Stuart C. Shapiro, Professor of Computer Science
Hans Chalupsky, Computer Science doctoral candidate
Hsueh-cheng Chou, Geography doctoral candidate
David M. Mark, Professor of Geography

. National Center for Geographic Information and Analysis
State University of New York at Buffalo
Buffalo, New York 14261

Telephone: (716) 636-3835

Fax: (716) 636-5957

Email: shapiro@cs.buffalo.edu
hans@cs.buffalo.edu
esrichou@ubvms.cc.buffalo.edu
geodmm@ubvms.cc.buffalo.edu

INTELLIGENT USER INTERFACES:
CONNECTING ARC/INFO AND SNACTor, A SEMANTIC
NETWORK BASED SYSTEM FOR PLANNING ACTIONS

This report describes an interface between ARC/INFO, a geographic
information management system, and SNACTor, the SNePS acting
component. It also shows a small example interaction that
demonstrates how ARC/INFO and SNACTor can interact using the
new interface, and how more sophisticated future applications can
make use of its functionality. The interface was designed and
implemented during a two-month research project carried out in
Summer, 1990 at the State University of New York at Buffalo.

INTRODUCTION

As GIS software matures in functionality, speed, and flexibility, issues of the use and usability of
GIS come to the fore. User interfaces have become a critical focus within the GIS research agenda
at the National Center for Geographic Information and Analysis (Gould, 1991; Mark, 1991; Mark
and Gould, 1991; Mark er. al., 1992) and in general. As we begin to think about delivering GIS
technology and GIS databases to the general public, we need user interfaces that are easy-to-use,
intuitive, and perhaps 'intelligent.’ Intelligent user interfaces may also be valuable to professional
users, allowing them to concentrate on their actual task, rather than on the system commands (Neal
etal., 1989; Neal and Shapiro, 1991).

Recently, there have been several efforts directed at improving the usability of ARC/INFO and
related databases. ESRI's own ArcView, announced at the 1991 user conference (see ESRI,
1991), has great potential to make ARC/INFO databases useable by users with no training in
ARC/INFO per se. HyperArc is a prototype interface that runs on a Macintosh computer but
which provides an interface to ARC/INFO, as well as help functions (Raper and Bundock, 1991).
And thirdly, the CUBRICON system (Neal et al., 1989; Neal and Shapiro, 1991) provided a
prototype intelligent user interface for mission planning, manipulating maps, natural language,
tables, etc. CUBRICON is written in an Al system called SNePS (see following section). In the
summer of 1990, SNePS was linked to ARC/INFO in a proof-of-concept project that is described
in this paper!. Although the intelligence of CUBRICON has not yet been connected to the

PROCEEDINGSOFH{E'IWELFTHANNUALESRIUSERCONERENCE vo\w 3 151

TR N R

computational power of ARC/INFO, results of the project described herein clearly indicate that
such is possible, and might provide a model for intelligent GIS user interfaces of the near future.

THE PROBLEM

The problem tackled in this project was to interface ARC/INFO and SNACTor (Kumar et al, 1990;
Shapiro, 1988; Shapiro ez al., 1989), the acting component of SNePS (Shapiro, 1979; Shapiro and
Rapaport, 1987). SNePS is the Semantic Network Processing System, a knowledge representation
and reasoning system developed by Stuart C. Shapiro et al. at the State University of New York at
Buffalo. The main motivation for interfacing these two systems is to study how a knowledge
representation system such as SNePS with its powerful representation and inference mechanisms
can be used to develop more sophisticated and (human) user friendly interfaces to database systems
such as ARC/INFO.

The main technical problem that had to be solved in this project was to interface two very

.diffcrcnt systems that are similar in one respect: They are not designed to be called from other

programs. ARC/INFO is a collection of programs written in FORTRAN and C with two main
components, (1) ARC, the module that handles all geography specific computations, and that gives
a frame from which a variety of other programs can be called to perform various tasks such as
editing, plotting, etc., and (2) INFO, a relational database management system. that is used to store
and access geographical databases in a variety of ways. ARC/INFO is a stand-alone system that
was not designed to communicate with other programs, but rather give the user all functionality
that he or she needs from within the ARC/INFO environment on a variety of different hardware
and operating systems platforms.

