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In order to develop machines capable of "understanding”
natural language, it is extremely valuable, if not neces-
sary, to design a method of organizing a corpus of data to
facilitate the storage and retrieval of information on many
subjects, some in depth, some in breadth; to facilitate
the storage, retrieval and use of the many complex relation-
ships among real-world concepts; to facilitate the storége,
retrieval and use of information which.tells how other
information in.the corpus may be used to further explicate
implied relationships among concepts; and to facilitate the
identification from the vast corpus of data of those pieces
of information most directly relevant to any given topic.

This dissertation describes a data structure and pro-
cedures for manipulating it that have been designed to meet
the requirements outlined above. This system is intended
-to be used as the memory of a natural language question-
answering machine and could also be used as the memory of
a general theorem prover or problem solver. Since the
system allows its user (either a human or an cutside pro-
gram) to specify the relations that will be used for the
basic structuring of information, the system can be used

for experimenting with data structures suitable for various
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contents and purposes. The major.features of the data
structure are: |

It is a net whose nodes represent conceptual
entities and whose edges represent relations that hold
between the entities.

A distinction is made between n-ary relations
about which information and deduction rules are to
be stored and strictly binary relations that are
used only to structure information about other entities.
The forﬁer are represented by nodes in the net, just
like>any conceptual entity. The latter relations are
the ones used as the edges of the net.

Some nodes of the net are variables, and are used
in constructing general statements and deduction rules.

i Each conceptual entity is represented by exactly
one node in the net from which all information con-
cerning that entity is retrievable.

Nodes can be identified and retrieved either by
name or by a sufficient (though not necessarily
complete) description of their connections with other
nodes, likewise identified.

Several topics discussed in this dissertation are
relevant to wider areas of computer research and develop-
ment, viz.: methods for the maintenance of list struc-
tures in virtual memory; algorithms for the very efficient,
parallel evaluation of set expressions; measures for compar-

innghich of several pieces of information, all relevant to
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a given topic, are szt specific to it; methods of recogniz-
ing "interesting theorems," i.e., facts derived via a chain
of deductions that would be more valuable to save than to
have to rederive. The use of the system to experiment with
various.semantic theories is demonstrated by examining
several gquestions of current linguistic theory in the
context of the system.

All the procedures for storing information in the data
structure, as well as all those for explicit retrieval and
some of those for implicit retrieval have been programmed
in PL/1 and are running interactively on an IBM System/360.
All the research reported herein has proceeded both theo-
retically and by writing, checking out, revising and
improving programs in PL/1, SNOBOL3 and Burroughs Extended

ALGOL.
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l. Introduction

l.1 General Introduction

This paper describes a data structure, MENS (MEmory Net
Structure), that is useful for storing semantic information
stemming f£rom a natural language, and a system, MENTAL
(MEmory Net That Answers and Learns) that interacts with a
user (human or program), stores information into and
retrieves information from MENS and interprets some informa-
tion in MENS as rules telling it how to deduce new informa-
tion from what is already stored. MENTAL can be used as a
question-answering system with formatted input/output, as a
vehicle for experimenting with various theories of semantic
structures or as the memory management portion of a natural
language question-answering system. It has been designed
to serve this latter role specifically within the MIND
(Management of Information through Natural Discourse) System
being developed at The Rand Corporation (seeh1729~7: / 30_/,

[731 7, and /732 7).
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1.2 Computer Understanding of Natural Language

An early impetus to research on machine understanding*
of natural language was Bar-Hillel's argument that fully'
automated high quality translation could not be realized
without the machine's having a knowledge of the world /5 /.-
Later, the National Academy of Sciences' report, "Language
and Machines" / 45_/, recommended that support be withdrawn
from machine translation p:ojects in favor of more theo-
retical computational linguistics. This happened to a large
extent and most groups then worked on syntactic analysis.
Work on semantic analysis, i.e., extracting information from
sentences for later use, and_related studies at first
appeared mainly out of artificial intelligence groups.

There are several ways one may demongtrate his under-

standing of a language, jnecluding: giving paraphrases,

précis or translations into another language; answering

questions based on material from that language; discussing
the significance of or elaborating on material in the
language. Computer programs may also use these methods to
demonstrate their understanding of natural languages.
Programs that give paraphrases orybfééfé include Klein's
automatic paraphraser / 34_7 and Quillian's TLC / 48_/.

No one has yvet returned to Bar-Hiilel's challenge and
written a program to understand and translate. There are

also no programs which, given a sentence oOr small text,

*

True understanding requires much more than any compuz
ter program has yet been provided (see Kochen et al / 37_/).
By building machines that understand patural language we
mean building machines that, more and more completely,
behavioristically appear to understand.
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proceed to give a discourse on related topics although con-
versation programs such as ELIZA / 71 / and belief structure
programs L—l, 6, 13_7 represent starts in this direction.

The vast majority of programs which‘are designed to under-
stand natural language are question-answering programs.

Many of these have been surveyed by Simmons Zﬁ§2;63_7.
Question-answering does seem to be the best context in which
to experiment with computer understanding since the question-
er can directly test whateyer aspect of comprehension he is
interested in.

Perhaps the most important criterion for understanding
a language is the ability to relate the information con-
tained in a sentence to knowledge previously acquired. This
implies having some kind of memory structure in which the
interrelationships of various pieces of knowledge are stored
and int; which new information may be fitted. Such struc-
tures are proposed for human memory by the cognitive psycho-
logists /"3, 46_/ and the structural semanticists / 43 7.
They also exist in several computer programs including
Semantic Memory / 47_/, TLC / 48_7/, Protosynthex II and III
'/ 58:64;65_/, GRAIS / 19_/, and SAMENLAQ / 60;61 /.

The memory structures in these programs may be regarded
as semantic, cognitive, or conceptual structures to the
extent that they represent the relationships between the con-
cepts stored in them and can use these relationships to make
meaningful statements involving the concepts. It is impor-
tant that these programs can make statements or answer

questions based not only on the individual statements they
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were previously told, but also on those interrelationships
between concepts that were built up from separate sentences
as information was incorporated into the structure. It is
consistent with the theories of both cognitive psychology
and structural semantics that the meanings of the terms
stored in the memory are precisely the totaliﬁy of the
relationships they have with other terms in the memory.
The syséem to be described in this paper uses the
guestion-answering paradigm to demonstrate its;understand—
ing. It stores data in the form of a net structure,
providing a high degree of interrelationships between the
stored concepts. It also can store general statements
representing conceptual relations‘which it can then use to
deduce information that is merely implied by the specific

facts it has been told.



-5-

1.3 Information Retrievel

Information retrieval (IR) systems are generally used
to retrieve a subset of the records of a‘file according to
fhe values of certain of the fields of the records. They
perform operations on the retrieved data, including sort-
ing, counting, forming sums or averages of certain fields,
formatting the data and producing reports. Systems that
operate on documents or bibliographical data are used for
producing literature review bibliographies and citation
indices, providing current awareness services through
selective dissemination of information, and retrieving docu-
ments or their citations as a response to specificrrefeyence
service requests. Requests for information from IR systems
are mainly in the form of boolean combiﬁations of field
values or descriptor terms, often with trained personnel
designing the request from information supplied by the user.
There are some systems that automatically analyze documents

and/or requests, complllng descrlptor terms for searchlng.

These systems mainly use morphological analy51s, thesaurus
lookups, and a small amount of syntax, mostly statistics

of cofccurrence, but major dependence is still on relatively
simple word matching procedures. Current research on IR
systems deals mostly with file oréanieation, indexing

methods, and measures of retrieval accuracy.*

More extensive surveys of current systems and research

and outlooks_for_the future may be found in /2 /. / 14 /,
A 27_/ and / 36_/.
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A distinction is made between document retrieval and
fact retrieval. If a researcher wants a list of all
publications dealing with the determination of the diameter
of the Earth, his request can be handled by é document
retrieval system. If, however, he wants to know what the
Ediéﬁeterrof the Eafth_is, he requires a fact retrieva}w
system. There is considerable overlap between document
retrieval and fact retrieval since we may consider each
sentence or piece of information stored in a fact retrieval
system to be a document and the fact retrieval process to
be the retrieval of the document(s) that can answer the
qguestion. fOn the other hand, "The following documents are
relevant to your request: ..." is a fact that might be
retrieved by a fact retrieval system. Fact retrieval thus
includes document retrieval, although the converse is not
true, gince fact retrieval systems are expected to perform
analysis and synthesis of the material stored in them.
Fact retrieval systems in the research stage generally go
under the name of question-answering systems, and are more
concerned with syntactic and semantic analysis of the
information stored in them as well as the requests
(questions) made of them than are most IR systems.

MENTAL, the system described in this paper, is a

question-answering system whose emphasis is on the semantic

relationships of the stored information.
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1.4 Peduction in Question-Answering Systems

Almost all question-answering programs have at least
some ability to respond to questions with other than just
the statements they previously have read in. In fact,
question-answerers that just output the stored sentence(s)
most likely to answer a question, such as Pfotosynﬁhex I
éﬁ66_7, should be classed as document retrieval programs
rather than fact retrievers. The process of answering a
question with a sentence derived from one or more input
sentences but not actually the same as one of them is a
process of inference. Whether the inference is inductive
or deductive depends on the relation of the input sen-
tences to the output sentence. Although several programs
have been written to perform induction (see / 69;28 /),
only a few are in the format of a question-answerer, e.qg.,
Becker's / 6_/. Some question-answerers have been written
to include modal deductions and even "noh;iogical"ir N
deductions:(A=>B;B;} possibly A) (e.g., Colby et al.

/13 7), bﬁt most question-answerers stress strict logical
deductions.

Several general methods may be noted in the ways deduc-
tion has been incorporated into question-answering systems.
These may be divided into the three categories of (i)
deduction while storing, (ii) deduction by executive
routines, (iii) deduction by executive routines and stored
rules. Any given question-answering system may exﬁibit
deduction capabilities in several categories and.subcate-

gories.
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Before discussing the categories, we will introduce the

concept of a deduction rule. We will consider to be a

deduction rule any statement, rule, or pfocedure which
provides information as to what evidence is needed to deduce
some statement(s). It is thus contrasted with a specific
fact. Often, some mechanism is needed to interpret deduc-
tion rules. The mechanism uses a deduction rule as a
recipe to produce specific facts from other specific facts.
Some deduction rules, stated in English are: all whales
are mammals; two things each equal to a third are egual to
each other; one's male parent is his father; John is either
at home or at his office.* Deduction rules may be used to
provide a knowledge of terminology of a language, thus
being similar to Carnap's meaning postulates / 11_/. Some
deduction rules, along with specific fadts, provide the
knowledge of the world which Bar-Hillel / 5_/ pointed out
is necessary for translating natural languages and which
Carnap / 10 _/ regards as the empirical evidence required to
establish F-truth. "Deduction rule" as used in the present
paper should not be confused with "rule of inference" as
used in the literature of symbolic logic. A rule of
inference is a rule for deducing a true statement from one
or more true statements and is uséd to produce successive

lines of a formal proof. A rule of inference is a

*

Note how broad the concept of "deduction rule" is.
The only statements that are not deduction rules are those
that give specific facts, yet these are the only ones
handled by ordinary IR systems.
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deduction rule, but.so are the gengral statements and
theorems the rule of inference applies to and produces.

The category of deduction while storing has two quite
different subcategories. The first, which migh be called
immediate generation, is the method used in LISP-A / 56_/
ih which, at the time a deduction rule is input, all immedi-
ate implications of the rule are generated and stored. The
rule is also stored and later informaticn is tested against
it with all new immediate consequences being generated and
stored at the'time the information is entered. This method
is costly since facts are generated and stored that might
never be asked for. The other method in this category,
deduction by structure, gives a lot for relatively littie
cost and is used‘ﬁy almost all question-answering systems.

It involves storing the information contained in input
senten;es in a data structure in such a way as to intimatély
relate it to the information in previous, relevant sentences,
rather than storing each sentence as a separate entity. The
way this works and its value may be seen easily in Lindsay's
SAD SAM / 41 /. The sentences, "John is Sam's father" and
“John is Billts’fathe;f<will‘g§use a famiiy unit to be
created in which John is the father and Sam and Bill are
children. From this structure the sentence, "Sam and Bill
are siblings" may be generated as easily as if it had been
an input sentence. Although it is a deduction from the:
previous two sentences, it reguires no deductive proces-

sing of SAD SAM. The second sentence was stored as if its

retrieval were all that would be required, but due to the
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nature of the structure, the information in the third
sentence appeared in memory as soon as the second sentence
was stored. In a system that stores seﬁtences as such
separately, such as Fischer Black's Lf?_] or Colby and
Smith's éle_?, deductions of this type would require actual
processing.

The second category, deduction by executive routines,
also has two subcategories which may be called single
search and double search. The single search method is in
effect a version of the deduction by structure method in
that complex retrieval languages and/or search routines are
used with well-defined, predetermined structures for data
storage. The searches resulting from a compilation or
interpretation of the retrieval request find the basic data
in the storage and do the necessary computations to answer
the request. Prime examples of this method are the busi-
ness-oriented information retrieval systems which provide
languages to alloQ the users to specify search routines on
record-oriented or hierarchical files. The Relational
Data File with its INFEREX language / 40_/ is also of this
type as is Baseball / 24 /. Going further in this same
“direction are the systems that translate natural language
questions into routines for searching predefined data
structures, which routines are completely determined before
searching begins, e.g., DEACON / 15 _/, Woods' / 72_/ and
Kellogg's / 33_/. Whereas, in the single search method each
request is translated into a fixed search routine which is

sure to find the answer if possible, in the double search
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method the request is translated into a search routine
which, if it fails to find the answer can be changed
successiveiy into other search routines bésed on the termé
of the original routine and programmed deduction rules.
Two classes of programs which use the double search method
are those which have special programs for specific rela-
tions and those which have special programs for classes of
relations. Examples of the former are SIR / 52 / and
Protosynthex III / 58;65 / (ih its use of the set inclu-
sion relation). Examples of the latter are Elliott's GRAIS
[f19_7, in which there are programs for 32 different clas-
ses of relations, and Protosynthex iII‘4758;65~7’which‘has
be declared as having.

The final category of deduction methods, deduction by
executive routines and stored rules, has subcategories that
vary as to the amount of theorem proving power expended on
manipulation of the deduction rules. This method may be
considered a triple search method since it exhibits the two
searches of the double search method as well as inserting
bgtween them a search for deduction rules, which are stored
with the data rather than being embodied in programs. The
first subcategory of this method consists of systems in
which definitions of relations may be stored in the data
structure. When answers to gquestions using these relations
are not found explicitly in the data storage, the defini-

tions are found and used to formulate additional searches.
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Examples of these systems are Protosynthex III £f58;65_7
in its provision of five operations for combining relations,
SAMENLAQ / 61_/ and SAMENLAQ II / 60_/.
.The second subcategory is those systems that can store
and use general deduction rules in the form of implications.
These use simple theorem proving techniques such as back-
ward chaining: if the explicit information cannot be found,
find a deduction rule whose consequent is a generalization
of the information required, and search the memory for an
appropriate ingtantiation of the antecedent. Examples of
these systems are Fischer Black's program 1—7_7 and Colby
and Smith's belief system 4713_7. The last group of systems
in the third category are those that use full blown auto-
matic theorem proving techniques on a data base whose
specific facts and deduction rules serve as premises. Two
examplés of such systems are those of Green and Raphael
/725 7 and of Darlington / 16_/. (Actually these systems
use a refutation technique, Robinson's resolution principle
[f55_7, and thus do not have three separate searches but
one deductive computation which produces the answer regard-
less of whether deductive processing was needed for the
question or not.)

In terms of this discussion, MENTAL carries out deduc-
tion by structure and deduction by executive routines and
stored rules. MENTAL fits within the second subcategory of
this latter category, as very general deduction rules may
be stored and the executive coﬁtains a general interpreter

for using these rules by backward chaining. MENTAL differs
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from other systems in this subcategory in that the struc-

ture of its memory makes finding relevant deduction rules

a relatively quick, easy process.



1.5 Data Structures

For information retrieval and question-answering systems
it is important that some structurevhé'iﬁposed on the daéa
to facilitate searching and retrieval of interrelated data
(although increased structure generally causes more costly
updating). Data files that consist only of a collection of
records, each record having several fields containing data,
are limited in their possibilities of organization to the
order in which the records are stored. They may be sorted
on at most cone field, which makes searching according to
any other field very difficult. This difficulty may be
partially avdided by representing the file several times,
ordered on a different field each time. Actually, this
only requires one master file with each subfile containing
the ordered contents of one field plus the addresses of
(pointers to) those records in the master file for which
that field has that value. This is the rationale for the
various forms of inverted files (see / 18_/).

