PROCEEDINGS

Third Annual Workshop on

Conceptual Grap/h1s

Sponsored by AAAI in conjunction with AAAI—88
445 Burgess Di. Menlo Park, CA 94025
(415) 328-3123

August 27, 1988
St. Paul, Minnesota

Ed. John W. Esch, Unisys

Program Committee

John W. Esch, chair
John F. Sowa

James Slagle
Douglas Skuce
Barbara Hayes—Roth

Representing Plans and Acts®

Stuart C. Shapiro
Department of Computer Science
State University of New York at Buffalo
226 Bell Hall
Buffalo, NY 14260-7022
(716) 636-3182
shapiro@cs.buffalo.edu

July 14, 1988

In this paper, I discuss the current.status of a planning/acting component for ‘SNePS, the Semantic
Network Processing System [8,10]. First, I will motivate our representation of plans, goals, acts, actions,
pre-conditions and post-conditions. Second, I will present the acting executive loop that can carry out these
plans. Third, I will present the syntax and semantics of our representation of the primitive control acts that
constitute the structure of our plans. Last, I will present a rule that is the begmmng of a plan recogmtlon
component based on this representation. -

In SNePS, all concepts represented in-the network are represented as nodes. Labelled arcs of a SNePS
network represent non-conceptual binary relations between nodes. - The basic ‘meaning of a node may be
determined by the set of arcs emanating from it, the nodes they go to, the arcs emanating from those nodes, .
. etc. In comparing SNePS networks and conceptual graphs, Sowa siates, *Although the diagrams look very
different, there is a direct mapping between them” [11, p. 139]. Given ‘that, this paper will use SNePS.
terminology. i

A basic principle of SNePS is the Uniqueness Principle—that there be a one-to-one mapping between
nodes of the semantic network and concepts (mental objects) about which information'may be stored in the
o network. These concepts are not limited to objects in the real world, but may be various ways of thinking
‘about a single real world object, such-as The Morning Star vs. The Evening Star vs. Venus. They may be
abstract objects like propertxes, proposxtxons, Truth, Beauty, fictional objects, and rmpossxble objects. They

Sl may include specific ‘propositions as well as general propositions; and even rules. ‘Any concept represented

in the network may be the object of propositions represented in the network giving properties of, or beliefs

" about it.- For example, propositions may be the objects of explicit belief (or disbelief) propositions. Rules
are propositions with the additional property that SNIP, the SNePS Inference Package, [5,9] can use them
to drive reasoning to derive additional believed propositions from previous believed propositions.

Plans are also mental objects. We can discuss plans with each other, reason about them, formulate them,
follow them, and recognize when others seem to be following them. An Al system, using SNePS as its belief
structure, should also be able to do these things. Requiring that the system be able to use a single plan
representation for all these tasks puts severe constraints on the representation.

We use “goal,” “plan,” “act,” and “action” in particular ways, and distinguish among them. A goal is
a proposition in one of two roles—either the role within another proposition that some plan is a plan for
achieving that goal (making it true in the then current world), or the role as the object of the act of achieving
it. This will become clearer as we proceed.

A plan is a structured individual mental concept, i.c., it is not a proposition or rule that might have a
belief status. A plan is a structure of acts. (Among which may %e the achieving of some goal or goals.)

*This work was supporied in part by the Air Force Systems Command, Reme Air Development Center, Griffiss Air Force
Base, New York 13441-5700, and the Air Force Office of Scientific Research, Bolling AFB DC 20332 under Contract No. F30602-
85-C-0008, which supports the Northeast Artificial Intelligence Consortium (NAIC). The author is grateful to Dr. Norman K.
Sondhexmer of USC/lnformatnon Sciences Institute for his hospitality ard support during the author’s sabbatical year.

320 =1

The structuring syntax for plans is a special syntax, differing, in particular, from that used for structuring
reasoning rules. This is important both for semantic clarity and to allow a system to be implemented
that can both reason and act efficiently. For contrast, consider standard (non-concurrent) Prolog or some
arbitrary production rule system. Such a system relies on a semantic ambiguity between the logical & and
the procedural and then: For example, :

(1) p(X) : —¢(X), r(X)

either means “For any X, p(X) is true if ¢(X) and r(X) are true” or it means “For any X, to do p on
X, first do ¢ on X and then do r on X.” Guaranteeing the proper ordering of behavior in the procedural
interpretation is only possible by giving up the freedom to reorder, for efficiency, the derivations of ¢(X) and
7{X) in the logical interpretation. The example is made more striking by appending

(2) q(Y) : —s(Y),¢(Y)

®3) r(2) : =s(2), w(2)

Under the logical interpretation, it would be efficient for the system to try finding true instances of s(X)
only once, instead of once when rule 2 is being used and once when rule 3 is being used. This is, in fact,
the way SNIP has been implemented (see [5]). However, under the procedural interpretation, it is perfectly
reasonable to perform s(X) twice for a given X, so the bEhavxor that optimizes logical reasoning destroys
procedura.l rule following. The fact that SNIP is optimized in this way for reasoning, and so cannot use its
reasoning rules as procedural rules, was what originally motivated this project to design a planning/acting
component for SNePS. The plan structuring syntax we have designed is discussed below.