SNePS and SNACTor on the other hand, are systems written in Common Lisp. They are
similar to ARC/INFO in the respect, that it is not possible to "call” them from within another
program, because the start-up of the Common Lisp environment takes to long and because of the
state information that accumnulates and that is necessary for proper operation. What had to be done

" was to define a communication medium and a protocol with which these two different systems

could communicate.

Scope of the Project. The scope of the project was to define and implement an interface between
the two systems, and to develop a small demonstration that shows how the two systems can
interact using the interface. This demonstration shows some features of how an interaction with a
geographic information management system could be done in a small and simple example. It was
not the intention to develop a full fledged natural language interface to ARC/INFO.

DESCRIPTION OF THE INTERFACE

General Interaction Between ARC/INFO and SNACTor

The basic idea underlying the design of the interface is to run ARC/INFO and SNACTor in two
separate processes and have them communicate on some medium via some simple protocol, instead
of calling ARC/INFO or subroutines of it from SNACTor directly. The motivation for not doing
the latter was that during a typical ARC/INFO session a lot of internal state information is acquired
and automatically taken care of. If SNACTor would call ARC/INFO subroutines directly, it would
have to manage all this state information by itself, which would amount to rewriting parts of the
ARC/INFO functionality within SNACTor. Another reason for choosing the protocol design is
portability. Calling FORTRAN subroutines from Common Lisp is different for every
implementation of Common Lisp. The protocol design, however, allows SNACTor to be run in
various different Common Lisps yet still allowing communication with ARC/INFO without having
to change the interface.

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

The communication medium chosen is the file system. Commands from SNACTor to
ARC/INFO are issued by generating little command files, results from command executions in
ARC/INFO are brought back into SNACTor via watch files (a special mechanism provided by
ARC/INFO to record ARC/INFO interactions, very similar to the script facility in UNIX2.3, The
reasons for choosing the file system as a medium were portability and simplicity. Portability,
because the interface to the file system is nicely standardized in Common Lisp, and simplicity,
because it was easier to write a simple communication program this way then, say, writing a full
fledged server/client package that communicates via Internet ports. Even though our solution does
not give a fully transparent communication across the network, it is possible to run ARC/INFO and
SNACTor on different machines as long as the file system of one machine on which either
ARC/INFO or SNACTor are running is visible from the other machine, ¢.g., by remote mounting
via NFS (the network file system).

A simple handshake protocol is used, where SNACTor acts as a master and ARC/INFO as a
slave. ARC/INFO waits for a command to be issued, SNACTor issues a command and waits for a
result to be generated, ARC/INFO executes the command, generates a result file and waits for the
next command to be issued, SNACTor reads the result file, acts accordingly and generates the next
command and so on. Synchronization is achieved via file existence tests.

The Interface Directory

As mentioned above the communication medium chosen is the file system. All communication is
done by writing files to and reading files from an interface directory. This directory has to be
accessible from ARC/INFO as well as SNACTor which is trivially achieved if both processes run
on the same machine. If the two programs run on separate machines one machine must be able to
read from and write to the file system of the other machine.

The interface directory has to be defined for ARC/INFO as well as SNACTor to allow proper

communication. This can be done by editing pathname variables in files that will be described
below.

The ARC/INFO side)

The ARC/INFO side of the communication makes use of AML, the Arc Macro Language (ESRI,
references a and b). AML provides control constructs and a variety of functions that allow one to
write programs containing arbitrary ARC/INFO commands. These programs can be run inside
ARC/INFO just as ordinary commands (UNITX shell scripts provide a similar mechanism). What
ARC/INFO does is to periodically look into the interface directory for a file next command. aml.
If it exists it executes it, records the output of the execution into a file comout . log and then

deletes the file nextcommand . aml. Then it waits for a new file next command.aml to be
generated.