In order to make the logical organization of the file
independent of the physical organization more use is made
of pointers. This not only allows additions and deletions
té be performed without copying the entire file, but also
allows organizations other than serial succession to be
represented. Thus, linked lists allow logical succession
to be divorced from physical succession; doubly linked
lists (see / 70_/, / 18_/) allow for traversal of the
list in either direction; rings allow the entire list to

be available after entry at any element; sublists allow for
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hierarchical crdering; and attribu;e-value lists allow
several different hierarchies by providing for labels for
sublists.

Lists can be used to structure data as one would like
to picture it, e.g., Lindsay L‘41_7 used them to build
family trees. SIR 4752_7 used attribute-value lists to
represent collections of properties of individuals and

Quillian / 47 7 used the values of attribute-value lists as

names of lists, thus getting an interconnected_net s£;§é¥
ture. Reitman éf53~7 also presents a structure wherein :
every element of a list is also the name of a list that
describes that element.

Data structures for simulations and for graphical inter-
of several fields whose contents are data and several
fields whose contents are pointers to other record blocks.
The significance of the data and pointers is determined by
the order they appear in the record block rather than by
labels appearing in the record.

Associative memories also consist of blocks or cells
divided into fields containing data or pointers, the fields
having known locations within the cells. Particular cells
are located by paths of pointers from known cells by giving
a seqﬁence of fields, pointers being followed from succes-
sive cells according to that sequence (e.g., in L6 4—35_7,
ABC refers to the C field of a block pointed to by the B
field of a block pointed to by'the base register A). 1In

some cases cells are located by the contents of their data
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fields via some computation on the required value and thé
field that value is supposed to be in (e.g., LEAP / 20 /
stores data triples ih three separate files, organized by
hash coding the values of the different fields). Associa-
tive memories are used for fact retrieval by storing
relational statements in the cells, using one'field for the
relation and the others for the arguments (e.g., see £f20_7).
An argqument may be an entire statement by having the appro-
priate field contain a pointer to another cell.

Question-answering systems that ﬁse a structured data
base and are supposed to be general rather than specifically
designed for one subject-matter field generally make use of
associative memories of list structures including rings and
sublists and/or attribute-value lists. They generally store
information in the form of relational statements where the
order of fields determines what part -each term takes in the
statement (i.e., relation or 18t argument or ...). Most of
these systems use a triplet strdcture, represehting all
information as nests of binary relations.

MENS, the data structure described in this paper, is an
associative memory in which the number of fields within a
cell is determined by how that cell is related to others
and may vary during the life of the cell. Because of this
and because different cells may have different fields, the
fields are labeled rather than being in particular locations
within the cell. Lists of cell names are used when;éome
field of a cell points to more than one other cell. Since

a cell is made up of labeled fields with each field
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containing a pointer or list of pointers to other cells,

it is like an attribute-value list. Some cells are like
base registers in that they are locatable via a symbol table
from a symbolic name. All cells are also locatable from

other cells via paths of field labels.
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2. The Basic Structure -~ Explicit Storage and Retrieval

2.1 Introcduction

In this chapter we describé the MENS structure and the
basic MENTAL system. In Section 2.2 the motivating factors
behind MENS and MENTAL are presented and it is explained
how they led to the data structure and the system to be
described. Sections 2.3 and 2.4 discuss the structure from
the machine implementation point of view. Section 2.5
discusses the»MENS structure, storage into it and explicit
retrieval from it from a more abstract view -- one which a
user rather than an impleméntor would be interested in. It
also presents the input language used when MENTAL serves as
an interactive system detached from a natural language
interface. Section 2.6 presents the list set generator, a
generalization of the method used in MENTAL for taking the
union and intersection of arbitrary numbers of ordered
lists. The system as presented in this chapter has been
programmed in PL/l and is running on an IBM sttem/360 with

an interactive terminal at The Rand Corporation.
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2.2 Basic Concepts of the Structure

There were several motivating factors for the MENS
structure:

1) Unified representation: All conceptual entities

about which information might be given and ques-
tions might be asked should be stored and manipu-
lated in the same way.

2) Single file: All the information about a given

conceptual entity should be reachable from a common
place.

3) Multientried, converging search: A search of the

file should start from as many places as possible
and proceed in parallel, converging on the desired
information.

4) Storage of deduction rules: Rules determining how

deductions may be made validiy, even when specific
to certain areas or relations, should be stored in
the memorf file just like other information, and the
system should be able to use them in directing its
deductive searches.

5) Direct representation of n-ary relations: The n-ary

relations, for any n, should be as natural for the
system as binary relations.

6) Experimental vehicle: The file should be designed

without any commitment to a particular semantic
theory, i.e., the memory system should be a re-
search vehicle for experimentation on various ways

of structuring the information in it.
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The first four factors listed above were criteria for
the original MENS structure / 59;60_/. The last two neces-
sitated the expansion into the present MENS strﬁcture, wﬁich
is to be described in detail ih this paper. In this section,
we will describe how the motivating factors led to the
particular structure decided upon.

Unified representation requires that every conceptual

entity, i.e., every concept or individual about which bngh
can talk, have a memory structure representation which can
be put into relationships with repreéé;égfigggwg} other
conceptual entities. It further reguires that all concep-
tual entities be represented in the same way regardless of
their exact relationships to other conceptual entities. We
will refer to a conceptual entity or to the logical repre-
sentation of a conceptual entity asbéﬁﬁiggg. When refer-
ring to the computer structure used to implement the

representation of a conceptual entity, we will use the term

“ijtem block. The full implication of unified representation-

is that every word sense, every fact and event, every
relationship that is to be a topic of discussion between
the system and its human discussant will be represented by
an item. Therefore, the items must be tied together by
relationships that are not conceptual entities. The
reasoning for this is as follows: Statements (e.g.,
"Brutus killed Caesar." "The sky is green.") are concep-
tual entities since we may say things about them such as
someone believes them or they are false. Therefore, they

must be represented by items, and such an item must bear
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some relation‘to the items (Brutus, kill, green) that make
up the statement. If this latter relation is a conceptual
relation, the fact of'this relationship's holding between
two items may be discussed and thus must be represented by
an item which then must have some relationship to that
relation, etc. Eventually there must be some.relation which
is not conceptual, but merely structural, used by the

system to tie a fact-like item to the terms partaking in it.

We will refer to a conceptual relation as an item relation

or simply a relation and to a nonconceptual relation as a

system relation, link, or pointer. The MENS structure is,

thus, a collection of items tied together by system rela-

tions into a directed graph with labeled edges. The nodes
of the graph are the items and the edges are system rela-
tions. The edges are directed to indicate the order of the
arguments of the system relation. The edges are labeled to
allow for several different system relations. The distinc-
tion between item relations and system relations is very
impoftant and must be kept in mind.

Single file means that there will be exactly one item

for each conceptual entity. Therefore, all the information
about the conceptual entity will involve its item and be
retrievable from its item block. Since the system rela-
tions are the links that tie items together and thus provide
the information, this means that whenever a link goes from
ione item to another, there is an associated link in;the
reverse direction. Looking at the fact and event items as

records in a record-oriented file and at the links going
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from participating items to fact and event items, MENS is
an inverted file and may be searched as one. However, it
is more than an inverted file, since links go the other wéy
also.

Multientried, converging search implies that items

equally identifiable by the human conversant should be
equally identifiable by the system. By this is meant that
any item named by an English word can be located as quickly
(by the same lookup procedure) as any other item so named,
rather than some being locatable by lookup while others
require an extensive search. Items that do not have
English names, but must be identifiéd by description will
be located via searches that are quick or involved depend-
ing on the complexity of the descxiption; The lookup is
done through a dictionary which gives the internal names
for the items which represent each of the senses of each
natural language word used in the conversations. The
internal name of an item is its address in secondary stor-
age, so once looked up the item block is easily found.
Items are connected to facts (which do not have English
names) as mentioned above and when two items are connected
ié the memory structure, each is reachable from the other
since every link between two item blocks is stored in both

directions. Another implication of multientried,

converging search is that searching the file is done by

starting at an arbitrary number of item blocks (all those
that can be looked up directly) and converging to the

desired information structures. This involves repeated
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intersections of sets of items as will be explained in
Section 2.5. Special care has been taken to make this
search process as efficient as possible and special con-

structs have been developed for this purpose.

Storage of deduction rules implies that deduction rules

should be able to be stored in and retrieved from the

memory structure in the same way that specific information
is stored and retrieved. ;This implies that the structures
used to store deduction rules must be basically the same as
those used to store specific information. It further
implies that the executive routines must include a very
general deduction rule interpreter that is capable of
initiating searches of the memory and generating appropriate
consequences based on any stored deduction rule.

Direct representation of n-arv relations implies that

an iteﬁ representing a relational statement based on an
n-ary relation should have links to each of its n arguments
directly, regardless of the value of n. In the original
version of MENS, there were three pairs of links --_left,
middle and right* and their reverse links. A relational
statement, a R b, was represented in the structure by an
item block, s, which had a left pointer to a, a middle
pointer to R and a right pointer to b. Unary relations
(one plaqe properties) were represented by a block one of

whose forward pointers was not used. The n-ary relations, for

* _

The three links may also be considered to be agent,
verb and object or object, attribute and value or first
argument, relation and second argument.
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n greater than two, would have the right pointer going to

an item block which served only to point to some more argu-
ments. If n were greater than four, at least two levels

of such items were used. These items had no conceptual
significance and made searching less efficient, which is why

direct representation cf n-ary relations was adopted. It

requires that any item be capable of having an arbitrary
number of pointers emanating from it. This number may even
change throughout the life of an item as the types of system
relationships it has with other items change.

Experimental vehicle implies that the user must be given

the capability of declaring what and how many system rela-
tions he will use rather than having a maximum number
imposed on him. He must be able to decide what will be his
conceptual entities rather than be provided with a closed
set of them. He must be able to decide how items and
pointers will be combined into structures to represent the
information he wishes to work with. He must, finally, not
be restricted as to what deduction rules the system may

store and use.
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2.3 Implementation of Item Blocks and Disk Lists

An item block is a consecutive block of records each
consisting of three fields. The first field holds the
internal name of a link related to the external name of a
system-relation through a symbol table. One bit is used to
distinguish the forward link of a link pair from its reverse
link (0 for forward, 1 for reverse). This is done so that,
given the internal name of any system-relation, the
internal name of its converse is derivable by simply com-
plementing one bit. Which3}§?¢1 of a pair is the forward
one and which the reverse is, of course, arbitrary and
fixed by the user of the system for his own convenience.

The second field of each record in an item block is a
single bit which is set according to whefher the 1link in
the first field is single or multiple (0 for single, 1 for
multiple). Whether a particular link is single or multiple
is fixed by the user and any of the four possible combina-
tions may hold for a (forward and reverse) link pair, depend-
ing on whether the relation the user wishes the link pair
to represent is 1-1, l-many, many-l or many-many.

The confents of the third field of a record depends on
tﬁe contents of the second field. If the second field is
O, the third field contains the infernél name of an item
block. This name consists of the number of the disk track
on which the item block is located followed by the offset
giving the location of the first record of the item block

within the track. The item thus pointed to is in the
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relation given by the link in the first field of the record
to the item in the glock of which the record is J.Oca{:ed.fw
If the second field is 1, the link in the first field
is multiple and instead of containing the internal name of
an item block, the third field contains the name of a list
which contains the internal names of all the items in the
given system-relation to the item block in which the record
is located. The name of such a list is, like the internal
name of an item block, the location of the list on the disk.
When an item block is first created, room for a certain
number of recofds is set aside for it. It may subsequently
happen that all these records are filled and an attempt is
made to attach a new link to the item block. When this
happens, ancther block of records is set aside for this
item block and made a continuation of the item block. The
- new record is put in this new block and the location of
- the continuation biock is recorded in a continuation direc-
tory for the original block. If at all possible, the con-
tinuation block is put in the same disk track as the
original block so that, abiding by the motivating féctor of

single file of the previous section, only one disk access

will be necessary to get all the information in the item

*In the actual implementation of item blocks and lists
on disk written at The Rand Corporation by S. Y. Su, the
internal name of an item gives the location in a directory
of the actual address of the item block. There are other
places where the implementation differs from the descrip-
tion given in this section, but they are described in
/ 28_/ rather than in this dissertation.
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block. This often will be possible since room is set on
each track for continuations of blocks that are already on
that track. |

The list which holds the pointers for a multiple link
is also begun on the same track as the item block in which
its name is the third field of some record. Again, an
attempt is made to keep the list on one track. If this is

successful, then the requirements of single file are

eminently satisfied.

This method of storing the multiéle pointer lists may
be compared with a ring structure method, which is an
alternative that readily presents itself. In the ring
method, the third field of the record containing a multi-
ple pointer would point to a field of one of the item
blocks being pointed to by the multiple link. That field
would contain a pointer to another of the item blocks
being pointed to, etc., until the last item block on the
ring would point back to the item block cohtaining the
multiple pointer. It might seem that the ring structure
saves space since cniy the pointer to the next item block
must be stored in each field, whereas in the list method,
each element must contain an item name plus a pointer to
the next list element. However, there must be some mechan-
ism to enable the system to determine in which item block
the ring field is located and as we shall see, in the list
method used, very few pointers to list elements arglneeded.

The major advantage of the list system, though, is that

it meets the single file requirements. If we wish to know
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which items are connected to a given item by a certain
multiple link originating in that item, the list method
requires one disk access, whereas the ring method requirés
one disk access for each item on the ring.

In order to reduce the space requirements of storing
the multiple pointer lists, a compromise was made between
arrays and lists. List elements are stored in blocks of
consecutive fields, each field holding one item name, with
one field containing a pointer to the nextilist block. Thus
the lists are similar to Hansen's compact lists £f26_7. The
lists are ordered according to the numerical values of the
item names for reasons to be,explained in the next section,
so there are two different problems which arise when trying
to minimize the number of disk accesses required to use the
file. TFirst, a list may become spread out over many tracks
as it grows. Second, as elements enter in the middle of
lists, the lists may jump back and forth between tracks.
The first problem would cause many different tracks to be
read in the course of one list read. The second would
cause several tracks to be read into core and written out
to make room for others, only to be read back in again
perhaps only one list element later. These two problems
call for the solutions: 1) as much as possible, keep a
list within one track; 2) when a list must extend to another
track because there is simply no more room on the first,
extend the end rather than the middle of the list and use
for the new track one with enough room that there is little

chance that the list will soon have to extend to a third
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track. Besides th{s, we will, whenever possible and
reasonable, move the extension of a list back into the
original track.
 The solution to the first probiem involves keeping a

cushion of space on each track which will be used only for
extensions of lists which are already on that track. When
a track has only its cushion left, no new list will be
started on it. Furthermore, if a track dces run out of
space, its extension will be started on a track with more
room than just its cushion. 1In this way, we try to insure
that a list will reside on as few different tracks as pos-
sible.

The solution to the second problem assures us that if
a list does extend to another track, once we proceed to the
next track in reading down the list, we will not have to
return to a previous track. This is done in the following
way. When a pointer is to be added to a list, it is first
determined where on the list the new pointer should go. If
there is room on that block, the other pointers on the block
are adjusted appropriately and the new pointer is inserted.
If there is no room on that block, but there is on the suc-
ceeding or previous block (if such exists on the same
track), then that space is used with appropriate adjustment
of pointers. Thus, if we can find empty space on the list
nearby, we use it, but if we can't find it that close, we
do not look further since this might require moving point-
ers up or down in and across list blocks, thus ignoring one

of the most useful properties of linked lists. Instead, we
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get a new list block to use. The space thus ;eft scattered
throughout the list will be used when a pointer is to be
stored nearby, or else may eventually be gathered together
into blocks by the packing garbage collector described below.
So, if the track we are on has available list blocks, we
simply get a new block and link it into the list after the
block on which the new pointer is to be inserted. If there
are no empty blocks, then it would seem that the list must
extend over onto a new track. (Sometimes this will not be
necessary. See below.) If, however, the list already runs
over to a second track we do the following. Get a new block’
on that next track (if there is room -- this process is
recursive), move the pointefs that are on the last block of
the list on the first track, put them oﬁto the new block on
the next track, and use the block just vacated (appropriately
relinked) to séore the new pointer. In this way we help
insure that when a list runs over to a new track, the entire
tail runs over -- it does not later come back. If, of
course, the ﬁew pointer was to go on the last block of the
list on the first track, the new block on the next track is
used directly, as if it were on the first track, and an
émpty block is left on the first track for later insertions.
If the list does not already extend té a new track, it is
worth some extra effort to try to keep such extension from
occurring. Therefore an attempt will be made in this case
to "pack" the lists on ﬁhat particular track. This is done
by reading down each list on the track and keeping note of

empﬁy spaces on list blocks. Every time enough spaces are
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found on any list to, form a block, the pointers which occupy
the portion of the list where the spaces were founa are
moved so that the spaces are brought to one list block.