An act is a structured individual mental concept of something that can be performed by various actors
at various times. This is important for plan recognition—we must be able to recognize that another agent
- is performing the very same act which, if we were performing it, we would be in the midst of carrying out

one of a certain number of plans. By the Uniqueness Principle, a single act must be represented by a single
SNePS node, even if there are several different structures representing propositions that several different
actors performed that act at different times. This argues for a representation of propositions more like that
of Almeida [1], rather than like more traditional case-based or frame-based representations. In what I am
calling “more traditional representations”, there is a structure representing the proposition with slots or arcs
to the a.ctor, the actxon, the object etc. For exa.mple, to represent the propo:utlon,

LELiE < A

(sl) John walked to the store.

,there wonld be four representa.tmna.l symbolr one for John, one for walking (or PTRANSing), one for
the store, and one for the proposition itself, and the first three would be connected with the fourth in
approximately similar ways at similar distances (measured by path length of arcs or slots). Almeida, however,
took seriously the fact that one could follow (s1) by

(s2) Mary did too.

and understand by that that John and Mary performed the same act—that of walking to the store. The
representation for (s1) would have to introduce a fifth symbol, for walking to the store, which would be
connected to the representation of the proposition at the same distance as the representation of John. Now,
however, the symbols for walking and the store would be further from the symbol for the proposition. When
(s2) is processed, the symbol representing the proposition that Mary walked to the store would be connected
to the very same symbol for walking to the store used for (s1). This symbol represents what I am calling
an act, and using it in the representation of both propositions follows by the Uniqueness Principle from
interpreting (s1) and (s2) as saying the John and Mary performed the same act. Moreover, if the network
contains the representation of any plan that involves walking to the (same) store, that same act node would
be used in the structure representing that plan. Thus, John and Mary are rather directly connected to a
plan that they may be engaged in.

Finally, an action is that component of an act that is what is done to the object or objects. In (s1)
and (s2), the action is walking. Achieving some goal is an act whose action is achieving, and whose object
is the particular proposition that is serving as the goal. Unfortunately for our remaining discussion, but

8.2 08 =9

consistently with what has gone before, one can only perform something that. s an act (an action on an
appropnate object), so instead of saymg “performing an act whose action is z,” 1 will say “performing the
action z,” and hope the reader will note the distinction between acts and actions.

Any behaving entity has a repertoire of primitive actions it is capable of performing. We will say that an
act whose action is primitive is a primitive act. Non-primitive acts, which we will term complez, can only be
performed by decomposing them into a structure of primitive acts. The syntax of that structure is the same
procedural syntax as used in plans. So we close the inductive definition of plans by including plans among
the acts, and note that a plan can be a plan for achieving some goal, or it can be a plan for performing some
complex act. That some plan p is a plan for achieving some goal g is a proposition. Also, that some plan p
is a plan for carrying out some complex action a, is a proposition. We have already designed representations
for several different types of propositions in SNePS (see [10]), so we have now almost finished a tour of plans
and acts with the only radically new syntactic structure needed being that of plans. .

The remaining notions we must consider are preconditions and effects (postcondxt.xons) Whether we
think of them as pre- and post-conditions of plans or of acts is irrelevant since plans are kinds of acts.
A pre-(post-)condition is just a proposition that must be (will be) true or false before (after) an act is
performed. But the proposition that a proposition p is false is itself a proposition, so we can say.that a

pre:-(post-)condition is a proposition that must be (will be). true before (after) an act is performed. (We will

rely on SNeBR, the SNePS Belief Revision System [4] to remove inconsistent beliefs after believing the effects

of an act.) We have thus reduced the storage of pre- and post-conditions to two simple kinds-of propositions:

the pre-condition of some act a is the proposition p; the post-condition of some act a is the proposition p.

That is, effects and preconditions of an act are represented in the-same way as other: beliefs about other .. -

mental objects; we do not need a special data structure for acts in which pre- and post-conditions are special
fields.

actions is small, but, for now, we can simulate other-actions by appropriate printed messages.” The acting

system is composed of a queue of acts to be carried out, and an actmg executive, which currently:is the-: -

following loop: -

while act-qnene is not empty do - = .
if the f:u:st-act on the act-queue has preconditions
5o ‘" then insert the ‘achieving of them on the front of the act-quene
else remove the first-act :fron the act-queue;
.nretrieve effects of first-act,
' and insert the believing of them on the front of the act—quene'
if first-act is primitive ~
- then perform it
else deduce plans for carrymg out first-act (using SNIP a.nd available rules),
choose one of them;
and insert it on the front of the act—queue
end if
end if
end while

From this loop, it can be seen that at this stage of our work, we are assuming that a plan will be found
for every complex act, and that every act will be successful. These assumptions will be removed as we
proceed. Also at this stage, choosing one of a set of alternative plans for carrying out a complex action is
done arbitrarily, unless one of the set is the no-op action of doing nothing, in which case it is chosen.

Primitive actions fall into three classes: external actions that affect the world; mental actions that affect
the system’s beliefs; control actions that affect the acting queue. At this point, the only external action
that our system can actually perform is printing something on the screen; all other external actions are
simulated by.printing an appropriate message. The two mental actions we have implemented are belicving
a proposition, and disbelicving a proposition. The syntax and operational semantics of our current set of
control actions are:

3.2l 5 =3

We want the systexn to. carry out plans, as well as to discuss thcm, reason about them, and recognize .
them. Certainly, since the system is currently ‘without eyes, hands, or mobility, its repertoire of primitive * - -

Syn. 1: sequence ::= ACTION: SNSEQUENCE
OBJECT1: actl
OBJECT2: act2

This means that a sequence act is represented by a node with an ACTION arc to the node, SNSEQUENCE, an
OBJECT1 arc to an act node, and an OBJECT2 arc to another act node.