What we have here is a simple command loop. Read a command, execute it, print the results
and wait for the next command. This algorithm itself is defined in an AML script called
command-loop- aml. Before interaction with SNACTor can start ARC/INFO has to be started
and command-1oop.aml has to be executed. A special UNIX shell script arcloop has been
written that does all this for the user, 5o all she or he has to do to start the ARC/INFO side of the
communication is to call arcloop at the UNIX prompt. :

Here is what command-1loop .aml does:

clear the interface directory
repeat
if (EXISTS nextcommand.aml) then
run nextcommand.aml
delete nextcommand.aml
else
sleep for a second
until (EXISTS exit) .
return from command-loop.aml

R e i o o

In the first step it clears the interface directory, i.e., it deletes nextcommand.aml and exit files
that might have existed in the directory from previous runs. Then it starts the main part of the
command loop. Note that there is nothing in the algorithm that deals with recording of results. This
is handled by the file next command . am1 itself and the command loop does not have to know
about this part. The "sleeping” in the e1se part of the 1 f statement is to break the loop and free
the cpu for other things (otherwise the endless looping itself may use up a lot of cpu cycles). The
termination criterion is the existence of an exit file. Once this file has been created by SNACTor
the command loop will terminate and return to the ARC/INFO top-level.

Here is what an actual next command. aml file generated by SNACTor looks like:

&args interface
&watch $interfacet/comout.log
ARCPLOT
&watch &off
S &return

The symbols starting with an ‘&' are special AML directives. The nextcommand . aml file takes
one parameter called interface. It supplies the location of the interface directory. The swatch
directive turns on the recording of command output. The output will be sent to the file
comout . log in the interface directory. Then the actual ARC/INFO command (ARCPLOT in our
example) gets executed. After that output recording is turned off which will close the file
comout .log and make sure that only output of the command issued in this
’ nextcommand.aml file appears in comout . log. Then the command terminates and returns to
command-loop.aml (see above) where the file next command.aml will be deleted in the

_ immediately following step. .

The SNACTor side
The SNACTor side of the communication is defined in the Common Lisp file driver. lisp.
The central function defined in this file is the function execute-command. Here is its definition
and the definition of an auxiliary function that it uses (the variables *next com* and * comout -
name * hold actual pathnames as their values):

(defun wait-for-completion () .
"Waits until the file nextcommand.aml gets deleted by the
AML command loop running in the ARC process. Returns once
nextcommand.aml does not exist anymore.™
(loop (unless (probe-file *nextcom*)
(return))
;; give system some time to breathe
(sleep 0.1))) ’

154 PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

(defun execute-command (command-string)

"Takes a COMMAND-STRING and writes a fi®e nextcommand.aml into the
communication interface directory. The command loop running in the aRC
process waits for this file, executes it and deletes it. The output
generated by the command gets written to a command output (watch) file.
This allows to get results back into the LISP process."

(wait-for-completion)

(with-open-file (nextcom *nextcom* :direction :output)

/7 nextcommand.aml takes as an argument the name of the
communication

7; directory viewed from the ARC process, into which ARC will
;; vwrite the comout file
(format nextcom

"&args interface %

&watch $interface%/ a %

a s
&watch &off %
&return "

comout-name command-string))
(wait-for-completion))

Suppose we want to send the command ARCPLOT to the ARC/INFO process. What we have
to do is to evaluate (execute-command "ARCPLOT") in our Lisp process. Then execute-
command does the following: (1) It waits for the completion of a command that might currently be
executed by the ARC/INFO process. Completion is indicated by the non-existence of the file
nextcommand.aml. (Remember, in the command-loop algorithm described above
nextcommand.aml gets deleted immediately after its execution.) (2) After the preceding
command got completed execute-command generates a file next command. aml that contains
ARCPLOT as its main command (see above for description of next command. aml). (3) It waits
for the completion of the current command in the ARC/INFO process and retumns after that.

Note that execute-command does not deal with retrieving or printing of results. After
command execution execute-command returns and control is back at the caller. The caller
might then choose to read the file comout . log to process results. This can be done using the
function print-result; print-result takes a stream as an argument. If the supplied
value is NIL the result will be returned as a string. If the result is not handled it will be overwritten
during the next call to execute-command.

Calling the function stop-arc will generate an exit file and terminate the ARC/INFO
command loop (see above).

AN EXAMPLE INTERACTION OF ARC/INFO AND SNACTor

The following is an annotated demonstration showing a simple example interaction with the
system. The output shown below has been edited to save space*: but it stems from an actual run

using the new interface. User input is shown at "*" or "; " prompts. The system's response
follows after the user input separated by a blank line.

This example shows only the SNACTor part of the interaction. ARC/INFO actions resulting
from commands sent to ARC/INFO from SNACTor will not be shown, because they involve
drawing of maps or input from the mouse. These ARC/INFO actions will be described at the
appropriate places.