That block is then released to be empty space. In this way
‘one or more new blocks become available for use on the track
and the list need not extend onto another track. If this
packing cannot be done, because no list on the track has
enough empty pointer spaces, we have no chpice but to get
another track and extend the list onto it. Of course, if

at least one empty pointer space was found on the list we
aré interested in, we can use it instead of extending to a

new track.
After a list has extended onto several tracks it is

possible that space becomes available on one of the early
tracks. This would allow part of the list to be moved back
onto tﬂét track, possibly reducing the total number of
tracks the list uses. This is done as follows. If, while
reading a list, we must go to a new track, we notice if

the earlier track has more available space than its cushion.
If so we will fill the extra space with the top bloéks of
the list on the next track. Possibly, by this time we will
have moved the entire tail of the list back. If this has
not occurred, the cushion will be used only if it will hold
the entire portion of the list that is on the next track,
thus eliminating one disk access when reading that list in

the future.
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2.4 Core List Processing System

To provide for temporary storage>and working lists, an
in-core list processing system has been written as a part
of the MENTAL system. The core list system is patterned
after SLIP / 70_/, but the lists are singly linked, the last
element of a list has a null pointer rather than pointing to
the header, and the header, which contains pointers to the
first and last elements of the list and has a field con-
taining the length of the list, does not contain a reference
count. Because of the lack of a reference count and because
of the way garbage collection is done, a list can be a sub-
l1ist of at most one other list. This was done to keep the
list processing system as simple as possible. List readers,
which require the space of two normal list elements, can be
elements of lists, thus allowing list set generators
(Section 2.6) to be built. One of tge most important pro-
perties of core lists is that disk lists (see Section 2.3),
although formatted differently from core lists, may be
sublists of core lists, and readers can read both core
lists and disk lists.

Core lists are contained in a list space structure with
the following divisions: a vector called HEAD of two
elements each 15 bits long; a vector called TAIL of two
elements each 15 bits long; a vector called ELT of 2000
elements each 6 characters (48 bits) long. HEAD (1) . and
TAIL(l) point to the beginning and end, respectively, of
the available space list of single élements, while HEAD (2)

and TAIL(2) point to the available space list of double
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elements (for list readers). Single and double elements
are distinguishable by the contents of an ID field (see
below). Initially, all 2000 elements are tied together into
the available space list of double elements, making for 1000
elements. The subscript of the ELT array which identifies
the location of a single element or of the first element
of a double element will hereafter be referred to as the
index of that single or double element. A double element
will always consist of two consecutive members of the ELT
array. Every list element contains a 2 bit ID field with
the following values:

'00' -- a single element which contains data.

01! -

a single element which contains the index of a

core list header or the address of a disk list.

'10' -~ a single element which contains the indices of
the first and last elements of a core list and
the length of that list.

111' ~-- a double element which serves as a reader of a

core or disk 1list.

These elements are referred to as a data element, a list

name, a header, and a reader respectively. The fields of

each kind of element are shown in Table 1 and described
below.

A data element contains a 2 bit ID field, a 15 bit
NEXT field and a 31 bit DATA field. The NEXT field contains
the index of the next element in the same core list as the
element itself. This field contains all zeroes for the

last element in a list.
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When a data element contains the internal name of an
item, the DATA field is divided into an 8 bit MEASURE field,
a 15 bit TRACK field and an 8 bit OFFSET field. (See
Section 2.3 for the explanation of the internal names of
items and disk lists.)

A list name has the following structure: a 2 bit ID
field; a 15 bit NEXT field; an 8 bit LABEL field; a 15
HEADER field; an & bit OFFSET field. When this element is
the name of a core list, the HEADER field contains the index
of the header of the list and the OFFSET and LABEL fields
contain all zeroes. When it is the name of a disk list,
the HEADER and OFFSET fields contain the track and offset,
respectively, of the item from which the list emanates as
a multiple pointer list, and the LABEL field contains the
internal name of the label identifying the multiple pointer.

A header has the following structure: a 2 bit ID field;
a 15 bit FIRST field; a 15 bit LAST field; a 15 bit LENGTH
field; a 1 bit MARK field. The FIRST field contains the
index of the first element of the list or zeroes if the
list is empty. The LAST field contains the index of the
last element of the list or the index of the header itself
if the list is empty. The LENGTH field contains the cur-
rent length of the list. The MARK field is not used at
present.

A reader has: a 2 bit ID field; a 15 bit NEXT field;

a l bit TYPE field; a 62 bit RDATA field; an unusqd bit; a
15 bit SUBST field. The TYPE bit is '0' if the reader is

reading a core list and 'l' if it is reading a .disk list.
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The SUBST field contains the index of the header of a list
structure which contains substitutions. SUBST is used when
the reader is being used as a pfimitive list set generator

to evaluate list sets which are lists of instantiation

specifications. In a core 'list reader RDATA is structured

as follows: 15 unused bits; a 15 bit THIS field; 17 unused
bits; a 15 bit LAST field. The THIS field contains the
index of the element currently being pointea at by the
reader. The LAST field contains the index of the element
just preceding-the one pointed to by the contents of the
THIS field.

When the reader is reading a disk list, the first 31
bits of RDATA are used to hold the disk address of the
element being pointed at and the last 31 bits are used to
point to the entry on the directory track for the list
segment the element is in.

Core lists may be catagorized into four classes such
that any one list must belong to exactly one of them. They
are:

1. Reader iists:f All the elements are readers.

2. General lists: Elements are data elements and/or

1ist names (of core or disk lists) in any order.

3. Data lists (list sets): Elements are all data

elements whose data are internal names of items.
The elements are ordered on the numerical values of

their data fields, largest first.
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4. Lists of instantiation specifications: Data lists
or lists of data lists, with some data elements
(or list names) followed by substitution lists.

A substitution list contains a substitution (see Sec-

tion 2.5), with odd elements being the variables of the

substitution components and even elements being the terms

of the components (either a data element or a sublist).

The data element or list name which is followed by a substi-
tution list has its NEXT field pointing directly to the
header of the substitution list. The last element of the
substitution list has its NEXT field pointing to the next
element of the data list (or list of data lists). This has
been done to distinguish substitution lists from regular

sublists, while allowing the null substitution to be siﬁ§i§

the absence of any substitution list, and lists of instan-
tiation specifications to be handled by the same procedures

no matter how many of their substitutions are non-null.
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2.5 Explicit Storage and Retrieval

Both storage into and retrieval from MENS are accom-
plished by describing how an item is (or is to be) con-
nected to other items in the net. The storage instruction
in effect says, "Create an item and connect it into the net
in this way." The retrieval instruction in effect says,
"Tell me all items that are connected in the net in this
way." Both instructions are expressed in a statement,
called a speclist, which describes the item by describing
the paths in the net that lead away from the item. These
paths may be quite complicated, but - every one must end‘at»
an item that is known both té the user and to the system,
and the edges along the paths must be exélicitly named sys-
tem relations.

We will now describe the language which a human (or an
external program) uses to interact with the system.

Input syntax:

The input language is defined in modified BNF notation.
Underlined words in lower case letters are non~terminal
characters. Strings enclosed in square brackets are optiocnal.
Sfrings arranged vertically and surrounded by braces are al-
ternatives -- one must be chosen. ‘Strings followed by an
asterisk may appear one or more times. Strings surrounded
by angle brackets are informal English descriptionshégwgﬁ?w.
ject language strings. J represents a required blank; addi-
tional blanks may be inserted anywhere. The following char-
acters are delimiters in the language: , - =) (2?2 . : ' = %,

A "character" is any legal character except a delimiter.
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relsgec

) (speclist)
1nEut — :

describe-request

- (¥
describe-request - DESCRIBE Y cname / { cname /*

’

S 'S

relspec — $ linkname M { } linkname ¥ { }
: M M
speclist — ~ spec / -spec / [/ - restrictions / / = vname /
restrictions — ( linkname / , linkname _/* )
linkname — (a string of 1 to 13 characters)

buildspec
spec —

findspec
buildspec — (. linkname : speclist éf, linkname : speclist _7*)

-

name

findspec — { (name / , name _/* )

(findprefix linkname : speclist é"; linkname : speclist _7*]

(vname)
findprefix — ? num , num
’
cname
name —- 'vname
gvname
, , (a string of 1 to 13 characters)
cname — '
(3 digits) / (5 digits) + (3 digits)
~,a string of 1 to 13 characters, the first of>
( which is not X, ¥, or 2
vname —
a string of 1 to 13 characters, the first of>
(" which is X, Y, or Z
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\ (any integer i,~0§;5231>
num — : S
#

Input Semantics

A relspec is used to declare a system relation, i.e.,
a relation that will be used as a pointer in ﬁhe file (see
section 2.2 for the dlstlnction'between'sYétém'rélaﬁiohéww'
and item relations). The first 1inkname in a relspec will
pe the symbolic name of a pointer (considered the forward
pointer of the system relation) and ﬁhe second 1inkname will
pe the converse of the first {(and will be called the reverse
vpdinter). Each pointer will be single or multiple depending
on whether "s" or nM" follows its linkname. Examples of
relspecs are:

$ AGENT S *AGENT M
$ VERB S *VERB M

A cname is the externalrpaygiof an item in the net. The
first form of a cname (a string of 1 to 13 characters) is
the one normally used in a speclist, and is intfoduced by
the user to represent some concept he wishes to discuss.
Although we will use English words for these cnames in this
paper, it must be remembered that they each stand for an un=
ambiguous concept (word sense). A cname is associated with
an item after the first time it is used in a sgeclist, and
maintains that association. The second form of a cname ié
the direct representation of the internal name of ahvitem
and is used by the system to mention to the user aﬁ item
that does not have an external name. The user should not

use such a cname unless it has prev1ouslv been used by the
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system in the reply to a speclist or in the display follow-

ing a describe-request. The three fields are: the specifi-

cation measure of the item (see Section 4.5);7the trackwﬂ
number of the item; the offset within the track of the item.
Examples of cnames are:

JOHN

UNITED_STATES

HAS_SENSE_1l

241/00010+023

240/00023+002

The describe-request causes the system to display, for<
each cname in the request, ali paths of length 1 emanating
from the item identified by the cname. That is, for each
item identified, all pointers emanating from it are listed,
and with each pointer is listed all items pointed to. An

example of a describe-request is:

DESCRIBE JOHN,241/00010+023,LOVES 241/00023+002
A possible system response to this request is:
DESCRIPTION OF JOHN:
*AGENT 241/00010+023
*OBJ 241/00010+624
241/00023+002

DESCRIPTION OF 241/00010+023:

AGENT JOHN
VERB LOVES
OBJ JANE

DESCRIPTION OF LOVES

*VERB 241/00010+023
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241/00010+024
241/00023+002

DESCRIPTION OF 241/00023+002

AGENT SUE
VERB LOVES
OBJ JOHN

A structure described by this response is shown in Figure 1.
A vname is a variable in the input language. It may be
associated with a single item or with a list of items, but
when "." is given as the input (not enclosed in any paren-
theses) all vnames lose their associations. It is important
to distinguish between variable items and vnames. Variable
items (see Chapter 3) explicitly exist in the net, although
they do not have external names. There are also some con-
stant items that do not have external names, for exanmple
items which represent facts or events. Vnames may stand
for either of these two types of itemé, and may also stand
for items which do have external names. The important thing
about a vname is that its association with an item of a list
~of items is only temporary. Furthermore, the system never
uses a yname to refer to any item; it is used only by the
user. The only time the distinction between vnames that be-
gin with X, Y, or 2 and those that do not matters is when the
first appeérance of a vname immediately follows the delimiter
mew . n that case a new item will be created in the net and
the vname will temporarily be assigned as its name. If the

vname begins with X, Y, or Z the item created will be a vari-

able item. Otherwise, the item created will be a constant
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AGENT[VERB | OBJ
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241/00010+ 024

241/00023 + 002

AGENT [ VERB | OBJ

AGENT [ VERB | OBJ

* AGENT | * OBJ |
JOHN

*OBJ | * AGENT]|

JANE

* VERB |

LOVES

T~ AGENT |

SUE

Fig.1 —A MENS substructure , described in the text
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item that will not have an external name. This is precisely
the purpose of using a vname in this way. Although the
ygégg construct is not the only way to introduce a constant
jtem without an external name, it is the only way to intro-
duce a variable item into the net. If the first use of.a

vname is in a findprefix or immediately preceded by "%", or

in the = option in a speclist a new item will not be created,
but the vname will be assigned an item or a list of items
which will be found in the net according to the instructions
embodied in the speclist.

The speclist is used both for storing new information
into the net and retrieving information from it. Its main'
component is the spec, which is considered to have as its
value a list of zero or more items. If a speclist consists
of only the spec, the value of the éEeclist is the value of
the spec. If the -spec option is included, the value of
that spec is a list of items which are removed from the
value of the speclist. This allows a retrieval request of
the form: "Tell me all items described by spec; that are
not also described by 52992'" For example, the request to
list all things written by Scott except Ivanhoe might be:

((?0,#,*OBJ:(?0,#,AGENT:SCOTT,VERB:WRITE))—IVANHOE)

The — restrictions option causes the removal from the value

of the speclist of any item that has any of the links named

by the linknames in the restrictions emanating from it. The

purpose of this option is to limit the value of the speclist
to items without certain extraneous pointers. For example

if a TIME link were used to point from items representing
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events to items xepresentingithe time interval of their oc-
currence, and the TIME link were not to emanate from any
item representing a "timeless fact", then a request for all
items representing timeless facts about the United States
might appear as:

((?0,# AGENT:UNITED STATES) = (TIME))

The -spec and-orestrlctlons optlons would not, of course,

be used in a speclist whose initial spec is a buildspec.
The =vname option causes the vname to be assigned as its
temporary value the item or list of items that is the value
of the speclist. The main use of this option is that if
the same speclist is to appearvinAone spec in more than one
place, much retrieval time can be saved if the =vname option
is used in the first occurrence of the speclist and the other
'occurrences of the Eecllst can be replaced by the vname in
the 'vname form of a name. For example, a retrleval request
for all those who both love and are lo;ed mlght be.

(?0, # , *AGENT: (20, #,VERB :LOVE) =LUV_RELAT IONS,*OBJ: ' LUV_RELATIONS)

The spec is the basic construct for describing items to
be built or found in the net. The item(s) described by the
ggég is the value of the spec and the procedures used to
evaluate the spec are the core storage and retrieval proce-
dures of the MENTAL system. There are two ways an item can
be described: by its name or by a description of its con-
nections within the net structure. Use of the item's name
references tha item directly -- the internal name is either

a direct transiation of the name or is discovered by lookup

in the main symbol table or in the temporary yvname symbol
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table. Use of the description form requires searching the
net. The description is formed in the following way. Sup-—
pose you are looking at the actual item block. List the
pointers that emanate from the item block, and for each
pointer list all the item blocks it goes to. These item
blocks are listed by either giving their names or describing
them in the same way as the original item is being described.
At least one pointe; of such a second level item points back
to the ofiginal jtem, viz. the converse pointer of the pointer
that points from the original item, so it will clarify nothing
to list it. It may be the case, however, that some other item
is encountered more than once in this expanding description.
In that case, if its name is not known, the %name option is
used as mentioned above and described below to insure that
this significant property of the structure is represented in
the description. The description is continued until all
paths that lead away from the original item being described
end in an item whose name is given. What has thﬁé been de-
scribed is a substructure of the net structure, and at the
center of the substructure (or, we may say, at the head of

thé substructure) is the item described by the spec. It may
be that the description fits more than one substructure of

the net. In this case, the value of the spec is a list of

all items that are heads of the substructure so described.

If no substructure fits the description, the value of the
spec is the null list. If the spec was a buildspec, a new
item would be connected into the net so that it would be the

head of a substructure described by the spec, and the new



~47-

item would be the value of the spec. In describing an item
it is not necessary to list all pointers emanating from it
if some are not known or if their existence is irrelevant
for the intended retrieval.