Sem. 1 act2 is inserted on the front of the act queue, and then actl is inserted in front of it.

Syn. 2: conditional ::= ACTION: SNIF
OBJECT1: {CONDITION: propositioni
THEN: acti}

This means that a conditional act is represented by a node with an ACTION arc to the node, SNIF, and
OBJECT1 arcs to an arbitrary number of nodes, each with a CONDITION arc to a proposition node and a
THEN arc to an act node.

Sem. 2 If no proposition is true, does nothing. Otherwise, arbitrarily chooses one acti whose corresponding.
propositioni is true, and puts it on the front of the act queune. (Based on Dijkstra’s guarded if [2].)

Syn. 3: iteration ::= ACTION: SNITERATE e
OBJECT1: {CONDITION: propositioni
THEN: - acti}

Sem. 8 If no proposition is true, does nothing. Otherwise, arbitrarily chooses one acti whose corresponding
propositiont is true, and puts on the front of the act queue a sequence whose OBJECT1 is acti and
whose OBJECT2 is the iteration node itself. (Based on Dijkstra’s guarded loop [2].)

Syn. 4: achieve ::= ACTION: ACHIEVE
OBJECT1: proposition

Sem. 4 If proposition is true, does nothing; Otherwise, deduces plans for achieving proposition, chooses one
of them, and puts it on the front of the act queue.

Syn. 5: no-op ::= ACTION: NOOP .. ° inden

Sem. 5 Does nothing. ; Fo e 5 S

Other control acts may be defined in the future, in particular-a parameterized act that uses a sensory act to
identify some object, and then performs some action on the identified object.

Notice that deduction is used in two placés: in the executive loop to find plans for complex acts; and
as part of the achieve action, to find a plan to achieve some goal. This constitutes the active planning the
system does. When the project advances to the point that hypothetical reasoning is needed for planning,
SNeBR will be used as described in [3].

The two propositions that relate plans to complex acts and to goals are represented as follows:

Syn. 6: plan-act-proposition ::= PLAN: actl
ACT: act2

Sem. 6 actlis a plan for carrying out act2.

- Syn. 7: plan-goal-propositionj ::= PLAN: act
GOAL: proposition

Sem. 7 actis a plan for achieving proposition.

An examin'af.ion of the above syntax shows that the SNePS path-based inference (7,12] rule:

32 07 =4

(definc-path PLAN-COMPONENT
(compose PLAN
(kstar (or (compose (kstar OBJECTZ2) (or OBJECT1 OBJECTZ2))
{compose OBJECT1 THEN)))))

defines the virtual arc PLAN-COMPONENT to be one that goes from a plan-act-proposition or a plan-goal-
7l prop P g
proposition to every act within the plan. Therefore, an initial rule for plan recognition is:

if an actor z performs an act al,
and al is 2a PLAN-COMPONENT of a proposition p
then if a2 is the ACT of p
then z may be engaged in carrying out a2
and if g 1s a GOAL of a proposition p
then z may be trying to achieve g.

We.do not yet have a way of dealing with “may be engaged in” nor with “may be trying to achieve,” but
this rule indicates our initial approach to plan recognition.

The representation shown in this paper has been implemented in SNePS-2, 2 new implementation of
SNePS written in Common Lisp and running on HP 9000 series workstations; Texas Instrument Explorers,
and Symbolics Lisp Machines. - Simple plans have been represented and carried out by the new SNePS
acting component. The plan recognition rule given above has been tested and has worked. A Generalized
Augmented Transition Network parsing/generation grammrar {6] has been written to interact with SNePS
and its planning/acting component in the domain of the blocks world.

References

[1] Michael J. Almeida. -Reasoning About the Temporal Structurc of Narratives. PhD thesis, Depa.rtment
of Computer Science, SUNY at Buffalo, Buffalo, NY, 1987. Technical Report No. 87-10.

[2] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Chﬁ's, NJ, 1976.

[3] Jodo P. Martins and Stuart-C. Shapiro. Hypothetical reasoning. In Applications of Artificial Intelligenice
to Engineering-Problems: Pmcccdmg: of The 1st International Conference, pages 1029-1042, Springer-
Verlag, Berlin, 1986.

[4] Jo3o P. Martins and Stuart C. Shapiro. A model for belief revision. Artificial Intelligence, 35(1):25-79,
May 1988.

[5] Donald P. McKay and Stuart C. Shapiro. Using active connection graphs for reasoning with recursive
rules. In Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pages 368—
374, Morgan Kaufmann, Los Altos, CA, 1981.

[6] Stuart C. Shapiro. Generalized augmente;i- transition network grammars for generation from'semantic
networks. American Journal of Computational Linguistics, 8(1):12-25, January—March 1982. -

[7] Stuart C. Shapiro. Path-based and node-based inference in semantic networks. In David L. Waltz,
editor, Tinlap-2: Theoretical Issues in Natural Languages Processing, pages 219-225, ACM, New York,
1978.