At this point ARC/INFO is running; it was started with the command arcloop and is waiting
for commands from SNACTor. An example database with different coverages, from ESRI's

publication Understanding GIS (ESRI, c) has been installed. A basic familiarity with the example
database, its coverages and concepts as well as with basic concepts of ARC/INFO is assumed.

Now we start SNePS-2.1 and run the demonstration. The first three SNePSUL commands
(SNePSUL is the SNePS User Language) deal with initializations. They reset the net, define a set
of relations that will be needed later on, and a path that will be used in subclass/superclass
reasoning. »

> (sneps)
Welcome to SNePS-2.1

Copyright 1984, 88, 89 by Research Foundation of State University of
New York

10/28/1990 21:39:24
* (demo " /snactor/arcdemo.lisp")
File /snactor/arcdemo.lisp is now the source of input.
* (resetnet t)

Net reset

* ; Arc labels for predicates and relations

(= (define action lex objectl object2 object3 sub sup agent component
presumably act plan goal effect then else condition until
do member class object property rel argl arg2 precondition
relation attribute translations value translated-value
) NEW-RELATIONS)

(ACTION LEX OBJECT1 OBJECT2 OBJECT3 SUB SUP AGENT COMPONENT PRESUMABLY
ACT PLAN GOAL EFFECT THEN ELSE CONDITION UNTIL DO MEMBER CLASS
OBJECT PROPERTY REL ARGl ARG2 PRECONDITION RELATION ATTRIBUTE
TRANSLATIONS VALUE TRANSLATED-VALUE)

* (define-path class (compose class (kstar (compose sub- sup))))

CLASS implied by the path (COMPOSE CLASS (KSTAR (COMPOSE SUB- sup)))
CLASS- implied by the path (COMPOSE (KSTAR (COMPOSE SUP- SUB)) CLASS-)

Now we are ready to read in the grammar and the lexicon. The grammar used is almost identical to
the grammar developed by Sy Ali (Shapiro et al., 1989), apart from one little extension that allows
for arbitrary quoted strings. The need for this will be explained later. The lexicon defines words

used in descriptions of plans and actionsS.

* (* (lexin "™ /snactor/arclex.dat™))

undefined- (NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)
(arc arcplot table hand)

* (* (atnin " /snactor/arcgram.dat"))

State S processed.
State RESPOND1 processed.

156 PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

State GTHRESH processed.
State END processed.

Atnin read in states: (END GTHRESH RESPOND1 §)

Now we set some variables that control input reading behavior as well as various forms of tracing.
In this example all tracing has been turned off to save space. For debugging purposes it is possible
to "fake" actions, i.¢., to not actually send commands to ARC/INFO and just print them instead.

We did not want to fake actions in this demonstration.

*

snip: | *INFERTRACE*| nil
parser:: | *DEBUG*| nil))

(* (setq parser: | *TERMINATING-PUNCTUATION-FLAG*| ' (" » win "?ﬁ)

* (* (setf |*PLANTRACE*| (if (y-or-n-p "Plantrace?")
(if (y-or-n-p "Surface?")

'surface
t))))

Plantrace?(Y or N): n

* (* (setf |*JUST-FAKE~IT*| (y-or-n-p "Fake actions?")})

Fake actions?(Y or N): n

Now we tell SNACTor about a set of primitive actions, i.e., actions that will not be further
decomposed before they are executed. The effect of a primitive action is defined as a piece of Lisp
code to be executed whenever the primitive action gets executed. The first set is a set of actions
whose definitions already come with the SNACTor package. The second set is defined via the
function declare-primactions, a function that declares all the primitive actions which were

defined specifically for this demonstration.

* (describe

(assert member ((build lex "snsequence")
(build lex "snif™)
(build lex "sniterate™)
(build lex "achieve™)
(build lex "believe")
(build lex "forget")) -

class (build lex "primitive™)))

(M8! (CLASS (M7 (LEX primitive)))
(MEMBER (M1 (LEX snsequence))
(M2 (LEX snif))
(M3 (LEX sniterate))
(M4 (LEX achieve))
(M5 (LEX believe))
(M6 (LEX forget))))

(M8!)
* (* (declare-primactions))

(tell do-one say type do-all issue clear axecute
send stop)