We will now consider the findspec in more detail, spe-

cifically those in which the:findprefix occurs. The first

nmum is the minimum number of’items which are to be found
satisfying the description, while the second num is the
maximum number. If:the.nnmberﬂof items found is less than
the first num, more must be:féund using the deduction tech-
niques (see chapter 3). IfZthe number of items found ex-
ceeds the second num, there-is:-a semantic ambiguity that
must be cleared up (see section 4.3). The character "#" is
used to represent the largest-integer than can be held in
‘the internal computer field used to store the gggs.‘ Some
uses of the nums are:

1f the‘ggggris»a definite-description —- 21,1

To find the active members of a football squad -- 240,40

To find all the authors of.a coauthored book -- 22,#
The (vname) option is a way to-change the value of a findspec
from the head of the substructure described by the findspec
to an item which occurs elsewhere in the substructure.
This is sometimes necessary when the complexity of the sub-
structure precludes the item being sought from being de-

scribed in the normal way. For:instance if we wanted a list

of all narcissistic people, we night be tempted to use one

of the following equivalent_findspecs:.
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(20,%,*AGENT: (20,# »VERB:LOVE) ,*OBJ: (20, #,VERB:LOVE))

(20,#,*AGENT: (20,#,VERB:LOVE) =S, *OBJ: 'S)
Each of these specs would, however, evaluate to a list of
all. those who love and are loved, not necessarily by them-
selves. The proper way to form the request would be:

(20,4 (N)AGENT: 'N,VERB:LOVE,OBJ: 'N)
Similarly, the proper request for all who love someone who
loves them back would be:

(20,4 (LOVED_ONE) AGENT :JLOVED.__ONE,VERB:LOVE +OBJ: (?20,#,*AGENT:

(?0,%,VERB: LOVE,ORJ: 'LOVED;_’ONE) ))
The.manner. in which such a spec is evaluated is discussed
below. We will now discuss th a spec that does not contain
a vname is evaluated. ‘
wfirst»letrus ;oqk at the simplest spec -- where all speclists

in the spec are just names. Say we wish to enter into the net
the sentence, "John kissed Mary in Chicago on Tuesday." and we
want it to have the structure described in the buildspec:

(.AGENT:JOHN, VERB:KISS +OBJ :MARY,LOC : CHICAGO, TIME : TUESDAY)
We would enter an input consisting of the above speclist in
an additional pair of parentheses. The linknames and external
names would be looked up in the appropriate symbol tables and
a new item block would be designated.to fepresent the sentence.
Note that every buildspec causes a new item block to be built.
The rationale for this is ‘that every buildspec is supposed to
represent a conceptualized piece of information about which
information might be given. For example, the above example
might, in fact, be part of the sentence, "Henry said, 'John

kissed Mary in Chicago on Tuesday,'" Furthermore, no check
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is made to determine if there is already an item in the net

which is described by the buildspec. Although it was at one

time planned to use an already existing item whever it satis-
fiedNatbuildsEec instead/oﬁ.building a new one, it was even-
tually realized that this involved certain problems. One
problem is whether two instances of a sentence reporting an
event are two reportings of the same event or reportings of
two. similar events. Also, if the same item were used for
the  sentence representgq‘by,x.in the sentences, "Henry said
X" andf"Bill said x.", the sentence "John heard what Henry
said," would imply "John heard what Bill said.”"™ which would
not-necessarily be correct.. Therefore, it has been left to
the user (be it a human or a parsing-transducing program)

to ascertain if a given substructure already exists and

if so, whether or not to reuse it.

The item created for the above buildspec is given an
AGENT pointer to the block representing JOHN, a VERB pointer
to the block represent KISS and SO on, so that it has five
pointers emanating from it. The block representing JéHN
‘gets a pointer for the converse of AGENT (say *AGENT) point-
ing from it to the block representing the statement. Pre-
sumably, *AGENT has been declared in a relspec to be a mul-
tiple pointer. In that case JOHN may already have *AGENT
pointers‘to other item blocks, and the name of the new block
will be added to the *AGENT multiple pointer list. If *AGENT
was declared to be a single pointer and JOHN already had a
*AGENT pointer to another item block, the attempt to add
another *AGENT pointer to SOHN will be in error and will

not be performed.
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To enguire if the sentence, "John kissed Mary in Chicago
on Tuesday," is already in the net, the following input would
be entered:

({(?0,#,AGENT:JOHN, VERB:KISS,0BJ :MARY,LOC:CHICAGO,TIME: TUESDAY)"
This is a request to list the names of any (zero or more) items
which have the. named é§é£éﬁwgélationéhips tq;the named itemsf
The item created for the above example would be an answer to
this request and so would any other item that had these point-
ers, even if they also:had .additicnal pointers. The items
would be retrieved in the following way. The list of items
pointed to by the *AGENT pointer (let us assume that we have
declared all linknames so that the linkname for the converse
pointer is the linkname for the forward pointer with "*" pre-
{iixed) from the JOHN block is retrieved, along with the list
of items pointed to by the *0OBJ pointer from the MARY block.
etc. These lists would be intersected and the result would
be the value of the findspec and the answer to the input re-
quest. The methods making possible efficient intersecting
of these lists are explained in section 2.6.

The situation is slightly more complicated when the em-
bedded speclists are descriptions. First the embedded
speclists are evaluated.leaving a findspec of the form

(...L:(Il I, «...)...). Since we are looking for an item

2
with an L pointer to at least one of the II orI2 or ... and
likewise for the other linknames in the findspec, what we

want to intersect are the union of the *IL lists from each of

the I's with the unions of the other converse pointer lists.

This intersection of unions is performed efficiently using
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the,methﬁds discussed in section 2.2, TIf this spec were a
buildspec, an item would be created with an L pointer to
each of the I's. If Lrwere a single pointer but more than
cne I appeared in the list, an improper substructure would
be built, so it is important when building an item with a
single pointer to an item which is to be found, that the
findspec describing the item to be found have the definite
descriptor (?1,1) notation.

We will now discuss the evaluation of a spec that con-
tains*yggggs. As was mentioned above, if the first occur-
rence of ‘a. vname is preceded by the delimiter ', it is im-
mediately assigned a new item. From then until the appéar-
ance of the input ".", every occurrence of that vname is
immediately replaced by the name of the item which has been
assigned to the vname. Therefore, we are now concerned only
with Ynames whose initial occurrence is preceded by the de-

limiter "$" or whose initial occurrence is in the findprefix.

The purpose of such a Vname is to specify that some unknown
block is reachable by several different paths from the head
of the sub-structure described by the spec. Thus, such
vnames should be used in findspecs rather than in buildspecs.
When a spec with Vnames is evaluated, associated with every

item in the value is a substitution which is a list of every

vname in the spec and with each Vname the item(s) that are
the value of the vname as determined by the evaluation of
the spec. Thus, if two embedded sgeclis&g in a spec both
use the same Vname, when their values are intersected the

substitutions within them are compared and adjusted so that
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every path specified by the position of a given vname in
the spec leads to the same item. To understand this more

clearly, a detailed analysis of substitutions and their use

in identifying substructure follows. (Where possible{
the terminology of Reynolds [ﬁ54_7 based on Robinson £f55_7
is-used or adapted.)

A general statement is a spec within which are one or

more vnames.

The:range r(G) of a .general statement G is the set of

vnames: that apéear in G...

A-substitution component is. an: expression of the form
V/T, where V is a vname and T is an item name or a list cf
item names no two of which are the same. The item(s) named
in T may be constant items or variable items. V and T are

called the variable and the term of V/T respectively.

A substitution is a finite list (Vl/Tl oo Vn/Tn) of

substitution components no two of which have the same

variable.

The domain d(s) of a substitution s is the set of

variables of its components.

An instantiation specification of a general statement G

is an expression of the form S:s where S is an item name, s

is a substitution, d(s) = r(G), and if for every V/T in S,

every occﬁrrence of V in G is replaced by T (or any of the
item names in T), the result will describe S. That is, S

is the head of a substructure described by the spec G, and
8 records the association between vnames in G and items in

the substructure headed by S. Note that the notation S:s
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does not signify the transformation of S using the substitu-
tion s. For our purposes, we will be given G, and will dis-
cover S in the memory net. Simultaneously with discovering

S we will build up s. The instantiation specification S:s

is used for recording the fact that s is the substitution

built during the discovery of the substructure headed by S. ]

A list of instantiation specifications is a listﬁof the

;‘ - . <'<
form (Sl.:.s__1 .o Sn,gn) or (S1 . ee Sn).g where for 1 < i ”_?’

S,:s. is an instantiation specification (IS) of some general

i'=
statement; (Si “en Sh):iiiS'equivalent tow(Slzg ces S

n:g).

-Wwe'can;now see-that the value of a spec in the case

where the spec is a general statement G is a list of

instantiation specifications (LIS) such that every IS in

the: LIS is an IS of G.. We will now see how the union and
intersection operations necessary for the evaluation of
Specs are to be modified to allow for the union and inter-
section of LISs. Since in evaluating specs it will be
"necessary to intersect the values of specs that contained
vnames with values of specs which did not contain vnames,

we now define the null substitution to be a substitution

with no substitution components, and we will consider the

value of a spec that did not contain any vname to be an

LIS all of whose substitutions are null. We will first

* : '
define the u-merge and i-merge of substitutions and then

'show how these operations are used in evaluating general

statements.

o AT

*The "a" and "i" are from "union" and "intersection"

respectively since the u-merge operation will be.used when
unioning LISs and the i-merge will be used when 1n§ersect—

ing them.
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The u-merge of substitutions $3 and S, is the

[

substitution S84 which contains a substitution component

V/T for every V in S, or s, or both, with the list T
containing every term in a component with V as its
variable in s, and every term in a component with V as its

varlable in 52 Symbollcally.

= {V/T] /3T, (V/T, 1€83) V&t 2{(V/Tyes,) 7 &

éVt(teT<—>HT (v/T esl & teTl) v dr, (V/T 2€85 & teT )_7%*~

The i-merge substltutlons sl and 52 is the substltutlon T

Sy such that S3 contains a substitution component V/T if

V/T is:a:substitution component of. one of the substitutions

83 ©r-s; and there is no substitution component with V as

its variable in the other substitution and S3 contains a

substitution component V/(TlﬂTz) if V/Tl is in =0 and V/T2
is in s, and 7,07, is nom-null. Symbolically:
s;3 = {W/T|/ v/Tes, & —aT, (V/Tyes,) 7 v
VA V/Teg2 & jHTl(V/Tlegl)_/ \Y
é:K'I‘lE{Tz(V/'I‘lsj:_s__1 &.V/Tzeg_2 ‘&

VE(teT F<=>teT &teT,) &

1
‘@t (teT ateT,)) 7 }

Let us now consider the unioning of LISs. When will

this be done? When a speclist G is evaluated, the result

1 .- Snzgn). If this speclist
appears in a spec preceded by "L:", the value of the

will be of the form (S;:s

speclist will be changed to

«ees S Yis )

(1) ((Sll .o S1m ):§_l .o (Snl nm_)*Sn

1
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where (s, 51 - lmi) is a list of all items pointed to by
the converse I, pocinter from S This is clearly justified
since if si’ii is an IS of G, Sij:si 1s an IS of the

general statement (L:G). 1t is the various LISs of (1)

~

that are to be unioned..

7 Now,iif L is a singlerpsiﬂféf; S;ﬁlcannot be the same
item as Sk1r for i7k and any j and 1, because it would be
impossible for any item to have an L pointer to both S and
S

k* In this case, the unioning would simply require the

dlstrlbutlng of the substitutions over their LISs and the

reordering of the ISs into-a single LIS. However, if L
1s,a;mult1p1e pointer, - it-would be possible to have

Sij‘=ﬁskl' Let us. assume § is such an item name, and it

appears in (1) with the substitutions S{  ees S; - How is
1 n

S to . appear in the unioned LIS? Clearly{

d(gil)’= cea = d(gin) since dls;) = ... = d(s,_) = r(c).
However, it might not be true that s, = ,,, = g. since

=i =i
1 n
- some path of the substructure from the head to the item
which is substituting for a vname in G may include a

multiple pointer and one substitution may describe the

substructure by following one pointer of the multiple
pointer while another describes an alternate path.
Specifically S has an L pointer to each item Sll e Sin

and they are distinct items so there is no reason to suppose

that thelr eubstltutlons are equal. We will now show that

the substitution that should appear with S in the final

LIS is the one formed by taking the u-merge of all the

substitutions s. cee S. .
— =i ~i
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Assume that S:(Vl/Tl .o Vn/Tn) and S:(Vl/Il o Vn/In)

are ISs of the same general statement G with Ti and Ii being
single item names, l<is<n. It will then be true that
S:(Vl/Jl .o Vh/Jn), where for 1slsp, Ji is either Ti or

Ii' is also an IS of G. The last IS states that if the
ﬁaths defined by the placement of Vi in G are followed from
S, Ji will be reached. If Ji is Ti' this is exactly what

is stated by the first IS and if Ji is Ii,'this is what is
stated by the second IS. Thus, by the definition of 1s,
Sa(Vl/(leIi) cee Vn/(Th,In)) is an IS of G and the

substitution in this case is :the u-merge of the substitutions

in the two given cases. This -argument obviously extends to

ISs whose substitutions contain terms that are lists of

names and shows what we set out to show, viz.: the union
of LISs, where every member IS is an IS of the same general
statement, is the LIS consisting of the set of ISs S:s such
that S appears in one or more operand LISs, and s is the

'u—merge of all substitutions s; such that S:§_i is in an

operand LIS.

If Gl and G2 are general statements and we are

evaluating the spec (... Ll:Gl,LZ:G2 «+.), then after the

LISs for the general statements (Li:Gl) and (L2:G2) are

found, we will want to intersect them. That is, we will be
intersecting the LISs (Sll?gll -+« S1p%8;,) and |
(Sy1:857 + - S¢mi8yy,) to find an item S that is the head

of the substructure described by (Ll:Gl) as well as the

substructure described by (L,:G,). say S,; is the same

A PSR v
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item as SZj’ In general it will be the case that
d(sq4) # d(§2j)' Let us see how we want to construct the

substitution S to appear with Sli in the intersected LIS.

If V/T is a component of S,; but is not a component of
gzj, we want V/T to be a component of S since in the
substructure headed by Sli_and described by (Ll:Gl,LZ:Gz)
any item in T is in the position defined by V. Similarly,
1f V/T is in EQj but not in 5,4+ If V/Tl 1s in s,. and
V’/T2 is4in‘§2j, but Tl and:Té have no item in common, then

we do not want Sli in the intersected LIS at all because

there is:no item which can replace all occurrences of V in

(Li:Gi,Lé,G ) resulting in a :description of a substruéture
S

headed by Sli' If, however, Tl and T2 have some items in

ccommon, then we want a component in s with V as its

variable and the intersection of Tl and T2 as its term.
Thus, in the case where Sli is placed in the intersected

LIS, the substitution s is the i-merge of the substitutions

S;; and 525¢ Let us say that two substitutions are compat-

ible if for all components Vi/Tl of the one and VZ/TZ of
the other, if Vl = V2 then Tl and T2 have at least one
item in common. Let us extend this definition and say that

several substitutions are compatible if whenever there is a

set of substitution components V/Tl . V/Tn with each V/Ti

in a different one of the substitutions, there is at least

one item common to all the terms T;+ l=i=n. Now we can
define the intersection of LISs, which we will call the

compatible intersection of LISs, as that LIS consisting of
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the set of 1ISs S:s .such that there is an IS S:_s__i in each
of the LISs being intersected and all such gi's are

compatible and s is the i—mergé of the §i's.
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2.6 The List Set Generator

2.6.1 The General LSG

As is obvious from}the discussion in the preceding sec-
tion, intersecting and unioning arbitrary numbers of sets of
item names is performed frequently when retrieving informa-
tion from MENS. It is therefore necessary to have a very
efficient method for doing this. This section describes a
generalization of the method which was found, which general-
ization allows for the very efficient evaluation of set ex-
pressions of arbitrary length and complexity. The techniques
described below would be useful in language systems that have
a set data type and in systems for manipulating ordered files
as'well as in associative data systems.

Unordered sets may be represented as lists which do not
contain duplicate elements. The set operations will be per-
formed more efficiently if the lists are ordered on some in-
ternal code (see, for example /20 /). The set operations
difference (relaiive complement), union and intersection,
which could be performed only very inefficiently on unor-
dered lists representing sets can be done efficiently on
these ordered lists. For example, to intersectﬂtwo'unordergq
lists takes an amount of time proportional to the product of
their lengths while to intersect two ordered lists takes an
amount of time proportional to the sum of lengths. When
intersecting more than two lists, even more time cquld be
saved by reading all the lists in parallel rather than in-
tersecting them by pairs. If three lists were to be inter-

sected of lengths m, n and r and the first two had s elements



-60-

-

in common, intersecting them two at a time as unordered
lists would take an amount of time directly related to
mn+sr, the time to intersect them as ofdered lists two.at
.a time would be directly related to m+n+s+r, but the time
to intersect them by comparing all three at once would be
directly rélated to m+n+r. The same results would hold
for the other set operationgf

In this section we define a generalization of the list
reader (see Weizenbaum's reader 1-70_7 and Knowlton's "bug"
4735_7) which, as it iéyihé}éﬁéhted;/produces the new set
 determined by set operations on given sets. The algorithms
for‘incrementing the:generalized reader embody the efficient
parallel methods far performing the set operations on or-
dered lists.

We first introduce some basic terminology.
Dl. A list set is an ordered, finite list no two of whose

elements are equal.