[8] Stuart C. Shapiro. The SNePS semantic network processing system. In Nicholas V. Findler, editor, As-
soctative Networks: The Representation and Use of Knowledge by Computers, pages 179-203, Academic
Press, New York, 1979.

[9] Stuart C. Shapiro, Jodo P. Martins, and Donald P. McKay. Bi-directional inference. In Proceedings of
the Fourth Annual Meeting of the Cognitive Science Society, pages 90-93, Ann Arbor, MI, 1982.

[10] Stuart C. Shapiro and William J. Rapaport. SNePS considered as a fully intensional propositional
semantic network. In Nick Cercone and Gordon McCalla, editors, The Knowledge Frontier: Essays in
the Representation of Knowledge, pages 262-315, Springer-Verlag, New York, 1987.

Soe T o U =

[11] John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley,
Reading, MA, 1984.

[12] Rohini Srihari. Combining Path-based and Node-based Reasoning in SNePS. Technical Report 183,
Department of Computer Science, SUNY at Buffalo, Buffalo, NY, 1981.

3.2 .7 =6

APPENDIX A

> (sneps)

Welcome to SHePS-2.0
8/17/1988 17:46:47

+(demo "sneps2.snactor;snactor.demo™)
File sneps2.snactor;snactor.demo

is now the source of input.

CPU time : 0.38 GC time : 0.00

;33 Basic SHACTOR network

;33 Required arcs
(define action lex objectl object2 object3
act plan goal effect then condition until
do member class)

(ACTIOF LEX OBJECT1 OBJECT2 OBJECT3 ACT
PLAY GOAL EFFECT THEN CONDITION UNTIL
DO MEMBER CLASS) :

CPU time : 0.85 GC time : 0.00

;;; Declaration of primitive actions
(describe
(assert member (build lex snsequence) = SNSEQ

class (build lex primitive) = PRIMITIVE))

(M3! (crass (M2 (LEX PRIMITIVE)))
(MEMBER (M1 (LEX SNSEQUENCE))))
CPU time : 1.08 GC time : 0.00

- (describe
(assert member (bunild lex snif) = SEIF
class *PRIMITIVE))

(M5t (cLass (M2 (LEX PRIMITIVE)))
(MEMBER (M4 (LEX SNIF)))) . 5
CPU time : 0.38 GC time : 0.00

C(doscribe v vt oin e Shin o e @R L =
(assert member (build lex sniterate)
= SHITERATE '
class *PRIMITIVE))

(M7! (cLasS (M2 (LEX PRIMITIVE)))
(MEMBER (M6 (LEX SEITERATE))))
CPU time : 0.20 GC time : 0.00

(describe
(assert member (build lex achieve) = ACHIEVE
class *PRIMITIVE))
(M9! (cLass (M2 (LEX PRIMITIVE)))
(MEMBER (M8 (LEX ACHIEVE))))
CPU time : 0.30 GC time : 0.00

(describe
(assert member (build lex say) = SAY
class *PRIMITIVE))

(M11! (cLass (M2 (LEX PRIMITIVE)))
(MEMBER (M10 (LEX SAY))))
CPU time : 0.23 GC time : 0.00

(describe
(assert member (build lex noop) = HEOOP
class *PRIMITIVE))

- (M19 (ACTION (M10 (LEX SAY))). g

(M13! (CLASS (M2 (LEX PRIMITIVE)))
(HEMBER (M12 (LEX EOOP))))
CPU time : 0.28 GC time : 0.00

(describe
(assert member (build lex believe) = BELIEVE
class <PRIMITIVE))

(M15! (CcLASS (M2 (LEX PRIMITIVE)))
(MEMBER (M14 (LEX BELIEVE))))
CPU time : 0.18 GC time : 0.00

(describe
(assert member (build lex forget) = FORGET
class *PRIMITIVE))

(M17¢ (CLASS (M2 (LEX PRIMITIVE)))
(MEMBER (M16 (LEX FORGET))))
CPU time : 0.32 GC time : 0.00

33; Some tests
(describe
(build action *say
= objectl hello)) = say-hello

(M18 (ACTION (M10 (LEX SA&Y)))
(OBJECT1 EELLO))
CPU time : 0.23 GC time : 0.00

(snact *say-hello)

HELLO
CPU time : 0.93 GC time : 0.00

(describe
(build action #*say
objectl there)) = say-there

(OBJECT1 TEERE))

(snact
(build action *snseq
objectl #*say-hello
object2 *say-there))

HELLO
THERE
CPU time : 0.47 GC time : 0.00

(describe
(build action +snif
object1
(build condition

(build lex permission) = permission

then *say-hello)))

(M23 (ACTIOE (H4 (LEX SKNIF)))
(0BJECT1
(M22 (COEDITION (M21 (LEX PERMISSION)))
(THEN (M18 (ACTION (M10 (LEX SAY)))
(0OBJECT1 HELLO))))))
= if-have-permission-say-hello
CPU time : 0.02 GC time : 0.00

(snact +if-have-permission-say-hello)

CPU time : 0.37 GC time : 0.00
(assexrt lex permission)

(M21¢)

CPU time : 0.02 GC time : 0.00

(snact *if-have-permission-say-hello)

HELLO

CPU time : 0.42 GC time : 0.00
(snact
(build action *forget

object1l *permission))