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

start interpret noop

157

AR e iy L

'I;hc SNePS node described below defines a mapping between landuse codes used in the tables
defining the Landuse coverage and their corresponding translations which are more intelligible

for humans. This mapping will be used later when we oy toi

* (describe

(assert relation landuse
attribute lu-code

translations ((build value 100

(build value 200

(build value 300

(build value 400

, (build value 500

(build value 700

(M29! (ATTRIBUTE LU-CODE)
(RELATION LANDUSE)
(TRANSLATIONS (M23 (TRANSLATED-VALUE
(VALUE 100))
(M24 (TRANSLATED-VALUE
© (VALUE 200))
(M25 (TRANSLATED~-VALUE

(VALUE 300))

(M26 (TRANSLATED-VALUE
(VALUE 400))

(M27 (TRANSLATED-VALUE
(VALUE 500))

(M28 (TRANSLATED-VALUE
: (VALUE 700))))

dentify a certain region on a map.

translated-value Urban)
translated-value Agriculture)
translated-value Brushland)
translated-value Forest)
translated-value Water)
translated-value Barren))))

URBAN)
AGRICULTUAE)
BRUSHLAND)
FOREST)
WATER)

BARREN)

After resetting some internal parser variables we are ready to start up the parser. The prompt will

be “:" from now on.
o o (reset-all))
* (" (parse -1))
ATN parser initialization...
Input sentences in normal English orthogr

May go beyond a line by having a space fol
To exit parser, write “end.

aphic convention.
lowed by a <CrR>

Now we tell SNACTor about the domain. We will define some basic concepts and
terminology. The next sentence, for cxample, tells SNACTor that Landuse belongs to the class
polygon coverages. This will allow us later on to make assertions about polygon
coverages that will automatically apply to Landuse as an instance of this class.

The responses of SNACTor are of the form "I understand that..." These responses
are not just echoed input, they rather are generated from the SNePS nodes constructed during the
parsing of the sentence with the help of a generation grammar. The generated sentence will match
the input sentence if the input was properly understood by SNACTor.

¢ Landuse is a polygon coverage,

I understand that Landuse is a polygon co

verage.

158 PROCEEDINGS OFTHETWEU-’IHANNUALESRIUSB!CONFERENCE ,

Define the class to which the Streams coverage belongs.

: Streams is a line coverage.

I understand that Streams is a line coverage,

The next sentences define subclass/superclass relationships between different types of covcrzigcs.)

¢ Polygon coverages are coverages.
I understand that polygon coverages are Coverages.
: Line coverages are coverages.
I understand that line coverages are coverages.-
Now we tell SNACTor about peculiarities of the ARC/INFO environment. For example, that arc

is a program and that arcplot is an embedded program. This is important later on, because, for
example, before arcplot can be invoked arc (the frame Program) has to be active.

: Arc is a program.
I understand that arc is a Program.
! Arcplot is an embedded program.
I understand that arcplot is an embedded program,
: Embedded programs are program#.
Co- I understand that embedded programs are programs.
We have to tell SNACTor about the different states ARC/INFO can be in. For example, if

arcplot is running (it is an embedded program) certain commands that are only valid in the
€ program arc cannot be executed. That is, arcplot is active and arc is not. Now, if a

require quitting the other embedded program and then starting arcplot. We will not need this for
our example. The connections between starting, stopping and activity of programs is defined as a
set of effects of the actions start and stop. That is, a sentence of the form "After ... ing
"a ... P"defines P as an effect of the mentioned action.

: After starting a program the Program is active.

I understand that after performing, start on a program, the program
is active.

: After stopping a program the program is not active.

I understand that after performing stop on a program, the program
is not active. . '

¢ After starting an embedded Program arc is not active,

I understand that after performing start on a embedded'program,
arc is not active. :

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE 159

AT e nsie

: After stopping an embedded program arc is active.

I understand that after performing stop on a embedded program,
arc is active.

Here is an interesting sentence: It describes a conditional plan. SNACTor can use it in the
following way: Suppose it wants to activate arcplot. It will ry to find a plan that tells it how to
do this. It will find the plan described below because arcplot is of the class embedded
program. Then it checks whether the plan is applicable by examining whether its condition holds.
If so it executes the plan.

If arc is active then
a plan to achieve that an embedded program is active is to start
the embedded program.

I understand that if arc is active then a plan to achieve that
a embedded program is active is by performing start on the embedded
program.