The ordering relation used in list sets is immaterial.
In fact, different orderings may be used on different lists
and any equivalence relation may be used for eﬁuating ele-
ments of different lists. The restriction is that if two
élements are equivalent, then no element that appears after
one of them on some list set shali be equivalent to any ele-
ment that appears on any list set before the other. If we
let = be the equivalence relation, G(x,y,z) be a predicate
that is true if and only if x and y are elements on the
list set z with x appearing after y on z, €17 cuey €4 be
variables over elements and Ll,L2 be variables over list

sets, this restriction may be expressed as:
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Veye, [.(el Se,) = ~desde, L, 4L, (efe, &
L_(G(e3,el,Ll)&G(e2,e4,L2)) \Y% (G(el,e3,Ll) &
Gleyrey L)) _7) 7.

This restriction, of course, induces a common ordering
relation on all elements of all l;sts inrany operation, but
this might not be one that is easily applied,directly to
some-of the sets in question.

In any implementation of these algorithms, it would
be possible to represent ordered sets by having the user
provide a function which, given two elements, returns one
of three codes dependxng*on.whether the first element is
greater . than, equlvalent'to,nor.less than the second and
using-this function whenever two elements are to be com-~
pared. It would also be possible to use these algorithms
on or&ered attribute-value lists (or any list where the or-
dering is on every nr’-}-l element with the (n+l)—— through the
(2n-1 )—— elements always follow1ng the n——) For the pur-
poses of this discussion, we will assume that all lists
are ordered on an internal numeric code, smallest number
first, and we will use identity as the equivalence ;elation.

Since, in the algorithms given below, a list is often
searched for the smallest element equal to or greater than
a given element, even Tore speed can be achieved if the
lists are organized hierarchically. By this is meant that
the list is divided into sublists each containing n elements,
for some n, and a hlgher~1evel_llst is used each of whose
elements points to the beginning of'a'sublist and either

also points to the end of the sublist Or contains the value
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of the last element on the.sublist. This higher list can
then be divided into sublists similarly. Then, when a
given element is to be found, a search is done from higher
levels to 1ower‘levels as the proper sublists are lccated.
There are no changes required in the algorithms given be-
low to accommodate normal ordered lists or hierarchical
lists since the only changes needed are in the design of
the reader and the routines to manipulate the reader.

A reader, as used in this discussion, may contain only
a pointer to a list element or additional information as
well. The egsential requirements are that the reader iden-
tify a unique element of some list (which we will refer to
as the element currently pointed at by the reader), and
that it be possible to retrieve the datum of that element,
to increment the reader so that it‘points to the nexﬁ ele~
ment in the list, and to recognize when the element it is‘
pointing at is the last in the list set.

We can consider a reader as a generator of the set
represented by the list it reads. We will define three

other list set generators. A difference list set generator

is used to generate a set which is the difference between
the sets generated by two list set generators. A union
list set generator is used to generate a set which is the
union of the sets generated by a number of list set gener-
ators. An intersect list set generator is used to generaté'
a set which is the intersection of the sets generated by a
number of list set generators; Figures 2f5 and the sample
problem in Appendix A demonstrate the use of these gener-

ators. The algorithms used are given below.
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D2. A list set generator (LSG) is defined recursively as

follows:

la) A primitive LSG (PLSG) is a reader.

1b) A PLSG is an LSG

2a) A difference LSG (DLSG) is an ordered pair of LSG's

2b) A DLSG is an LSG.

3a) A union LSG (ULSG) is an ordered, finite list of
LSG's, no two of which have equal data (see be-

and L

1 2

are on the list and have data dl and d2 respec-

tively, then dl < d2 if and only if L1 is before

low). The list is ordered so that if 1

szin the list.
3b) A ULSG is an LSG.

%*
4a) An intersect LSG (ILSG) is an arbitrarily ordered,

finite list of LSGs.
4b) An ILSG is an LSG.
5) The only LSGs are those defined by (1) - (4).
For various.purposes, an LSG at any given time will be
considered to be identifying a unique datum.

D3. The datum of an LSG is defined recursively as follows:

1) The datum of a PLSG is the datum of the list set
element currently pointed at by the reader.
2) The datum of a DLSG, ULSG or ILSG is the datum of

the first LSG of which it is composed.

_ v

If the ILSG is ordered on the size of the sets to be
generated by the component LSG's , smallest first, all oper-
ations on the ILSG will be significantly faster than other-
wise.
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L, - L

1 2
1 = 10,1,2,5,6,8,9}
L, = {0,1,2,3,7,9}
Step DLSG Generated Set
1 (p 1:0%) 1)
2. (5 1:0,2:0 ) {1}
3 (p 1:1,2:0 ) {1}
4 (p 1:1,2:1) {1}
5 (p 1:2,2:1 ) {1}
6 (p 1:2,2:2) {1}
7" (p 1:5,2:2 ) - {}
8: (p 1:5,2:7) | {51}
9 (p 1:6,2:7 ) {5,6}
10 (, 1:8,2:7 ) {5,6}
11 (p 1:8,2:9 ) {5,6,8}
12 (H 1:9,2:9 ) {5,6,8}
13 The PLSG for Ll finishes

*
A PLSG will be represented as a list set identifier
followed by ":" followed by the datum of the PLSG.

Fig. 2: Example of a DLSG being used to generate a

set which is the difference between two sets
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LI ULyu LU

4
L, ='{o,1,2,5;6,8,9}
L, = {0,2,3,4,5}
L, = {2,3,6,8,9}
L, = {0,1,2,3,7,9}
Step ULSG ' ‘Génerated Set
1 (z 1:0) {1}
(U 1:0,2:2 ) {1}
3. (g 1:0,2:2,3;3 ) {1}
4. (U l':0,4:l,.2:2-,23:;3 ) {0}
57 (y 4:1,2:2,3:3,1:5 ) {o0,1}
6: (U 2:2,3:3,1:5,4:7 ) {o0,1,2}
7 (U 3:3,2:4,1:5,4:7 ) {0,1,2,3}
8 (y 2:4,1:5,3:6,4:7 ) {0,1,2,3,4}
9 - (y 1:5,3:6,4:7 ) {0,1,2,3,4,5}
10 (y 3:6,4:7,1:8 ) {0,1,2,3,4,5,6}
11 (y 4:7,1:8,3:9 ) {0,1,2,3,4,5,6,7}
12 (; 1:8,3:9 ) {0,1,2,3,4,5,6,7,8}
13 (g 3:9 ) {0,1,2,3,4,5,6,7,8,9}
14 finishes

Fig. 3: Exémple of a ULSG being used to generate a

set which is the union of four sets
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L,lnL'an3nL4

L; = {0,1,2,5,6,8,9}
L, = {0,2,3,4,5}

L, = {2,3,6,8,9}

L, = {0,1,2,3,7,9}

Step ILSG Generated Set
1 (; 1:0) )
2 (; 2:0.1:0 ) {1}
3 (1.3:2',2:'0,1:0 ) {1}
4 (7-4:2,3:2,2:0 1:0 ) {1}
5 (i':.4‘:2;332,‘2:2,l:0 ) {1}
6 '(‘I‘.4:2,3:2;2:2,;l:2f') {2}
7 (; 4:3,3:2,2:2,1:2 ) {2}
g (1,4:3;323;2:2,1:2‘) {2}
9 (I 4:3,3:3,2:3,1:2 ) {2}

10 (; 4:3,3:3,2:3,1:5) {2}

11 (; 4:7,3:3,2:3,1:5 ) {2}

12 (; 4:7,3:8,2:3,1:5 ) {2}

13 (; 4:9,3:8,2:3,1:5 ) {2}

14 (; 4:9,3:9,2:3,1:5 ) {2}

15 The PLSG for L, finishes

Fig. 4: Example of an ILSG being used to generate

& set which is the intersection of four sets
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(L; UL, - (Ly n i4)
L, = 2,3,6,8,9 L, = 0,1,2,5,6,8,9
L, = 0,1,2,3,7,9 L, = 0,2,3,4,5,8

Step LSG Generated Set

1. (ply 232)) {)

2, (p(y 2:0,1:2)) {1}

3. (ply 2:0,1:2) (; 3:0)) {1}

4. (ply 2:0,1:2) (; 4:0,3:0)) {}

5. (ply 2:1,1:2) (; 4:0,3:0)) {1}

6- by 2:1,1:2).(; 4:2,3:0)) {1}

7.. (b ly 1:2,2:23) (; 4:2,3:0)) {1}

8. (ply 1:2,2:3) (; 4:2,3:2)) {1}

9. (ply 2:3,1:6) (; 4:2,3:2)) {1}
10. (ply 2:3,1:6) (; 4:3,3:2)) {1}
11. (ply 2:3,1:6) (; 4:3,3:5)) {1,3}
12. (ply 1:6,2:7) (; 4:3,3:5)) {1,3}
13. (ply 1:6,2:7) (; 4:8,3:5)) {1,3,6}
14. (D(U 2:7,1:8)(I 4:8,3:5)) {1,3,6,7}
1s. (ply 1:8,2:9) (; 4:8,3:5)) {1,3,6,7}
16. (ply 1:8,2:9) (; 4:8,3:8)) {1,3,6,7})
17. (p 2:9 (; 4:8,3:8)) {1,3,6,7}
18. 2:9 {1,3,6,7,9}
19. finishes {1,3,6,7,9}

Fig. 5: An example using all three LSGs
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The datum of.a DLSG or. an ILSG may or may not be an
element of the list set the LSG is generating. It will be,

if the last operation performed by the LSG was initializing,

incrementing, incrementing to or past a datum, or incre-

ménting past a datum as these operations are described be-

low. It may not be if the last operation was checking a

datum against the LSG or some operation not defined here.

The datum of a PLSG or a ULSG will.always-be an element of
the list set being generated.

Tha;operations'described.beIOW, except initialization,
may be:performed: repeatedly on an LSG in order to consider
successive elements in. a: list set:. The elements wili be
generated in the order used for ordering the list sets and
once passed, an element will not again be the datum of the
LSG. Thus, eventually, an LSG will have been moved past.
all the elements of the list set it generates. When this
occurs, we say the LSG is finished. An LSG may finish dur-
ing any of the operations described below, in which case
the operation concludes, returning an appropriate flag.
Instead of giving the finishing conditions in every algo-
rithm below, we give them here once, since they are the
same for all.
D4. 1) A PLSG finishes when an attempt is made to incre-

- ment it when it already points at the last element
of its list set.

2) 2) A DLSG finishes when its first LSG finishes.

3) A ULSG finishes when it is composed of one LSG

and that LSG finishes

4) An ILSG finishes when ahy of its LSG's finishes.
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In two cases an LSG may'beﬂéiscarded in favor of a
comporent LSG: 1) If the second LSG of a DLSG finishes,
the first LSG replacés the DLSG. 2) when a ULSG is com-
posed of only one LSG, that LSG is used in place of the
ULSG. These cases may also arise during any of the algo-

rithms described below, but we will not mention them again.

The first algorithm to be described is initializing an

LSG. When an LSG is initialized, its datum will be the
first element of the list set the LSG generates. If that
list set is null, the LSG will finish during the initiali-
zation process.

Al. Initializing an LSG

1) PLSG: Initialize the reader so that it points
at ‘the first element of its list.
2) DLSG (see Fig. 2 steps 1-8):

a) Initialize the first LSG.

b) Initialize the second LSG at or past
the datum of the firét (i.e. its datum
will be equal to or larger than the
datum of the first LsG).

¢) If the data of the two LSGs are equal,
increment the DLSG.

3) ULSG (see Fig. 3 steps 1-4):

Initialize each LSG in turn, placing them

in ‘the ULSG in the proper order (but not

placing one that finishes). 1If aéALSG is
initialized with a datum equal to the
datum of an LSG already in theﬁUiSG, incre-

ment it until it has a datum not already
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represented. Then place it in the ULSG
in the proper order.
4) 1ILSG (see Fig. 4 steps 1-6):

a) Initialize one LSG and place it in the
ILSG. |

b) 1Initialize each successive LSG (in any
order) at or past the datum of the
previous LSG and place it as the first
LSG of the ILSG.

¢} When all LSGs have been initialized
ard “inserted, if their data are not
allhequal,‘inérement the ILSG to or

past the datum of its first LSG.

Once an LSG is initialized, it can be repeatedly

incremented, and after each step its datum will be the next

greatest element of the list set it generates (see Figs. 2-4).
AIf some operation was performed on an LSG sorthééﬂits

dgtum is not an element of the set it generates, and

the LSG is then incremented, its datum after being incre-
mented will be the smallest element of the set it generates
which is larger than the datum of the LSG before it was

incremented.

A2. Incrementing an LSG

1) PLSG: The reader is incremented so that it points
at the next element in its list.

2) DLSG: a)} Increment the first LSG.
b) Check the current datum of the first

LSG against the second LSG. If the
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. check succeeds, go back to step (a).
3) ULSG: a) Remove the first LSG from thé ULSG.
b) Increment the LSG removed in step (a).
If it finishes, the increment is done.
c) If the datum of the LSG incremented in
step (b) is equal to the datum of any
other LSG in the ULSG, go to step (b).
d) Return the LSG to,the‘ULSG in its proper
order accarding to its current datum.
4) 1ILSG: a) Increment the first LSG of the ILSG.
b} Let D be the datum of the first LSG
and i . be 1.

c) Let-i =-1i.+-1.

d) If there is no lzh»LSG the 1ncLement is
done. i
Xe)” Increment the lEE LSG to or past D,

f) 1If the datum of the iEE LSG equals D,

go to step (c).

g) Let D be the datum of the 132 LSG and
i-be O.

h) Go to step (c¢).

There are times when we are not interested‘in the next
element to be generated by_an LSG, but in the next element
equal to or greater than a given one (é.g., A2 (4e)) or
the next element strictly greater than a given one. Such

an- element could be found by repeatedly incrementing the

LSG, but it would be more efficient to make full use of the
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information of what datum we wish to equal or exceed and
increment the LSG to or past (or just past) the datumﬂin
 one operation.

A3. Incrementing an LSG (to or) past a datum, D

1) PLSG: Increment the reader (zexro or more times)
until it points to an element whose datum
is (equal to or) greater than D.
2) DLSG: a) Increment the first LSG (to or) past D.
b) Check the datum of the first LSG
against the second LSG. If the check
is successful, increment the DLSG. If
the check is not successful, the incre-
ment is done.
3) ULSG: a) Remove the first LSG from the list.
b) Increment the LSG removed in step (a)
(to”orlmpast D. If it is finished,
go to step (e).
c) If the datum of the LSG incremented
in step (b) is equal to the datum of
any other LSG in the ULSG, increment
it. If this finishes the LSG, go to
step (e).
d) Return the LSG tb its proper place
in the ULSG according to its current
datum.
e) If the datum of the LSG which is now
first in the ULSG in not (equal to or)
larger than D, go to step (a), otherwise

the increment is done.



4) TLS3: This is exactly the same as incrementing
an ILSG (A2 (4)), except that in step (a),
the first 3¢ ig inckemented (to or) past
D.
If it is desiread to determine if 4 given element ig .
a member of the set generated by an LSG, this can, in most
Cases, be done more quickly than by incrementing the LSG
to or past the element and +ien looking at the datum of
the LSG if it ig acceptable that when +the check is finisheq,
the datum of +he LSG might not be g member of the set it
generates. To afterwards produce an unknown member of the
set generated by the 1.5G, it woculd be necessary to perform
one of the incrementing operations on it,

A4. Checking a datum, b, against an LSG

1) PLsG: Increment tha reader to or past D. If the
reader finishas Or it ends up with a datum
which ig larger than D, the check is
unsuccessful. 71f the PLSG ends up with a
datum equal i0 D, the check is successful.

2) DLSsG: a) Check D ageinst the first LSG. 1If this

check is visuccessful, the check against
the DLSG iy unsuccessful.

b) If the chaeck against the first LSG was
Successful, check D against the second
LSG. If this check is successful, the
check against the DLSG is unsuccessful

and vice vearsa.



3)

4)

ULSG:

ILSG:

a)

b)

c)

d)

e)

£)

7

If the datum of any LSG in the ULSG
equals D, the check is successful.
Remove the first LSG from the ULSG.
Increment the LSG removed in step (b)
to or past D. 1If it finishes, go to
step (f).

If the datum of the LSG incremented in
step (c) is equal to the datum of

any other LSG in the ULSG, increment
it. If this finishes the LSG, go to
step (f).

Return ‘the LSG to its proper place

in the ULSG according to its current
datum.

If the datum of the LSG incremented

in step (c) was equal to D after it
was incremented, the check is success-
ful. Otherwise, if the datum of the
LSG which is now first in the ULSG is
larger than D, the check is unsuccess-
ful. If neither of the above two

cases hold, go to step (b).

Check D against each LSG that makes up the

ILSG in turn. As soon as one is found for

which the check is unsuccessful, the check

against the ILSG is unsuccessful. If all

checks are successful, the check against

the ILSG is successful.
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It should be remembered that the list sets are ordered
and the LSG's generate them in order. The only Qay to
generate all the members of a set is by successive incre-
| ménting with no‘other operations interposed. An LSG cannot
be "backed up" to an element it has already passed. If
several elements are to be checked against an LSG, this
must be done in the proper order to avoid the necessity of
initializing several LSG's.