Now doing: DISBELIEVE:

(M21 (LEX PERMISSIOK))

CPU time : 0.42 GC time : 0.00
(snact *if-have-permission-say-hello)

CPU time : 0.30 GC time : 0.00
(snact
(build action *believe

objectl #*permission))

¥ov doing: BELIEVE:

(M21! (LEX PERMISSION))

CPU time : 0.38 GC time : 0.00
(snact *+if-have-permission-say-hello)

HELLO
CPU time : 0.60 GC time : 0.00
(describe
(build action #*sniterate
objecti
((build
condition *permission
then
(build action *snseq
objectl #say-hello
object2
(build action
*forget
objectl
spermission)))
(build
condition
(build lex permission2)
= permission2
then
(build action #snseq
objectl *say-there
object2
(build
action *forget
objectl
*permission2))))))

(M32 (ACTIOE (M6 (LEX SHITERATE)))
(OBJECT1
(M27 (CONDITIOE (M21!
(THEN.
(M26 (ACTION (M1 (LEX SNSEQUENCE)))
(OBJECT1 (M18 (ACTION (M10 (LEX SAY)))

(LEX PERMISSION)))

(OBJECT1 HELLO)))
(OBJECT2 (M24 (ACTION (M16 (LEX FORGET)))
(OBJECT1 (M21!)))))))
(M31 (CONDITION (M28 (LEX PERMISSION2)))
(THER
(M30 (aCTIOE (M1))
(OBJECT1 (M19 (ACTION (M10))
(OBJECT1 TEERE)))
(OBJECT2 (M29 (ACTION (M16))
(OBJECT1 (M28)))))))))
= repeatedly-vith-permission-say-hello-there
CPU time : 0.12 GC time : 0.00

(snact *repeatedly-with-permission-say-hello-there)

HELLO

¥ow doing: DISBELIEVE:

(M21 (LEX PERMISSION))

CPU time : 2.23 GC time : 0.00
(snact

(build action *believe
objectl *permission2))

e
How doing: BELIEVE:

(M28! (LEX PERMISSION2))

CPU time : 0.45 GC time : 0.00

(snact *repeatedly-vith-permission-say-hello-there)
THERE

Now doing: DISBELIEVE:
(M28 (LEX PERMISSION2))
CPU time : 2.78 GC time : 0.00
(snact
(build action #believe
objectl #*permission))

Now doing: BELIEVE:
(M21! (LEX PERMISSION))
CPU time : 0.50 GC time : 0.00
(snact
(build action %believe
objectl *permission2))

How doing: BELIEVE:

(H28¢ (LEX PERHISSION2))
CPU time : 0.60 GC time :

0.00
(snact *repeatedly-with-permission-say-hello-there)

HELLO

Now doing: DISBELIEVE:
(H21 (LEX PERMISSION))

THERE
Nov doing: DISBELIEVE:
(H28 (LEX PERMISSION2))
CPU time : 6.50 GC time : 0.00

; Beginning of plan recognition

; 4 plan node has plan-act or plan-goal arcs
; the plan arc points to an act node

(define plan-component)

(PLAN-COMPONENT)
CPU time : 0.23

GC time : 0.00

; the plan-component virtnal arc points
; from a plan node to the act nodes

; within its plan-act

efine-path plan-component

g . . we

(
(compose plan
(kstar (or (compose
(kstar object2)
(or objectl object2))
(compose objectl then)))))

PLAE-COMPONENT implied by the path
(COMPOSE
PLAN¥ (KSTAR (OR
(COMPOSE
(KSTAR OBJECT2)
(OR OBJECT1 OBJECT2)) :
(COMPOSE OBJECT1 THEN))))

PLAN-COMPONENT- implied by the path
(COMPOSE
(KSTAR (OR
(COMPOSE (OR DBJECTi- OBJECT2-)
(KSTAR OBJECT2-))
(COMPOSE THEN- OBJECT1-))) PLAK-)
CPU time : 0.22 GC time : 0.00

(describe

(assert
act give-greetings
plan
*repeatedly-vith-permission-say-hello-there))

(36! (ACT GIVE-GREETINGS)

(PLAN A S R UNET - T o

(M32 (ACTIDI (ns (LEX SIITERATE)))
(OBJECT1
(unv (COEDITION (u:x (LEx PERHISSIOI)))
¥ (THEN s+ pse nm f
(M26 (ACTION (M1 (LEX sussquzlcs)))
(OBJECT1
(M18 (ACTIOF (M10 (LEX SAY)))
(0OBJECT1 HELLO)))
(DBJECT2
(M24 (ACTION (M16 (LEX FORGET)))
(DBJECT1 (M21)))))))
(M31 (CONDITION (M28 (LEX PERMISSION2)))
(THEN
(M30 (ACTION (M1))
(OBJECT1 (M19 (ACTION (M10))
(OBJECT1 THERE)))
(OBJECT2
(M29 (ACTION (M16))
(OBJECT1 (M28)))))))))))
CPU time : 0.73 GC time : 0.00
(define agent)
(AGENT)
CPU time : 0.02

GC time : 0.00

; If someone is doing an act which
is part of some plan, assume that person
; is engaged in the plan.