Now we tell SNACTor how to plot a coverage. We do this using a special set of primitive
actions that allow us to assemble a complex ARC/INFO command in a pseudo natural language
style. The three primitive actions say, issue and send work very much like write, write-line
and write plus send. The objects of the actions are collected until a send is encountered. Then the
collected items are coerced into a single command and sent to ARC/INFO. This feature uses the
extension of the grammar that allows reading of arbitrary quoted strings.

The nice thing about this method is that we do not have to define a primitive action for every
slightly different ARC/INFO action that we want to perform. It also allows us to say things such as
issue the coverage which will result in the right coverage name depending on the coverage
that was used to instantiate the plan.

Note that in the plan below we hardcoded lu-code landuse.lut even though we usc the
general coverage as an argument to polygonshades. This was done for simplicity and
because we knew that for this demonstration this plan would be used only to plot the Landuse
coverage.

Note also that there is a bug in the generation below. Instead of generating ...performing
say on the coverage... itgenerates ...performing say on Landuse.. . le, it
grabs an instance instead of a generic reference.

: A plan to plot a polygon coverage is to issue "clear”
and then say "mapextent” and then issue the coverage

and then say "polygonshades™ and then say the coverage
and then send "lu-code landuse.lut".

I understand that a plan for performing plot on a polygon coverage
is by performing issue on clear and then performing say on mapextent
and then performing issue on Landuse and then performing say

on polygonshades and then performing say on Landuse and then
performing send on lu-code landuse.lut.

Here is a precondition for plotting (see also the discussion above). A sentence of the form
Before ...ing a P willattach P as a precondition to the action mentioned in the sentence,
i.e., before the action can be executed P has to be satisfied. If P is not satisfied, SNACTor will try
to find a plan to achieve P.

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

1

: Before plotting a coverage arcplot must be active.

I understand that before performing plot on a coverage, arcplot
must be active.

Here is an effect of plotting:

: After plotting a coverage the coverage is displayed.

I understand that after performing plot on a coverage, the coverage
is displayed.

We cannot say "After clearing the display no coverage 1is displayed” and
get the implication that after clearing the display all of them are considered as not
displayed, hence we have to formulate this effect as a conditional plan:

If a coverage is displayed then after clearing the display
the coverage is not displayed.

I understand that if a coverage is displayed then after performing
clear on display, the coverage is not displayed.

How do you display a coverage? Plot it.

: A plan to achieve that a coverage is displayed is to plot the
coverage. -

I understand that a plan to achieve that a coverage is displayed
is by performing plot on the coverage.

The main task of this demonstration is to display the Landuse coverage, a map that indicates
different uses of the various regions with different colors and shadings, and then point at some
region and have ARC/INFO identify it, i.e., say what use the particular region has.

Here we tell SNACTor some things about identifications. First a little trick: We define this
region as a member of the class region. This will allow us later to say "Identify this region”
and use a plan that talks about regions in general.

: This region is a region.

I understand that this region is a region.

The following conditional plan describes how to identify a region. The condition says that it
applies only if some polygon coverage is displayed. Then we have a collection of says and
sends to assemble the necessary ARC/INFO command.

There is one new primitive action in this plan: The action te11. It allows us to send a message
to the user just before the identification command is executed in ARC/INFO (that is why tellis
the last command before the send). The motivation for this is that the user has to be told that
action on his or her part is required and that he or she has to move the mouse and click on some
polygon.

The approach chosen here to handle the multi-modality of the ARC/INFO SNACTor interaction
is very primitive. A real application should handle this more smoothly which is a nontrivial
problem to solve.

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE 161

If a polygon coverage is displayed then

a plan to identify a region is to say "identify”

and then say the coverage and then tell

nMove the mouse over the coverage until cross hairs appear %
and then choose an area by clicking on it”

and then send "polys *" and then interpret the region on the

coverage.

I understand that if a polygon coverage is displayed then a plan
for performing identify on a region is by performing,say on identify
and then performing say on Landuse and then performing tell on
Move the mouse over the coverage until cross hairs appear
and then choose an area by clicking on it >
and then performing send on polys * and then performing interpret
on the region and Landuse.

Now we have told SNACTor enough to be able to actually do a few things. First we send a few
initialization commands to ARC/INFO to enable it to find coverage files, and to tell it what kind of

graphics hardware we are using.

The Now doing: ... indicates that the shown command is actually sent to the ARC/INFO
process and executed there.