The sample problems of Fig. 5 and Appendix A show
how LSG's are used to evaluate a set expression. Becausé
of their generality, LSG's would be extremely useful as
part of a language system allowing sets as a data type.
Moreover, since any ordered, sequential file fits the defi-
nition of list set given above, LSG's may ke used for

traditional file handling and will lead to great efficiency

when arbitrary numbers of files are to be handled simul-
taneously. For these purposes, the DLSG is used for purg-

*
ing records from a file, the ULSG is used for merging files

and all the LSG's may be used for information retrieval.

2.6.2 Extending LSGs to Handle LISs

We will show here how PLSGs, ULSGs and ILSGs may be
* %
extended to handle set expressions involving LISs assum-

ing that when taking the union of LISs all the ISs in the

* []
The ULSG merges in the manner described as "m-way
merge with ranking sort" / 8_/-

**The extension of DLSGs is not discussed because the
only time a DLSG would be used in MENTAL would be in evaluat-
ing a speclist with the -spec option, and in that case every
item that appears in the evaluated ~spec should be removed
from the main spec regardless of substitutions since the
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LISs are ISs of the same general statement and that compat-

ible intersections are wanted when intersecting LISs. We
will also assume that list readers are used in such a way
that if a reader is reading an LIS L and its datum is D,
there is a field of the reader (which we shall call tpg

SUBST field) that points to the substitution s for which D:s

is an IS on L.

Each LSG has a unique substitution associated with its

datum, which we shall call the datum-substitution of the
LSG. They are:

PLSG -- The substitution pointed to by the SUBST field

of the reader.
ULSG, ILSG -- The datum-substitution of the first
component LSG.
We will now explain how the datum-substitutions are
updated so that if the datum of an LSG is D and the datum-

substitution is.s, D:s is an IS on the LIS generated by

the LSG.
PL5G -- When the reader is incremented, change the
SUBST field appropriately.
ULSG ~- When a component LSG is incremented so that
its datum is D and its datum-substitution is s
and D is the datum of another component LSG,
L, with a datum-substitution 8; change the |
datum-substitution of L to be the u—mérée of
meaning of the (spec, - spec2) speclist 1s "list every

item that is described by SpEc, except those that can be
. described by spec,". ' '
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s with s,. Operations should be performed on
compenent LSGs so that every member of the
set being generated by the component LSG gets
its substitution handled by the above process.
When all component LSGs of the ILSG have the
same datum, that datum is a member of the set
being generated if and only if all the datum-
substitutions of the component LSGs are
compatible., If that is the casé, change the
datum-substitution of the first component LSG

to be the i-merge of the datum-substitutions

of all the component LSGs.
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Deductions

3. Using the Structuré for

3.1 Representation of Deduction Rules

In Chapter 2 it>wasnshown how the MENS structure is used
for explicit storage and retrieval. In this chapter we will
explain how it can be used for deduction. Since storage of
deduction rules is a motivating factor of this project, the
deduction method we will use (according to the categorization
of Section 1.4) will be deduction by executive routines and
stored rules. Within this category we will use the method of
storing generai deduction rules and using fairly simpleﬁﬁheorem—
proving techniques. The reason for this is that we want the
system to be as general as possible and we want to concentrate
on the data structure rather than the executive routines. It
would be possible to build a complex and sophisticated theorem
prover which uses MENS for its data storage, but this is nét
Our current interest. MENS also uses the deduction-by-structure
method, which is a by-product of the explicit storage method
described above.

In order to allow for complete generality in what deduc-
tion rules could be stored, including arbitrary orderings of
zarbitrarily many quantifiers, it was decided to represent quan-
tifiers and variables directly in the structure, and build
executive routines to interpret the deduction rules. These
routines W§uld operate, upon being given a deduction rule, by
carrying out searches required by the rule and building conse-
quences justified by the rule. 'Representing quantifiers and

variables directly seems to be a compromise of the motivating



tities is guestiocnable. However, dealing with the order of
quantification implied by some English sentences is enough of
a8 problem that at least one linguist believes that quantifiers
and variables might profitably be comprehended by the base
rules of English grammar /4, p. 112 /. Besides, including
this capability extends the use of the system as an exXperimen-
tal vehicle, another motivating factor.

The decision to allow direct representation of variables
leads to the questions of how to represent them and what will
be allowed to substitute for them. Considering the second
question, the conclusion is that a variable should be able to
stand for any item but not for any system relation. This is
supported by the discussion in Section 2.2 that anyfhing'
about which information could be given should be represented
by an item, that all items should be equally able to have in-
formation stored about them, and that system relations could
not have information given about them since they are not con-
ceptual entities. As Quine says, "The ontology to which one's
use of language commits him comprises simply the objects that
he treats as falling . . ., within the range of values of his
variables.® /749, p. 118 quoted in 9, p. 214 7. since the
ontology of the data Structure comprises the set of 1tems (by
deflnltlon of item), the values of the variables must be allowed
to range over all the items, and 31nce the system relatlons are

to be excluded from the ontology, not allowing them to substitute
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for a variable reinforces their exclusion. Allowing the
variables to range over all the items, however, brings up
ﬁhe possibility of storing the paradoxes that were eliminated
from formal languages only with the introduction of types of
variables or restrictions on assertions of existence (of sets).
This possibility will be accepted. We make no type distinctions
among the items and impose no restraints on item existence,
leaving the avoidance of paradoxes the responsibility of the
human informant. We will do the same with the variables.
However, we do use restricted quantification. What is meant
by this is that with each quantifier in a deduction rule will
be included, not only the variable it binds, but also an indi—
cation of the set of itéms over which the variable ranges.

Woods /" 72_/ uses restricted quantification to reduce the time
needed to handle a request by including in the restriction a
class name and a predicate. The class name must be of a class
for which there exists a generator that enumerates all the
members of the class one at a time. FEach member is tested with
respect to the predicate. Those for which the predicate is true
are acted on by the main body of the request. Our restrictions
may be more general. We will allow any statement, however com-
plex, about the variable. This statement will be used as a
search specification to find all items in the structure for
which the statement is true. The set of such items will com-
prise the range of the variable. Thus, even omega ordered type
theory may be represented in the structure by entering a state-
ment about every item giving its type and including type speci-

fications in the restrictions on each variable.
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We now return to the question of how variables should
be represented. Each variable will be represented by its own
item block. All occurrences of the same variable within a
given deduction rule will be represented by the same item and
no such item will be used in more than one deduction rule.
The same item is used for all occurrences of a variable in a
deduction rule so that a substitution made ﬁor the variable
in one occurrence will at the same time be made in the others
and so that allrthe information about what items can substitute
for the variable will be reachable from one place. Different
items are used in different'deduction rules to eliminate the
possibility of information about a variable in one deduction
rule becoming associated with a variable in another. In order
for an item to be recognized as a variable, when it is pointed
to from.another item there is a specificity measure of 0O pre-
fixed to its internal name. The specificity measure will be

discussed more completely in Section 4.5.

Besides quantifiers and variables, the connectives NOT,

*
AND, OR, IMPLIES, IFF AND MUTIMP are also represented as item

*MUTIMP stands for mutual implication. It is a predicate
with an arbitrary number of arguments and says that its argu-
ments mutually imply each other by pairs (are pairwise equiva-
lent). Looked on as a binary connective, MUTIMP, like AND and
OR and unlike IMPLIES and IFF is idempotent as well as asso-
ciative and commutative. Possible definition of MUTIMP is:

"MUTIMP (P P ) = anNp (p, IMPLIES AND (p.))
172 n i=1 1 j=1 J
J#E

That is if MUTIMP (P;,...,P ) is true and P, is true (false) for
some i, 1<i<n, then" P, is Brue (false) for~all i, l=i=n. For
two arguments MUTIMP 1s equivalent to IFF.
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relations inAthe structure and the executive routines that
interpret the deduction rules are designed to handle them.
Deduction rules are stored using two types of items that
will be recognized by the executive routines. We will call
them quantifier clauses and connective clauses, A quantifier
clause is the head of a quantified general statement and has
four special system relations emanating from it. They are:
(i) Q points to the quantifier
(ii) VB points to the variable being bound
(iii) R points to the restriction on the variable
(iv) S points to the scope of the quantifier
A connective clause is the head of a construction formed of
several clauses joined by one of the connectives mentioned
above. It has an OP system relation to the connective and one
of the following sets of argument relations:
(1) ARG to the argument if the connective is unary (NOT)
(ii) ARGl to the first argument and ARG2 to the second
argument if the connective is binary (IMPLIES,IFF)

(1ii) MARG to all the arguments if the connective is

associative, commutative and idempotent (AND,OR,MUTIMP)

The clauses forming the arguments of a connective clause and
those forming the restriction and scope of a quantifier clause
may contain a free variable only if a sequence of converse

argument pointers, converse restriction pointers and converse

scope pointers leads to a quantifier clause in which that variable

is bound.
Examples of deduction rules are given beloWL Each deduc-

tion rule is given first as an English languagé statement and
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then as a buildspec.

1. Every man is human.
(.Q:ALL,VB:'X,R:(.AGENT:'X,VERB:MEMBER,OBJ:MAN),

S: (.AGENT:'X,VERB:MEMBER,OBJ : HUMAN) )

2. Every car has-as-part an engine.
(.Q:ALL,VB:'X,R: (.AGENT: 'X,VERB:MEMBER,0OBJ :CAR) ,

S: (.Q:EXISTS,VB:'Y,R: (AGENT:'Y,VERB:MEMBER,OBJ:
ENGINE),
S: (.AGENT:'X,VERB:HAS~-AS-PART,OBJ:'Y)))

3. If a male is the child of someone, he is the son of
that person.
(.Q:ALL,VB'X,R:(AGENT:'X,VERB:MEMBER,OBJ:MALE),

S: (.Q:ALL,VB:'Y,R: (. AGENT: 'X,VERB:CHILD-OF ,0BJ: 'Y)
S: {.AGENT: 'X,VERB:SON-QOF,0BJ:'Y)))

4, John is at home, at SRI or at the airport.*

(.OP:0OR, MARG: (.AGENT:JOHN,VERB:AT,OBJ : JOHNS~HOME) ,
MARG: (.AGENT : JOHN,VERB:AT,0BJ : SRI) ,

MARG: (.AGENT:JOHN,VERB:AT,0BJ :AIRPORT-4) )

3.2 Interpreting Deduction Rules

:3.2.1 Introductioh

There are six operations that can be performed with respect
to a deduction rule in MENS. They are:
(i) It may be used for generating consequences.
(ii) It may be confirmed by exhaustive induction, i.e.

proved F-true in the universe of the data structure at any

* - -
This sentence taken from Green and Raphael / 25 /.



given time.
(iii) It may be deduced from other deduction rules.
‘(iv) It may be refuted by finding a counter-instance in

the data structure.

(v) 1Its negation may be deduced.

(vi) It may be treated as a specific statement, which
includes its use as an assumption in the dgduction or negation
of other rules as in (iii) or (v).

We will be mainly interested in using a deduction rule
for generating consequences. In this process, there are two
ways of using a restrictionp They are:

(i) A possible substitution for the variable may be
checked to see if it fulfills the restriction,

(ii) The data structure may be searched to find all items
that fulfill the restriction.

The amount of information that may be deduced with any
deduction rule depends on more than the gquantifiers and the
number of items that are found able to fulfili the restrictions.
It also depends on the structure of the logical connectives in
the deduction rule. For example, a deduction rule might have a
consequent that was the conjunction of several substructures.
Thus, several independent substructures might be deduced for
each choice of items to substitute for the variables. There
are, therefore, several different ways we may use a deduction
rule for generating consequences. We may instantiate over all
items that satisfy the restrictions or just over those we are

interested in. Similarly, we may generate all the consequences
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justified by the deduction rule or just those needed to answer
a particular question.

In this section, we will first discuss how a deduction
rule useful for answering a particular question is found, and
then discuss how the executive routines interpret the deduction

rules and generate consequences.

3.2.2 Finding Deduction Rules

A deduction rule is needed when the nuﬁber of items found

to satisfy a findspec (see Section 2.5) 1is less than the

minimum number required. The problem then, is to find a deduc-

tion rule capable of generating an item that satisfies the find

spec. Say the findspec is
(i} (?O’#’L]_: (Ill'-. .,Ilml) ’."’Ln: (Inllouo,Inm ))

n
where Ll”“'Ln are system relations and Ill""'Inm are

specific items (we will assume at first that a subst?ucture only
one level deep is required and consider the case of several-
level structures‘later). In order for a deduction rule to
generate the desired item, it must be headed by a quantification
clause that is connected through a path of scope and argument
pointers to an item which contains the labels Ll""'Ln one or
more of which point to variable items and the rest of which
point to some item in the appropriate list in (i). We caﬂ,

therefore, locate the deduction rule by searching for any item

that satisfies the findspec:

| , u : ' U
(ll) (?ol#lIJl- ((Ill’-o-,Ilml) V)'occ'Ln-((Inlln-olInmn) v)
V is a list of all variable items in the data structure.

For the sake of efficiency, we maintain an item which we shall
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VBL. No other item in the structure contains a pointer to
VBL, but whenever a variable item contains a pointer L ta an
item I, VBL also contains a pointer L to the item I. Thus,

the findspec (ii) is equivalent to:

rese N )).

(iii) (?O'#'Ll:(VBL’Ill,...,Ilml)""’Ln:(VBL’Inl I .

Note that any’item that satisfied (i) must be an instan-
tiation of any item that satisfies (iii) and, further, it is
possible to deduce an item that satisfies (i) only if an item
satisfying {(iii) exists in the data structure.

For each item, I, found satisfying (iii) we may record
what substitutions we are interested in for the variables pointed
to from I. If I has a pointér L; to a variable itemvxi, we
record that the only items we are interested in substituting
for X, are Iil""’limi by putting them in a "possible sub-
stitution" list for X, . 1Théy'will later be checked against
the restriction on Xy

For each item I satisfying (iii), we then follow the paths
of reverse scope and'argument pointers until coming to an item
D which has the independent statement flag (see Section 4.4).
That item will be the head of a deduction rule capable of gener-
afing the consequences we are interested in. While following

this path a trace list is created. This is a list (Sl,...,Sk),

whergvsk

from D, and S;+ 2 < i< 1, is pointed to by a scoée or argument

is I, S; is pointed to by a scope or argument pointer

pointer from S;~-1+ The trace list will be used to limit the

consequences generated to the ones desired.
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In the case Qf'failing to find items matching a findspec
involving several levels, the same process is carried out, but
we must be sure to allow for all possibilities of variables
replacing constaﬁts. That is, each level is handled as above
for progressively higher levels, and the reverse scope and
argument pointers are not followed until the highest level has

been done.

3.2.3 Generate

The routine to generate consequences from a deduction rule
is a recursive procedure that is initially given the internal
name of an item that heads a substructure with no free variables.
It returns a list of items (internal names) that head substructures
representing the consequences that have been generated. These
substructures might then either be given independent statement
flags aﬁd left in the data structure or be erased (see Sec£ion
4.6 for a discussion of how this decision might be made). The
Generate route is written to generate consequences according to-
the author's understanding of the meanings of the quantifiers
and logical connectives. It is not designed to prove theorems,
but to use deduction rules and other data that have been stored
and are assumed to be valid by generating consequences of them.

The various sections of the Generate routine are described
below. (Eléwcharts are given in Appendix B.) They assume the
existence of certain global information, viz:

(i) If the trace flag (TRFL) is set, a trace list

(TRACELIST) has been built as described above.
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(ii) The negation flag (NEGFL) is used to pass negations
dbwn to minimum scope. If it is set the substructure
being considered should be considered to be the negation
of itself.

(iii) Every variable item has a list of possible sub~
stitutions and a substitution. The list of possible
substitutions may be filled as described above. The
list of substitutions consists of those possible substi-
tutions that have survived a check against the restriction
or those items that have been discovered to fulfill the
restriction via a search on the data structure. The sub-
stitution is the item acﬁually substituting for the
variable at a given time during generation,
g§§9§§§_is a recursive routine that generates one instan-.

tiation of a substructure the internal name of whose head it
is given. Each free variable in the substructure must have a
current substitution. Since the substructure may contain
quantifier clauses, the instantiation generated may itself be
a deduction rule.

GENERATE -- Main Section is given the internal name of

an item and transfers to the appropriate section to generate
the consequences of the substructure the item heads. If the
item is a constant, it is the consequence. If TRFL is on and
TRACELIST is empty, we are at the statement to be generated and
PREDGEN is called. If the item is a quantifier clause, ALLGEN
or EXISTSGEN is transferred to, depending on where Q points.