(describe
(assert forall
($agent $reported-act $planned-act)

tant ((build agent *agent

act *reported-act)
(build plan-component *reported-act

act *planned-act))

cq (build agent #*agent

act *planned-act)))

(M37! (FORALL V39 V40 V41)
(220T (P39 (ACT V40)
(AGENT V39))
(P40 (ACT V41) (PLAN-COMPONENT V40)))
(cq (P41 (ACT V41) (AGEET V39))))
CPU time : 0.45 GC time : 0.00

(describe
(add agent john
act *say-hello))

(M38! (ACT (M18 (ACTION (M10 (LEX SAY)))
(0BJECT1 EELLD)))

_ (AGENT JOEN))
CPU time : 1.80 GC time : 0.00
(describe

(deduce agent john
act $johns-acts))

(M38! (ACT (M18 (ACTION (M10 (LEX SAY)))
(OBJECT1 HELLD)))
(AGENT JOEE))

(M52! (ACT GIVE-GREETIHNGS)
(AGENT JOEN))

CPU time : 6.65 GC time : 0.00

APPENDIX B1 are true: V1 is held.
Time (sec.): 13.4
> (sneps)
vse Effects of mctS...... contd.
Welcome to SHePS-2.0 3
8/1/1988 17:42:31 : after putting down a block
the block is clear

(- (parse -1))

ATH parser initialization... I understand that for-ovary VA,

Input sentences in normal English orthographic aft?r performing putdowns on V1 ,
convention. May go beyond a line by having =] V1 is clear.

space followed by a <CR> Time (sec.): 10.433333

To exit parser, write “end.)

: after putting down a block
:3; Basic SHACTOR network that defines the block is ontable
;33 a Blocksworld.

I understand that for every Vi ,

: picking up is a primitive act. after perfomi.ng putdowns on V1 ,
I understand that pickup is a primitive act. Vi is ontable.

Time (sec.): 6.9 Time (sec.): 10.683333

: putting down is a ptﬁitivo act. ' ;33 Effects of acts......contd.
I understand that putdown is a primitive act. '

Time (sec.): 5.35 :-—after stacking a block on another block

the. latter is not clear

: stacking is a primitive act.

I understand that stack is a primitive act. I understand that for every Vi and V2 ,
Time (sec.): 4.4166665 after performing stacks on Vi and V2 ,
exactly O of the
: unstacking is a primitive act.) folloving are true: V2 is clear.
I understand that unstack is a primitive act. Time (sec.): 28.916666

Time (sec.): 4.4333334 : |
: after stacking a block on another block

222l Effacts of Bets the former is not held
23> o8
: after picking up a block I understand that for every Vi and V2 ,
tRelBlack T nok dons : after performing stacks on V1 and V2 ,
E exactly O of the
I understand that for every Vi , following are trume: Vi is held.
after performing pickups on V1 , Time (sec.): 14. 333333 G e
exactly O of the following : e e 5
axe true: V1 is clesr. 333 Effects of acts......contd. ;
; T:uno (sec.): 14.2 HAHELE o ER o R S L SO
: after stacking a block on unothor 'bloc):
e ‘picki.ng i o : the former is on the latter o

the block is not ontable g
I understand that for every Vi and V2 ,

I understand that for every V1 , after performing stacks on V1 and V2,
after performing pickups on V1 ,) ‘V? is on V2. :
exactly O of the following Time (sec.): 12.583333
are true: V1 is ontable.
Time (sec.): 13.583333 : after stacking a block on another block
the former is clear
333 Effects of mcts...... contd.
I understand that for every Vi and V2 ,
: after picking up a block the block is held after performing stacks on Vi and V2 ,
V1 is clear.
I understand that for every V1 , Time (sec.): 12.116667
after performing pickups on V1 ,
Vi is held 335 Effects of acts......contd.

Time (sec.): 11.233334
: after unstacking a block from another block
: after putting down a block the former is not clear

the block is not held :
I understand that for every Vi and V2 ,

I understand that for every V1 , after performing unstacks on V1 and V2 ,
after performing putdowns on V1 , exact iyjo ?f L :
exactly O of the folloving the following are true: V1 is clear.

10

Time (sec.): 15.816667

;3; Some plans for a blocksworld...... contd.
: after unstacking a block from another block
the former is not on the latter : a plan to achieve
a block is on another block is
I understand that for every V1 and V2 , to achieve the latter is clear
after performing unstacks on V1 and V2 , and then achieve the former is held
exactly O of and then stack the former on the latter
the following are true: Vi is on V2.
Time (sec.): 15.833333 I understand that for every Vi and V2 ,
a plen to achieve V1 is on V2 is
i3 Effects of Bcts...-es contd. by achieving V2 is clear
and then achieving V1 is held
: after unstacking a block from another block and then performing stacks on V1 and V2.
the latter is clear Time (sec.): 32.433334
I understand that for every Vi and V2 , ;:; Some plans for a blocksvorld......contd.
after performing unstacks on V1 and V2 ,
V2 is clear. : if a block is on another block
Time (sec.): 12.033334 then a plan to achieve the latter is clear
is to achieve the former is clear
: after unstacking a block from another block and then achieve the former is ontable

the former is held
I understand that for every V1 and V2 ,

I understand that for every Vi and V2 , if V1 is on V2
after performing unstacks on Vi and V2 , then a plan to achieve V2 is clear
V1 is held. is by achieving V1 is clear

Time (sec.): 12.6 and then achieving V1 is ontable.

