX} and k. A great many clauses would
be required to represent this information in a resolution-based theorem
prover. ‘

There are two ways of gaining information during the game. One is en-
tered by the function '

(SUGGEST 1;1ayer suspect weapon room responder card)

which asserts that player suggested that suspect committed the murder
with the weapon in the room, that none of the players between player and
responder had any of those cards, and that responder showed player the
card card. If player or responder is the person using the program, card will
be suspect, weapon, Or room, otherwise it will be NIL. If no one
responded, responder and card will both be NIL. The definition of
SUGGEST is

(DF SUGGEST (PLAYER SUSPECT WEAPON
ROOM RESPONDER CARD)
(MAPC (BETWEEN PLAYER RESPONDER)
(LAMBDA (PASSED)




200 © Stuart C. Shapiro

(HAS "NONE PASSED SUSPECT WEAPON ROOM)))
(IF RESPONDER
(COND (CARD (ADD HOLDER (1 RESPONDER)
OBJECT (1} CARDY)))
(T (ADD MIN 1 MAX 3
ARG((FORBNOTOP HOLDER (1 RESPONDER)
OBJECT (1 SUSPECT))
(FORBNOTOP HOLDER (1 RESPONDER)
OBJECT (1 WEAPON))
(FORBNOTOP HOLDER (1 RESPONDER)
OBJECT ( ROOMMN))

where (BETWEEN playerl player2) returns a list of the people sitting
‘between {clockwise) playerl and player2, unless player2 is NIL in which

case it returns a list of all players except playerl Furthermore, HAS-
NONE is the function

(DE HAS-NONE (PLAYER SUSPECT WEAPON ROOM)
(ADD MIN 0 MAX 0
ARG ((FORBNOTOP HOLDER (1 PLAYER)
X OBJECT (1 SUSPECT))
(FORBNOTOP HOLDER (} PLAYER)
OBJECT (1 WEAPON))
(FORBNOTOP HOLDER (1 PLAYER)
OBJECT (1 ROOM)))))

The other way in which information may be gained during the game is
if someone makes an accusation and is wrong. The accuser may be as-
sumed not to have any of the cards in the accusation. This is handled by a
call to HAS-NONE.

Below is the protocol of a reduced game in which the only cards
were MUSTARD; PLUM, KNIFE, CANDLESTICK, HALL, LOUNGE,
DINING-ROOM, and KITCHEN. The program’s trace of its inferences is
presented in English for ease of reading. Arrows point to the three state-

ments that provide the solution. The program was being used by player
IlDon.II

(CLUE "(DON CHUCK BILL STU))

(BUILD HOLDER DON OBJECT MUSTARD)
(BUILD HOLDER DON OBJECT KNIFE)

(DEDUCE (3 0) HOLDER ENVELOPE OBJECT %X)
Don holds Mustard.

Don holds knife.

Envelope doesn’t hold Mustard.
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— Envelope holds Plum. -
Stu doesn’t hold Plum.
-Bill doesn’t hold Plum.
Chuck doesn’t hold Plum.
Don doesn’t hold Plum.
Stu doesn’t hold Mustard.
Bill doesn’t hold Mustard
Chuck doesn’t hold Mustard.
Envelope doesn’t hold knife.
— Envelope holds candlestick.
Stu doesn’t hold candlestick
Bill doesn’t hold candlestick.
Chuck doesn’t hold candlestick.
Don doesn’t hold candlestick.
Stu doesn’t hold knife.
Bill doesn’t hold knife. -
Chuck doesn’t hold knife.
Don doesn’t hold hall.
Don doesn’t hold lounge.
Don doesn’t hold dining room.
Don doesn’t hold kitchen. N
(SUGGEST STU MUSTARD KNIFE KITCHEN DON KNIFE)
(SUGGEST DON MUSTARD KNIFE DINING-ROOM STU
DINING-ROOM)
Bill doesn’t hold dining room.
Chuck doesn’t hold dining room.
Stu holds dining room.
Envelope doesn’t hold dining room.
Stu doesn’t hold hall.
Stu doesn’t hold lounge.
Stu doesn’t hold-kitchen.
(SUGGEST CHUCK PLUM CANDLESTICK LOUNGE BILL NIL)
Bill holds lounge.
Envelope doesn’t hold lounge.
Chuck doesn’t hold lounge.
Bill doesn’t hold hall.
Bill doesn’t hold kitchen.
(SUGGEST BILL PLUM KNIFE HALL DON KNIFE)
(SUGGEST STU PLUM CANDLESTICK DINING-ROOM NIL NIL)
(SUGGEST DON MUSTARD KNIFE HALL CHUCK HALL)
Chuck holds hall.
Envelope doesn’t hold hall.
-»> Envelope holds kitchen.
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6. SUMMARY

I have given a brief introduction ‘to semantic networks as represen-
tations of knowledge and pointed out that they can be discussed on four
levels: an abstract graph; a two-dimensional pictorial diagram; a linear
symbolic string; a computer implementation. SNePS, the semantic net-
work processing system, was then discussed on the first three of those
levels.

- SNePS is a general system for building and manipulating semantic net-

works but, because of our view of semantic networks, certain features are
provided and some restrictions are imposed. Nodes and arcs are parti-
tioned into several types. Auxiliary arcs and nodes are used to type other
nodes (e.g., to distinguish variable and pattern nodes), to maintain refer-
ences to nodes (SNePSUL variables are auxiliary nodes}), and to hang non-
nodal information onto nodes (AND-OR and THRESH parameters are
integers hung on rule nodes by MIN, MAX, and THRESH auxiliary arcs).
Pattern and variable nodes do not represent constant concepts but are
used to construct deduction rules. Temporary nodes are used by the DE-
DUCE function to construct templates of desired structures. Universal and
existential quantifiers are represented by binding relations between rule
nodes and variable nodes. Four nonstandard logical connectives—/\-
entailment, \/-entailment, AND-OR, and THRESH-—are provided for
building deduction rules that can be used for backward inference or
restricted forward inference. The major restriction imposed by SNePS is
that nonauxiliary arcs cannot be added between two pre-existing nodes.
Each addition of information to the network must be accompanied by a
new node. The normal use of BUILD is to have this new node be a molecu-
lar node representing the new information.

An application of SNePS to the deductive game Clue was discussed. It
illustrated the use of deduction rules, especially the use of AND-OR and
restricted forward-inference. Further applications are planned along with
the continued development of the SNePS system and the SNePSUL lan-
guage. .
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