If the item is a connective clause, depending on where OP points,
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the transfer will be made to NOTGEN, IMPGEN, IFFGEN, ANDGEN,
ORGEN or MUTGEN. Otherwise, we are at a simple, non-quantified
statement with free variables and PREDGEN is called to generate
the instantiztion. Other connectives or quantifiers may be
added by adding an appropriate test here and an appropriate
section similar to those described below;

NOTGEN changes NEGFL to the opposite of what it was. If

TRFL is on, the top of TRACELIST must be the name of the item
pointed to via the ARG pointer, so it is popped off. GENERATE
is called rec@rsively with the item pointed to via ARG as argu-
ment.

ALLGEN transfers to EXISTGEN (just after the point where

EXISTGEMN tests NEGFL) if NEGFL is on. Otherwise, if there is
a list of possible substitutions for the variable of the quanti-
fier ciause, they are checked against the restriction and those
that succeed are placed in the substitution list. If there is
no list of possible substitutions, the restriction is used to
direct a search for all valid substitutions and they are put in
the substitution list. For each item in the substifution list
as the substitution for the variable, GENERATE is called re-
cursively with the scope of the quantifier clause as argument.
If TRFL is on, TRACELIST is popped before GENERATE is called
since the top item on it must be the item pointed at via S.
§§£§2g§§rtransfers to ALLGEN (just after the point where
ALLGEN tests NEGFL) if NEGFL is on. Otherwise, it creates a

new item which is made the substitution for the variable of

the quantifier. GENERATE is called with the restriction as



-90-

argument and with NEGFL and TRFL turned off, the substructures
thus generated being étored as independent statements. Finally,
NEGFL and TRFL are restored, TRACELIST is popped if TRFL is on,
and GENERATE is called recursively with the scope as argument.
If at IMPGEN NEGFL is off, the statement is of the form
P=>0, and Q is generated if P is confitmed'or the hegation of
P is generated if Q is refuted. If TRFL is on, only the one
of the two above cases is tried that will result in generating
the item at the top of TRACELIST. If NEGFL is on, we generate
both P and Q unless TRFL is on, in which case only one Of,
these is generated. If NEGFL is off but P is not confirmed and
0 is not refuted, PREDGEN is called to generate the instantiation
of P => Q since that will give the questioner asrﬁﬁcﬁ .
information as poésible.rr

If at IFFGEN NEGFL is off, if either argument can be con-

firmed (refuted) the other argument (the negation of the other
argument) is generated. If NEGFL is on, confirmation of one
"argument leads to the generation of the negation of the other
while refutation of one causes generation of the other. As
in IFFGEN, if TRFL is on only the appropriate cases will be
tried, and regardless of the states of TRFL and NEGFL if nothing
is confirmed or refuted the entire statement is generated.
ANDGEN transfers to ORGEN (after its NEGFL test) if NEGFL
is on. If TRFL is off, each argument pointed to via MARG is
generated, but if TRFL is on, only the argument at‘thévtop of

TRACELIST is generated.
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ORGEN transfers to ANDGEN (after its NEGFL test) if
NEGFL is on. Since we want to generate the most concise in-
formation possible, an attempt is made to refute each item
pointed to via MARG (except for the one on top of TRACELIST
if TRFL is on). If only one item is not refuted, it is gener-
ated. Otherwise a disjunction is generated with the instan-
tiation of each item that was not refuted as a disjunct. If
ORGEN was transferred into from ANDGEN, NEGFL will be on and
items will be discarded if confirmed rather than refuted. If
ORGEN was transferred into because NEGFL was set at MUTGEN,
two passes through ORGEN will be made, one with NEGFL on and

one with it off.

MUTGEN transfers to ORGEN as mentioned above if NEGFL is

on. Otherwise, an attempt is made to confirm or refute each
argument in turn (except for the one on top of TRACELIST if
TRFL is on). As soon as one is confirmed, all are generated.
If one is refuted, the negation of all the rest are generated.
If TRFL is on, when an item is confirmed (refuted) only the
item on top of TRACELIST is generated (has its negation

generated) . -

3.2.4 Confirm and Refute }

The Confirm and Refute routines are used by the Generate
routine as explained above., It must be remembered that con-
firming or refuting a deduction rule does no more than show
it to be true or false in the universe of the data structure
as it exists at the time the confirmation or refutation is per-

formed. The confirmation of a universally quantified expression
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or the refutation of an existentially quantified expression
‘may hold at one tiﬁe but not hold after another individual
fulfilling the prdper restriction is introduced into the

data structure, Furthermore, when individuals might be re;
moved from the data (e.g. employees in a management informa-
tion system), the refutation of a universally quantified
expressioﬁ or the‘cohfirmation of an existentially quantified
expression may cease to hold after such a removal.

It is also possible for an expression to be neither con-
firmable nor refutable at some time. For example, the state-
ment, "All men have two arms" would be neither confirmable nor
refutable if we knew of exactly 100 men, of whom 99 had two
arms but we had no information about theﬁl‘OOE—Il man..

The Confirm and Refute routines are given the internal
name of the head of a substructure all of whose free variables
have substitutions and return TRUE if the substructure is con-
firmed or refuted, respectively, and FALSE otherwise., They
are outlined in parallel below.

Assume I is the argument.

1. If I has the independent statement flag, I is con-

firmed.

2. If I is negated and has the independent statement

~flag, I is refuted.

3. If I has a Q pointer to ALL

a. Find all substitutions for the variable satis-
fying the restriction.

b. For each substitution for the wariable, try to
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a.

b.

If
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confirm or refute the scope.

If the scope is confirmed for each substitution,
I is confirmed.

If the scope is refuted for one substitution,

I is refuted.
I has a Q pointer to EXISTS

find all the substitutions for the variable
satisfying the restriction.

For each substitution for the variable, try

to confirm or refute the scope.

If the scope is confirmed for one substitution,
I is confirmed.

If the scope is refuted for each substitution,
I is refuted.
I has an OP pointer to NOT

If the argument is refuted, I is confirmed.

If the argument is confirmed, I is refuted.

I has an OP pointer to IMPLIES, calling the

first argument P and the second Q

a.

If P is confirmed and Q is confirmed, I is
confirmed.
If P is confirmed and Q is refuted, I is refuted.

If P is refuted, I is confirmed.

" I has an OP pointer to IFF, calling the arguments

P and Q

If P and Q are both confirmed, I is confirmed.

If P and Q are both refuted, I is confirmed.
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c. If one of P and Q is confirmed and the other
is refuted, I is refuted.
8. If I has an OP pointer to AND
a. If all arguments are confirmed, I is confirmed.
b. If one argument is refuted, I is refuted.
9. If I has an OP pointer to OR
'é. If one argument is confirmed, I is confirmed.
b. If all arguments are refuted, I is refuted.
10. If I has an OP pointer to MUTIMP
a. If all arguments are confirmed, I is confirmed.
b. If all arguments are refuted, I is confirmed.
c. If at least one argunent is confirmed and at
least one argument is refuted, I is refuted.
1. If none of the above cases holds
a. Use the substructure to search memory for a sub-
structure isomorphic to that one, but containing
the proper substitution items for the variables.
(Use SDFIND, described below.)
b. If such a substructure is‘found with an independent
statement flag, I is confirmed.
c. If such a substructure is found negated with an

independent statement flag, I is refuted.

" 3.2.5 Substructure Directed Searching

Using a restriction to find all the items that satisfy it
and finding an instantiation of a substructure containing free
variables in order to confirm or refute it require a process

similar to the one used to find an item described by some
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findsgec (Section 2,5). Such general substructures may contain
some items which aie connected to the head item by several dif-
ferent paths. If these items are constant items, any instan-
tiation of the general substructure will contain them at the
end of similar paths from the head item., If, however, they

are variable items or items heading substructures containing
variable items, the instantiation substructures will have
different items in their place and we must be sure that no item
in the general substructure is substituted for by more than one

item in any instantiation substructure. This is the reason

substitutions and instantiation specifications were developed
/
in Section 2.5. Thus, whenever an instantiation is discovered

for a substructure within a general substructure we keep track

of the instantiation specification. That is, with the head

item S, we associate the substitution s the variables of whose

components are the non-constant items in the general sub-
structure and whose terms are the appropriate substituting
items of the instantiation. Using the ccmpatible intersection
operation we ensure that in the instantiation substrﬁcture not
more than one item substitutes for any one item in the general
substructure.

The procedure for finding instantiating substructures for
a general substructure is outlined below. S is the head of a
general sﬁbstructufe and LO is a list of items that have been
examined in the general substructure before the present recur-
sive call to the procedure and so need not be examined again.

Once an LIS is discovered for an item, it is recorded so

]

!
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that if that item is met again in the general substructure

the LIS need not be rediscovered. If a variable already

has a substitution or a list of possible substitutions, they
are used. Thus, this procedure can be used for checking a

list of possible substitutions against a restriction as well as
for finding all substitutions for a variable satisfying a
restriction.

SDFIND

1. Let L0l = Lo U (8).

2, If there are no more system relations from S to be
considered, go to 14.

3. Let R be the next system relation from S.

4. If R is a reverse scope, restriction or argument
pointer, go to 2.

5. If there are no more items pointed at via R, go to 2.

6. Let I be the next item pointed at via R.

7. If I is a constant, put the list *R(I) on list L
and go to 5.

8. If I is a variable that has a substitution, IS, put
*R(IS):(I/IS) on the list L, then go to 5.

9. If I is a variable that has a list of possible
substitutions (PSl,...,PSn), put (*R(PSl):(I/PS)U...U*R(PS)n?A
(I/PSn)) on the list I, then go to 5.

10. If I is a variable and has neither a substitution nor
a list of possible substitutions, put I on top of ﬁhe list L1,
then put R on top of L1, then go to.5.

1. If I is on the list LOl, go to 5.
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12. If I has an LIS recorded for it, put *R(LIS),
ﬁhere LIS is the recorded l.i.s., on the list L, then go to 5.
13; Call SDFIND recursively with I and LOl as arguments,
getting an l.i.s. (Slzil""’sn:En)' Put
(5,187 rivvsSpi8n) (S 2 (T/8q,eeesSy (I/8)))
on the list L, also record it as the l.i.s. for I, then go

to 5,

14. © will be a list of LISs, calling the resultant
LIS LI.

15, LI is an;LIS of the form (Slzgl,...,snzﬁn). LIS
is a list of the férm (Ri,Vl,{{.,Rﬁ,Vm). Form the compatible
intersection of LI with

(Sl=(Vl/Rl(Sl),...,Vm/Rm(Sl)),...,Sn;(Vl/Rl(Sn),...r
vﬁ/ﬁm(sn)))' Return the resultant l.i.s. as the value of SDFIND.
With the aid of SDFIND, finding all substitutions for a

variable, V, that satisfy a restriction and checking a list

of possible substitutions against a restriction become the same
procedure, except that for the latter the list of possible sub-
stitutions is nonempty. SDFINDC (outlined below) is called with
two arguments, the first being the variable for which substi-
tutions are to be found or checked, the second being the head

of the general structure; SDFINDC takes account of any
guantifiers and connectives in the structure and makes use of

SDFIND for the non-complex expressions.

SDFINDC(V,I)

1. If I has a Q pointer to ALL

a. If NEGFL is on, go to 2b.
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b. For cach item in SDFINDC(VB(I),R(I)), sgtrther
iteﬁ as the substitution of VB(I) and put
SDFINDC(V,S(I)) on the 1list L.

¢. Return.the intersection of all lists on L.

If I has a Q pointer to EXISTS

a. If NEGFL is on, gékto 1b.

b. Set SDFINDC(VB(I),R(I)) as the list of
substitutions for VB(I).

<. Return SDFINDC (VB(I),R(I)).

If I has an OPrpointéf to NOT

a. Change NEGFL to the opposite of the way it is set.

b. Return SDFINDC(V,ARG(I)).

If I has an OP pointer to IMPLIES

a. Let L = SDFINDC(V,ARG2(I)).

. Change NEGFL.

c. Return the union of L with SDFINDC (V,ARG1(I)).

If I has an OP pointer to IFF

&. Let TF

I

NEGFL.

b. Let L1 = SDFINDC(V,ARGL(I)).

c¢. Let L1 = L1 N SDFINDC (V,ARG2(I)).
d. Let NEGFL = -TF.

e. Let L2 = SDFINDC(V,ARG1(I)).

~f£. Set NEGFL on.

g. Let L2 = L2 N SDFINDC (V,ARG2(I)).
h., Return L1 U L2,

If T has an OP pointer to AND

&. Let TF = NEGFL.
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b. For each item, S, on MARG(I)
i) Set NEGFL to TF.
ii) Put SDFINDC(V,S) as a sublist on L.
c. If TF is on, return the union of the sublists
on L,
d. If TF is off, return the intersection of the
sublists on L.
If I has an OP pointer to OR
a. Let TF = NEGFL.
b. For each item, S, on MARG(I)
i} Set NEGFL to TF.
ii) Put SDFINDC(V,S) as a sublist on L.
c. If TF is on, return the intersection of the
sublists on L.
d. If TF is off, return the union of the sublists
on L.
If I has an OP pointer to MUTIMP
a. Let TF = NEGFL and turn NEGFL off.
b. For each item, S, on MARG(I)
i) Put SDFINDC(V,S) as a sublist of L1l.
ii) Set NEGFL.
"iii) Put SDFINDC(V,S) as a sublist of L2.
c. If TF is on
i) Let L1 be the union of the sublists on L1,
ii) ©Let L2 be the union of the sublisté on L2,
iii) Return L1 N L2, |
d. If TF is off

i) Let L1 be the intersection Qf the sublists.
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- : ~ on L1,

ii) Let L2 be the intersection of the sublists

on L2,
iii) Return L1 U L2.
9. If none of the above cases hold
a. Let L = SDFIND(I, ())

b. 1If NEGFL is on, remove from L all ISs, S(g,

for which S is not negated.

c. If NEGFL is off, remove from L all i.s.'s, S:s
for which S. is negated.

d. Return a list of all items in the term of some

substitution cémponent whose variable is V and

which is an IS in L.
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4. Contributdons Toward Solution of Some Open

Problems for Question-Answering Research

4.1 Introduction

This chapter consists of discussions of several topics
relevant to guestion-answering systems and the general prob-
lem of computer understanding of natural language. These
topics comprise major problems in the area.. The discus-
sions present either the way the solution of the problem is
envisioned in MENS and MENTAL or an approach that may be
taken in lookihg for a solution using MENTAL as a research

vehicle.

4.7 Relevance

A major problem in guestion-answering systems and in
information retrieval systems in general is the one of
relevance —-~ how to identify in a large corpus of data the
information relevant to a given question or topic. MENS has

been designed with the relevance problem in mind. Thus, it

is a net structure whbsélnodes are joined into substructures
when they are involved in the same fact or event. 1In this
way, items relevant to each other will tend to have short
paths between them in the net and items that are irrelevant
to each other will tend to be connected only by long paths
if they are connected at all. We can actually identify
three kinds of relevance which we may call relevance with
respect to a concept, with respect to a discussion and with

respect to a question.
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When we are interested in relevance with respect to a
concept, we are interested in those other concepts the
understanding of which aids the understanding of the given
concept. This is the sort of relevance we mean when welask
for topics related to a given topic, or ask for a discussion
of a concept with discussions of related concepts, or ask
for two related concepts to be compared and contrasted
(as Quillian's Semantic Memory Lf47_7 does). This kind of
relevance is provided in MENS by the path between items.

Relevance with respect to a discussion includes the
questions of whether a concept is relevant to a previous
discussion, which of several concepts (e.g., possible
senses of an ambiguous word) is most relevant to an on-
going discussion or whether a sentence is relevant to the
discussion at hand. In MENS this kind of relevance may be
determined by the paths between two substructures or between
an item and a substructure. |

Relevance with respect to a question is a factor in
determining what information is useful for answering a
guestion the answer to which is not explicitly stored.
Information relevant in this sense is found in MENS by using
the deduction rules in the manner described in Section 3;2,
Both the rules themselves and especially the restrictions
insure the relevance of the substructures that are found._

All three kinds of relevance depend in MENS on the
information supplied to the system by the human ianrmant,
so his judgments are reflected in the system's. The determi-

nation of all three kinds of relevance is further aided by
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considering only that subnet of MENS which is in the same
aniverse of discourse as the concepts in question. Uni-
verses of discourse and their use in MENS are discussed in

Section 4.4.

4.3 Disambiguation, Anaphora and the Discourse File

It may be the case that the number of items which match
a speclist exceeds the num given in the findprefix as the
maximum number of items to be retrieved. This would occur
if the speclist were not a complete enough description of
what was wanted, or, perhaps, if several items were, in fact,
jdentically connected into the net.. The latter case does not
really involve an ambiguity éince the items are synonymous,
but the former is a case of semantic ambiguity and must be
resolved.