Time (sec.): 29.466667
;;; Some plans for a blocksvorld...

: “end
: if a block is on another block
then a plan to achieve the former is held ATH Parser exits...
is to achieve the former is clear and - CPU time : 383.42 GC time : 0.00

then unstack the former from the latter

I understand that for every Vi and V2 ,
if V1 is on V2
then a plan to achieve V1 is held
is by-achioving Vi is clear and then
performing unstacks on Vi and V2.
Time (sec.): 27.8

33; Some plans for a blocksworld......contd.

: if a block is ontable
and the block is clear then
a plan to achieve the block is held
is to pick up the block

I understand that for every Vi ,
if V1 is clear
and V1 is ontable
then a plan to achieve V1 is held
is by performing pickups on V1.
Time (sec.): 22.7

;;; Some plans for a blocksworld......contd.

: a plan to achieve a block is ontable
is to achieve the block is held
and then put down the block

I understand that for every V1 ,
a plan to achieve V1 is ontable is
by achieving V1 is held
and then performing putdouns on V1.
Time (sec.): 48.083332

Plan for building a stack of three blocks

To build a stack of three blocks,
Bl on B2 on B3,

first put B3 on the table,

then put B2 on B3,

then put Bl on B2.

Nh we e el e e e

. owe owe el e
vt we owe owi ows

(assert forall (+block *other-block $third-block)
act (build action make-3-stack
objectl *third-block
object2 *block
object3 *other-block)
plan (build
action *SHSEQ
objectl
(build
action *ACHIEVE
objectl
(build
property *ONTABLE
object *other-block))
object2
(build
action *SNSEQ
objectl
(build
action #ACHIEVE
objectl +0NE-ON-OTHER
object2
(build
action #ACHIEVE
object1 (build
rel *0N
argl *third-block
arg2 *block))))))

CPU time : 14.58 GC time : 0.00

APPENDIX B2

; We nov describe the current blocksworld
; and ask SHACTOR to perform some action.
i

¢

(parse -1))

ATH parser initialization...

Input sentences in normal English orthographic
convention. May go beyond a line by having

a space folloved by a <CR>

To exit parser, write ~“end.
: blockc is clear

I understand that blockc is clear.
Time (sec.): 5.9666667
: blockc is ontable

I nhderstand that blockc is ontable.
Time (sec.): 4.516667

—~blockb is clear

-I understand that blockb is clear.

Time (sec.): 6.1

: blockb is ontable

I understand that blockb is ontable.
Time (sec.): 4.616667

: blocka is clear

I understand that blocka is clear.
Time (sec.): 6.25

: blocka is ontable

I understand thaf blocka is ontable.
Time (sec.): 4.7

: pick up blockb

I understand that you want me to perform
the action of pickups on blockb.
Time (sec.): 6.35

Now doing: PICKUP BLOCKB from table.

How doing: DISBELIEVE:
(M40 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

Now doing: DISBELIEVE:
(¥41 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M15 (LEX ONTABLE))))

Fow doing: BELIEVE:
(H50* (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (H14 (LEX HELD))))
CPU time : 2.93 GC time : 0.00
: put down blockb

How doing: PUTDOWHN BLOCKB on table.

Now doing: BELIEVE:
(M40¢ (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

Now doing: BELIEVE:
(M41* (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M15 (LEX OBTABLE))))

N¥ow doing: DISBELIEVE:

(M50 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M14 (LEX HELD))))

CPU time : 3.05 GC time : 0.00

: pick up blockc
Now doing: PICKUP BLOCKC from table.

Now doing: DISBELIEVE:
(M37 (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M12 (LEX CLEAR))))

Now doing: DISBELIEVE:
(M38 (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M15 (LEX ONTABLE))))

¥ow doing: BELIEVE:

(M68! (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M14 (LEX HELD))))

CPU time : 2.98 GC time : 0.00

Make a 3-stack using 4, B, and C

(snact (build action make-3-stack

object1 (build lex blocka)
object2 (build lex blockb)
object3 (build lex blockc)))

Want to ACHIEVE:
(M38 (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M15 (LEX ONTABLE))))

Want to ACHIEVE:

(M68¢! (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M14 (LEX HELD))))

Already Achieved.

Now doing: PUTDOWH BLOCKC on table.

Now doing: BELIEVE:
(M37¢ (DOBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M12 (LEX CLEAR))))

How doing: BELIEVE:
(M38¢ (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M1S5 (LEX ONTABLE))))

Nov doing: DISBELIEVE:
(M68 (DBJECT (M36 (LEX BLOCKC)))
(PROPERTY (14 (LEX HELD))))

Want to ACHIEVE:

(H7S (ARG1 (H39 (LEX BLOCKB)))
(4RG2 (M36 (LEX BLOCKC)))
(REL (M13 (LEX OK))))

Want to ACHIEVE:

(M37! (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M12 (LEX CLE&R))))

Already Achieved.

Want to ACHIEVE:
(M50 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M14 (LEX HELD))))

Hou doing: PICKUP BLOCKB from table.

Now doing: DISBELIEVE:
(M40 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

How doing: DISBELIEVE:
(M41 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M15 (LEX ONTABLE))))

Hos doing: BELIEVE:
(HM50¢ (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M14 (LEX HELD))))

Now doing: STACK BLOCKB on BLOCKC.