Send "&workspace /u0/grads/hans/getstart/data”.

I understand that you want me to perform
send on &workspace /u0/grads/hans/getstart/data.

Now doing: &workspace /u0/grads/hans/getstart/data
Send "&station 99997.
f understand. that you want me to perform send on sstation 9999.

Now doing: &station 9999 -

Initially, arc is active because we started ARC/INFO with the
command arcloop.

: Arc is active.

I understand that arc is active.

Now we tell SNACTor to plot a coverage. Note that in order to plot a coverage it first had to find a
plan for doing this. A precondition for plotting was that arcplot had to be active. Another plan
told it that when arc is active arcplot can be activated by just issuing the command. This
inference led to the execution of arcplot. The second Now do ing... just shows an
instantiation of the plan for plotting.

: Plot Landuse.

I understand that you want me to perform plot on Landuse.

Now doing: arcploi

162 PROCEED[NGSOFTHE'IWHFIHANNUALESRIUSERCONFERENCE

Now doing: clear
mapextent Landuse
polygonshades Landuse lu-code landuse. lut

At this point ARC/INFO has actually displayed a nice colorful map of the Landuse coverage.
Now we want to identify some region on this map. Admittedly, Identify this regionisa
very poor way of expressing that the user wants to know something about a region on the current
display. But a more appropriate way would require quite a few extensions to the current grammar.
That is why we did it in this simple fashion. '

Again, SNACTor first tries to find a plan that describes how an identification can be done (see
the conditional plan above). It finds one, verifies that some polygon coverage is actually displayed
and hence executes an instantiation of the plan. Right after the message the user can move cross
hairs over the coverage by moving the mouse. Clicking on an area will result in highlighting of the
region and generating a result that contains a row of the table that describes the attributes of the
polygons in the Landuse coverage. This result is then read by SNACTor, interpreted and
translated using the landuse code translation table defined at the beginning of the example, and then
. the user is told the kind of region she or he pointed at. In our example it was brushland.

: Identify this region.
I understand that you want me to perform identify on this region.

*** Move the mouse over the coverage until cross hairs appear
and then choose an area by clicking on it **=x

Now doing: identify Landuse polys *

This area on the coverage Landuse is brushland.

This example showed the two-way nature of the interaction between ARC/INFO and SNACTor,
i.e., that commands can be sent to ARC/INFO and that results of these commands can be read and
interpreted by SNACTor after the command got executed. ‘

Now we clear the display to show that conditional plans are actually conditional.
¢ Clear the display.
I understand that you want me to perform clear on display.
Now doing: clear
At this point the Landuse coverage has disappeared and the display is clear. When we try again to

identify a region nothing happens because the condition of the plan that describes identification,
that is that some polygon coverage must be displayed, is not met. :

: Identify this region.

I understand that you want me to perform identify on this region.

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE 163

e ——

e A

CONCLUSION

We have described an interface between ARC/INFO, a geographic information management
system, and SNACTor, the SNePS acting component. We demonstrated how ARC/INFO and
SNACTor can interact by means of an example interaction developed as part of the project. Here
are a few of the many interesting questions that have to be answered before a full fledged natural
language front end to ARC/INFO can be developed, for example, how much of the information
contained in the ARC/INFO database has to be copied in one form or the other into the SNACTor
knowledge base for proper operation (as done in the mapping between land usage codes and more
humanly readable translations thereof), and how much of it can SNACTor find out itself by
consulting the ARC/INFO database directly? Another question is how to handle the multi-modal
interaction between the ARC/INFO-SNACTor system and the user? Even our simple
demonstration showed the need for proper synchronization of natural language input and output,
identification of regions with help of a mouse, and presentation of database information in graphic
as well as tabular form. A lot more research and the development of bigger and more realistic
applications is needed to provide answers to these questions. ‘ '

ACKNOWLEDGEMENTS

Partial support for this project was provided by a grant to the Shapiro and Mark from the

" Environmental Systems Research Institute. This paper is a part of Research Initiative #13, "User

Interfaces for GIS", of the National Center for Geographic Information and Analysis, supported in

part by a grant from the National Science Foundation (SES-88-10917). Support by NSF and by

~ ESRI is gratefully acknowledged. Most of the text of this paper already appeared as an NCGIA
Technical Paper (Shapiro er al., 1991).