Now doing: BELIEVE:
(M40! (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

Now doing: DISBELIEVE:
‘(M50 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M14 (LEX EELD))))

How doing: DISBELIEVE:
(M37 (OBJECT (M36 (LEX BLOCKC)))
(PROPERTY (M12 (LEX CLEAR))))

Now doing: BELIEVE:

(M75! (ARG1 (M39 (LEX BLOCKB)))
(ARG2 (M36 (LEX BLOCKC)))
(REL (M13 (LEX OK))))

Want to ACHIEVE:
© (M77 (&RG1 (M42 (LEX BLOCKA)))
(ARG2 (M39 (LEX BLOCKB)))
(REL (M13 (LEX ON))))

VWant to ACHIEVE:

(M40! (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

Already Achieved.

Want to ACHIEVE:
(M106 (OBJECT (M42 (LEX BLOCKA&)))
(PROPERTY (M14 (LEX HELD))))

How doing: PICKUP BLOCKA from table.

How doing: BELIEVE:

(H106! (OBJECT (M42 (LEX BLOCKA)))
(PROPERTY (H14 (LEX HELD))))

Now doing: DISBELIEVE: -
(H43 (OBJECT (H42 (LEX BLOCKA)))

- Want to ACHIEVE: .- . v :ponioon

(PROPERTY (M12 (LEX CLEAR))))

¥ow doing: DISBELIEVE:
(M44 (OBJECT (M42 (LEX BLOCKA&)))
(PROPERTY (M15 (LEX ONTABLE))))

Now doing: STACK BLOCKA on BLOCKB.

¥ow doing: DISBELIEVE:
(M106 (OBJECT (M42 (LEX BLOCKA&)))
(PROPERTY (M14 (LEX HELD))))

¥ow doing: BELIEVE:
(M43! (OBJECT (M42 (LEX BLOCKA)))
(PROPERTY (M12 (LEX CLEAR))))

“Now doing: DISBELIEVE:
(M40 (OBJECT (M39 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

¥ow doing: BELIEVE:
(77! (ARG1 (M42 (LEX BLOCKA)))
(ARG2 (M39 (LEX BLOCKB)))
(REL (M13 (LEX 0OK))))
CPU time : 112.75 GC time : 0.00

333 Achieve a state where Block-B is being held.

(snact
(build action (build lex achieve)
objecti (build
property (build lex held)
object (build lex blockb))))

Want to ACHIEVE:
(¥43 (OBJECT (M38 (LEX BLOCKB)))
(PROPERTY (M14 (LEX EELD))))

. (M45 (OBJECT (M38 (LEX BLuch)))
(PROPERTY (M12 (LEX czsnn))))
Yant to ACKIEVE
(#37! (OBJECT (M36 (LEX BLoch)))
(PROPERTY (M12 (LEX CLEAR))))
Already Achieved.

Want to ACHIEVE:
(M56 (OBJECT (M36 (LEX BLOCKA&)))
(PROPERTY (M15 (LEX ONETABLE))))

Want to ACHIEVE:
(M60 (OBJECT (M36 (LEX BLOCKA)))
(PROPERTY (M14 (LEX HELD))))

Want to ACHIEVE:

(M37! (OBJECT (M36 (LEX BLOCK4)))
(PROPERTY (M12 (LEX CLEAR))))

Already Achieved.

Now doing: UNSTACK BLOCKA from BLOCKB.

Hovw doing: BELIEVE:

(M45! (OBJECT (M38 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

¥ow doing: BELIEVE:
(M60! (OBJECT (M36 (LEX BLOCKA&)))
(PROPERTY (M14 (LEX HELD))))

Now doing: DISBELIEVE:

(H39 (ARG1 (M36 (LEX BLOCKA)))
(&RG2 (H38 (LEX BLOCKB)))
(REL (M13 (LEX 0H))))

Hov doing: DISBELIEVE:
(M37 (OBJECT (M36 (LEX BLOCKA)))
(PROPERTY (M12 (LEX CLEAR))))

How doing: PUTDOWN BLOCKA on table.

Now doing: BELIEVE:
(H37! (OBJECT (M36 (LEX BLOCKA)))
(PROPERTY (M12 (LEX CLEA4R))))

FNow doing: BELIEVE:
(Ms6! (OBJECT (M36 (LEX BLOCKA)))
(PROPERTY (M16 (LEX ONTABLE))))

How doing: DISBELIEVE:

(M80. (OBJECT (M36 (LEX BLOCK4)))
(PROPERTY (M14 (LEX EELD))))

How doing: UNSTACK BLOCKB from BLOCKC.

FNow doing: BELIEVE:

(H43! (OBJECT (M38 (LEX BLOCKB)))
(PROPERTY (M14 (LEX EHELD))))

How doing: DISBELIEVE:
(H4S (OBJECT (M38 (LEX BLOCKB)))
(PROPERTY (M12 (LEX CLEAR))))

How doing: DISBELIEVE:

(M41 (4RG1 (M38 (LEX BLOCKB)))
(ARG2 (M40 (LEX BLOCKC)))
(REL (M13 (LEX OF))))

Now doing: BELIEVE:

+ (M91! (OBJECT (M40 (LEX BLOCKC)))

(PROPERTY (M12 (LEX CLEAR))))
CPU time : 96.13 GC time : 0.00