REFERENCES

ESRI, a. AML Users Guide. ESRI, Inc., Redlands, California.

ESRI, b. ARC/INFO Users Guide. manuals, Vols.1 & 2, ESRI, Inc., Redlands, California.
ESRI, c. Understanding GIS: The ARC/INFO Method. ESRI, Inc., Redlands, California.
ESRI, 1991. ArcView—The Ultimate Window to Spatial Data. ARC News, v. 13 (2), 1-3.

Gould, M.D., 1991. The GIS User: Make No Assumptions. Proceedings of the Eleventh Annual
ESRI User Conference 2: 519-523.)

Kumar D., Ali S.S., Haas J., and Shapiro S.C., 1990. The SNePS acting system, in K.E.
Bettinger and G. Srikantan, eds., Proceedings of the Fifth Annual University at Buffalo
Graduate Conference on Computer Science, pp. 91-100, 1990

Mark, D. M., 1991. User Interfaces for Geographic Information Systems: Toward a Research
Agenda. Proceedings of the Eleventh Annual ESRI User Conference 2: 525-530.

Mark, D. M., and Gould, M. D., 1991. Interacting with Geographic Information: A Commentary.
Protogrammerric Engineering & Remote Sensing, 57(11), 1427-1430. .

Mark, D. M., Frank, A. U., Kuhn, W., McGranaghan, M., Willauver, L., and Gould, M. D.,
1992. User Interfaces for Geographic Information Systems: A Research Agenda.
Proceedings, ASPRSIACSM Annual Meeting, Albuquerque, New Mexico, March 1992.

Neal, J. G., and Shapiro, S. C., 1991. Intelligent Mylti-Media Interface Technology. In J. W.

Sullivan and S. W. Tyler, editors, Architectures for Intelligent Interfaces: Elements and’

Protorypes. Reading, MA: Addison-Wesley, 11-44.

Neal, J. G., Thielman, C. Y., Dobes, Z., Haller, S. M., and Shapiro, S. C, 1989. Natural
Language with Integrated Deictic and Graphic Gestures, Proceedings, DARPA Speech and
Natural Language Workshop. Los Altos, California: Morgan Kaufmann, Inc., 410-423.

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

PROCEEDINGS OF THE TWELFTH ANNUAL ESRI USER CONFERENCE

Raper, J. F,, and Bundock, M. S., 1991. UGIX: A GIS Independent User Interface
Environment. Proceedings, Auto Carto 10, 275-295.

Shapiro 8. C., 1979. The SNePS Semantic Network Processing System, in N.V. Findler, ed.,
Associative Networks: The Representation and Use of Knowledge by Computers, pp. 179-
203, Academic Press, New York.

Shapiro, S. C., Chalupsky, H., and Chou, H.-C., 1991. Connecting ARC/INFO and SNACTor.
Santa Barbara, California: National Center for Geographic Information and Analysis.
Technical Paper 91-11. ’

Shapiro S. C., and Rapaport, W. I., 1987. SNePS Considered as a Fully Intensional
Propositional Semantic Network, in N. Cercone and G. McCalla, eds., The Knowledge
Frontier, pp. 263-315, Springer Verlag, New York.

Shapiro S. C., 1988. Representing Plans and Acts, Proceedings of the Third Annual Workshop
on Conceptual Graphs, The American Association for Artificial Intelligence, Menlo Park,
California. .

Shapiro S. C., Woolf, B., Kumar, D., Ali, S. S., Sibun, P., Forster, D., Anderson, S.,
Pustejovesky, J., and Haas, J., 1989. Discussing, Using, and Recognizing Plans. Project
Report, Technical Report, North-East Artificial Inzelligence Consortium.

NOTES

1 Some of the examples in this paper are very specific to the hardware and software situations at
Buffalo in the summer of 1990; however, we feel that these are useful as concrete examples.

2 UNIXis a trademark of AT&T Bell Laboratories

3 The interface described in this report was developed under the UNIX operating system. There
will be various UNIX specific terms used throughout this document. A basic familiarity with
the UNIX operating system is assumed. :

4 Timing information and excess blank lines have been removed, some lists have been
“prettified" to overcome problems of Lisp's pretty-printer

5 The demonstration uses the old morphological analyzer englex.lisp. The new implementation
could not be used because of some differences in behavior.