There are four ways MENTAL could resoclve ambiguities,
analagous to four ways a human would handle the same prob-
lem. Let us say someone mentions "John's brother" to
MENTAL and to a human. Both MENTAL and the human listener
know that John has two brothers, Bill and Henry. and that
" Bill is in high school but Henry is in college. The human
ﬁight say, "Do you mean Bill or Henry?" and the speaker
might respond with “Henry." Similarly, MENTAL might output
a message saying that the request was ambiguoué with Bill
and Henry both fitting the speclist &nd request the user
to enter a list whose length was within the maximum num
and whose elements were taken from the list of items actu-
ally found. This list would then be used as the value of

the speclist.
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Instead of replying, "Henry," the speaker might have
said, "I mean the one in college." To MENTAL, the user might
reply with another speclist giving‘additional information.
The valuerfrthis’sEeclist would thén be intersected with
the ambiguous value of the original speclist and the result,
if within the maximum num, would be the final value. If the
intersection of the two lists were still too large, MENTAL
would ask for additional information. Actually, the first
method of resolving the ambiguity is a special case of this
one, since a list of names is a speclist.

The above two methods involve simply asking the speaker%

(user) to resolve the ambiguity, but a human listener miéﬂt
be able to resolve the ambiguity himself if he has been
listening to the entire conversation. Perhaps Henry himself
had been under discussion or had otherwise just been men-
tioned; in which case the listener might assume that Henry'
was meant. Perhaps the discussion had been about college
students, in which case also the listener might assﬁme that

Henry was meant. MENTAL could also use these nmethods if it

had a discourse file.

A discourse file is a subset of the items in the net
or a list of internal names of a subset of the items in
the net. This subset consists of thé items that are rele-
vant to the discussion at hand. Relevant items include
those that have been mentioned in the current discussion
since the last change of topic. They may also include
items of known interest to thé speaker and items related to

the topic under discussion even though they have not been
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explicitly mentioned. In human terms, we may expect a
speaker to discuss certain topics and use certain concepts
because we know who he is, whom he know§ and what his inter-
ests are. For example, we would interpret the term "set"

in one sense if uttered by a mathematician, in another sense
if uttered by a psychologist and in still another sense if
uttered by a tennis pro. Yet, if the mathematician were
discussing his tennis game, we would interpret his use of
"set" in the tennis sense. In the MENTAL syétem the'dis-r
course file could be started with the known interests of the
user (see Section 4.4 for how MENS would be divided into
subnets by user interest), and then updated and revised as
the conversation develops. This revision could be done by
adding newly mentioned concepts to the file and removing
those that have not been mentioned for a while.

The two methods of disambiguation using the discourse
file would be checking the actual contents of the file
(in our example, noting that Henry was being discussed) and
finding items closely related to items in the file (see the
discussion of relevance with respect to a discussion in
Section 4.2).

These same methods can also be used for determining
anaphoric references, such as finding what man is referred
to in the sentence, "Then the man turned and walked away."
Actually, if we consider anaphoric references, we find
them, in general, to be ambiguous déscriptions of things.

In the above example some man is referred to, but it is not

¢lear from the one sentence which man is meant. Similarly,
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pronouns provide some information as to what they refer to
{e.g., gender) but not enough when out of context. The
assumption that an anaphoric reference succeeds in refer-
ring to an individual is equivalent to saying that the
context provides enough clues for the reference to be under-
stood, and this indicates that MENTAL may handle anaphoric
references asfambiguitieé to be disambiguated from the

discourse file.

4.4 The Independent Statement Flag and Categorization ]

Pointersi

There are severalksyéfem ieia£ig;ém£h%£”égéﬁidVberpgggﬂr
in MENS, but which are seldoﬁ mentioned elsewhere in this
paper because their pervasiveness would 6nly clutter the

descriptions. They are the independent statement flag, and

the two net catagorization pointers -- the source pointer

and the universe of discourse pointer.

The independent statement flag is termed a flag because
it is a single pointer which, when present, always points to
the same item. It indicates that the item from which it
: gmanates heads a substructure which may be output to the
user or otherwise used without any qualification. That is,
the independent statement flag indicafes that the item
it is attached to represents some information that has been
alleged to be true. Two other cases are possible -- the
information may have been alleged to be false (e.g., "It
is not true that the sky is green.") or no allegation may

have been made as to its truth value (e.g., the statement
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"the sky is green®™ if the sentence "Henry says the sky is
green™). The independent statement flag is needed so that
only information the user considers true is stated to him
or used for generating consequences for him. If the human
user enters information using the input syntax of Section
2.5, he must enter the independent statement flag explicitly.
If a parsing program is used as an interfacg between the
human and MENTAL, it should be responsible for adding the
independent statement flag to the user's sentences and to
subordinate clauses where appropriate (e.g., to the state-
ment "Prince John was tall".in the sentence "Prince John, '
who was tall, became king.").

The categorization pointers are used to divide the net
into subnets and thus reduce search time, avoid seeming, but
not actual, contradictions, and aid disambiguation. They
should be used when several people are using MENTAL with the
same data File but independently of each other and/or when
some person is using MENTAL with the same daté file for
several different fields of knowledge. The categorization
pointers divide the net such that the smallest subnets are
specific to one user and one field of his interest. Search
time is reduced in the cases where a spec that is part of
another spec may match several substructures in the entire
net and fewer substructures in the subnet determined by
including the proper categorization pointers in the 5239;
Two subnets may contain contradictory information either

because two users have conflicting beliefs or because two

fields have different logical systems. These apparent
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conflicts will not matter if the simultaneous use of the two
subnets is avoided bylusing categorization pointers. Dis-
ambiguation would be easier because many ambiguous terms or
descriptions would have a unique referent in a given subnet.
The categorization pointers can be used to initialize the
discourse file (see Section 4.3).

Although, as categorization pointers, both the source
pointer and the universe of discourse pointer provide the
capabilities mentioned, there is a reason for their distinc-
tion.

The source pointer should provide the major divisions
of the net. The source of a substructure should be the one
who is responsible for the substructure, i.e., respbnsible
for its accuracy and its consistency with other substructures
he is responsible for. For example, if Henry enters the
statement that John says something, Henry should be the
source for "John says ..." if Henry is taking the responsi-
bility for it. In that case John may neither know nor care
that the information is being entered. 1If, however, Henry
is acting as John's agent or as a neutral reporter of
John's statements, John may be made the source of what he
said. This, however, places the responsibility for the
statement's being in the file on John. When someone uses
the file, he would want the information used to answer’hié
guestions to be limited to that for which he is reSpdnsible
or that for which someone he trusts and believes ié respon-
sible. In this way a partial ordering could beiéstablished

among users to control information flow in an organization.
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Thus, source pointers can help to keep information private,
i.e., to limit access to it. It would be possible to use
érivate information to deduce public information without
compromising the private information. For example, let G
be a completely reliable "source" whose information can be
used but not output, and say John has private opinions about
which people in his organization are overweight, but is
willing to give out for use the fact that all the over-
weight people were at some meeting. The following deduc-
tion rule could be entered into the system: “According to
G, all the people who, according to John, are overweight
were, according to anyone, at the ﬁeeting." This will
allow anyone to get a list of people at the meeting with-
out divulging John's private opinions.

| Another use for the source pointer is to keep track
of the assumption and deduction rules upon which a deduced
substructure is based. The reason for doing this is that
there is nothing to stop a user from entering inconsistent
information into the data structure. He may de this
unknowingly, and may discover contradictions at a later
time. It would then be useful to discover the source of
the contradiction and remove it. Once this is done, all
substructures deductively based on the removed information
should then be found and rechecked for validity.

The universe of discourse pointer provides the minor

divisions in the net. It derives from the discussion that
has been going on for some time among philosophers

/10,64-68;12;42,83-86;50,177 £f,246;51,2-9,103,165;68,176_/
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about the proper anglysis of "things" that do not exist in
the real world, such as the present king of France, square
circles, and Pegasus. As is pointed out by the ordinary
language philosophers éf12;42;68:7; there is a difference
between the sentences that might be uttered about square
circles and those about Pegasus in that the former are all
equally meaningless whereas the latter may be true or false.
The difference is not only that between logical contradic-
tions and nonrealized possibilities since there is a uni-
verse of discourse, viz. Greek mythology, in which there
is a "bbdy of knowledge" about Pegasus. Cartwright 4f12_7
congiders statements such as those about Pegasus to be
statements about unreality and states, "unreality is just
that: it is not another reality" / 12, p 66_7. Yet there
is a need to distinguish several different unrealities.
For e;ample, the characters in "Peanuts" are as unreal as
Pegasus, yet, to Charlie Brown, Pegasus is (presumably)
as mythological as he is to us. Thus, it would be useful
to distinguish many universes of discourse (for example,
different ones for different works of fiction), eaéh of
which contained individuals and facts about them that
would not exist in the other universes of discourse. The
universe of discourse pointer is used to keep these various
bodies of universe-relative facts as well as various
fields of knowledge or activity in the real world separate
yet allow them to be entered and properly used.

The proper universe of discourse for any substructure
would most accurately be determined by the human user, but

it would he possible to have a program try to determine it
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using a measzure of relévance with respect to a discussion
in'order to £ind that discussion to which the substructure
seems most relevant. It might also be‘possible to devise
deduction rules that could deduce the proper universe of

discourse for a substructure.
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4.5 Specificity

When those pieces of information that are relevant to a
given topic are identified, there often remains the problem
of deciding which relevant piece of information is most spe-
cific to the topic, for that will be where one wants to direct
his attention first. In MENTAL, this problem emerges mainly
when several deduction rules are found that might be capable
of generating some desired consequence. For example if we
wanted to know if it were true that "Elizabeth rules England"
we might find any of the eight statements of Fig. 6 as possibie
consequences of deduction rules. Each of these eight is clear-
ly relevant to our problem, but that of Fig. 6a is just as
clearly most specific. Those of Fig. 6b are somewhat less
specific. Those of Fig. 6c are even less specific, and that
of Fig. 6d is least specific. It seems reasonable that we
should try the deduction rules in the same order, viz. those
0of Fig. 6a then b then ¢ then d. This is because the more
specific rules are more likely to be successful, and even if
they are not, they are likely to require less woxrk to check.

The question, then, is how, after locating the general
substructures we would like to generaté, can we order them
according to specificity. We notice that the version of speci-
ficity we have been discussing (there are others) involves the
percent of the total number of items in a substructure that are
variables. We also recall that all the lists in MENS are ordered
on internal names of items, largest first. If we één compute a

specificity measure (SM) for each item as it is éreated and
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ELIZABETH RULES ENGLAND

I i S G et S S e et . . - - ———_——— ——

'ELIZABETH RULES X
ELIZABETH X  ENGLAND

X RULES ENGLAND

T A A St S St e e S . T —— T " ——— - i " ————— o = - —

C.
ELIZABETH X Y
X RULES Y
X Y  ENGLAND
d. X Y zZ

Fig. 6: Relevant statements differing in number of

variables
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-

prefix that measure to the internal name of the item for use
in pointing to that item from others, then all lists, including
the lists of general statements produced by the search for
deduction rules, will have their major sort on specificity.
Thuévwe will get orderings by specificity for very little
additional cost. The drawback to such a scheme is that once
an SM is computed it should not be changed; or should be
changed very seldomly, because a change would require changing
the entry in all multiple pointer lists that point to the item
in question and reordering these lists. This, however, is

not a severe drawback, since the SM mentioned above will not
change if it is handled in the following way:

1. The SM for a constant item is established as a high
number, M, when the item is first introduced into the data
structure.

2. The SM for a variable item is established as 0 when
the item is first introduced into the data structure.

3. Every other item is introduced by a buildspec which
specifies every item to which the new item points and which
should partake in the calculation of the new item's SM. The
new item's SM is established as the average of the SM's of the
items it points to according to the buildspec specifying its
Creation at the time of its creation.

The éM of an item will only be recorded with its internal
name in items that point to it. This is no problem since all
constant items will have the same SM as will all variable items,

and any other item may be mentioned by a user only by giving a
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findspec for it, so that its name will be found via pointers
and, thus, its propef SM will be found and used.

There is another version of specificity that we can re-
cognize and incorporate with the SM discussed above. This
specificity involves levels of structure. Among several items
whose SM's as calculated above are equal, it would seem that
one heading a substructure involving more levels is more spe-
cific than one heading a substructure with fewer levels. For
example, say we wanted to generate a substructure of the form
(PvQ)=>(A&B), where P,Q,A,B are some items, and we find the
general statements in Fig. 7 as possible consequences of some
deduction rules. Again, these are all relevant to the problem-
(as they are guaranteed to be by the method of finding them),
but that of Fig. 7a is most specific, that of Fig. 7d is least
specific and those of Fig. 7b and ¢ are intermediate with b
being more specific thaﬁ c. This idea of specificity may be
combined with the previous one by changing step 3 above so
that after the average is taken a small constant, Mg, is added.

Thus the SM for the structures of Fig. 7 would be:

5m_ + 6m
a. c S %+ nm
9 s
4m  + 3ms
b. + m
9 S
m
c. £ _ +n
3
d. 0

The actual structure for Fig. 7a is shown in Fig. 8 with the

specificity for each item shown.
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a.
(X vY) => (W & 7)
b.
(X vY) =>2
X => (Y & Z)
c‘
X => Y
4.
X

Fig. 7: Relevant statements differing in amount of structure
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5Mc+6MS+

ARG 1] OP|ARG 2

MC
S+ M

3 M

[* ARG 1 [*OP| *ARG 2]
IMPLIES
OP | MARG OP | MARG
M. 0 Mc
| [*opP| |* MARG] * MARG]| T* op] *MARG | * MARG]
OR X Y AND y4

Fig.8 — A structure with specificity measures
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It may be that there are additional versions of speci-
ficity that might be incorporated into the SM. These and
other aspects of specificity present themselves as a fruitful

*
area for future research.

*

For example, it would be possible for the user to de-
clare a weight for each system relation when he declares it
and for this weight to be used to form a weighted average in
step 3 above instead of the strict average given.
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4.6 Recognizing Significant Results

Once a consequence has been generated through the use of
a deduction rule, a décision must be made to keep it as an
independent statement or to erase it from the data structure.
This is basically a question of a space-time tradeoff -- the
space needed to store the consequence vs. the time needed to
regenerate it if it is needed again. A prior gquestion arises,
however, since the data structure is presumed to be incomplete
and growing (or even changing). This question is, "Will the
consequence still be true at any later time?"

As mentioned in Sec. 3.2.4, a. consequence generated by
confirming a universally quéntified expression or by refuting
an existentially quantified one may be false after another
individual fulfilling the appropriate restriction is intro-
duced into the data structure. KXeeping such a consequence
would be a case of improper generalization, which people often
do by not examining all the members of a class about which
they then draw conclusions. Consequences of this sort must
either not be stored or be stored with some indication of the
state of the data structure when they were generated. In
either case, unless all consequences are handled the same way,
these special ones must be recognized, which may be a diffi-

*
cult task. The problem of consequences becoming false because

*Although the task may not appear difficult,_ the experi-
ence of J. L. Kuhns should be kept in mind. In /38/, he dis-
cusses the problem of characterizing those questions that are
"unreasonable” to ask a computerized question-answerer. The
main problem being questions whose answers change when the
dictionary of known individuals changes although the store of
facts remains constant. He proposes a class of definite
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of individuals beiné removed from fhe data structure is, of
course, similar to the above problem caused by adding indi-
viduals.

Leaving this problem, let us consider those consequen-
ces which we can trust to be true in the future. How can we
decide whether or not to keep them in the data structure?

As stated above, this is a question of a space-time tradeoff.
If a lot of work were required to deduce the consequence, we
would be more likely to want to keep it than if only a small
amount of work were required. Also if the consequence seens
to be pérticularly useful or significant we would want to keep
it more than if it were useless and unimportant. Saving a
consequence would provide the system with increased knowledge
on hand, making it, as it were, more of an expert on the field
of knowledge the consegquence deals with and shortening the
deductive processes needed to generate further conseqguences
based on that one.

The amount of work needed to generate a consegquence should
include both the actual time taken and the number of deduction
rules and specific statements employed. One or both of these
must be kept track of anyway so that the user can be checked
with when a deduction takes too long (remember that it is pos-
sible for a statement to be true but not deducible in the

system). Also, the statements upon which the consequence is

formulas as the class of "reasonable" questions. R. A, DiPaola
later showed /17/ that no algorithm can be written to decide
for any formula whether or not it is definite.
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based must be recorded so that if one of them is later denied
or removed from the structure, the consequence can be called
into question.

A more interesting problem is measuring the significance
of a conseguence. It seems reasonable that the significance
of a fact is directly related to its usefulness in deducing
other facts. Thus, deduction rules would be more significant
than specific facts. 1In fact,ywe‘could say‘that one aspect
of significance is the inverse of the specificity, which is
calculated for each item as described in Sec. 4.5. Another
aspect 6f significance is the number of deduction rules for
which the fact is a substitution instance of a restriction
or of a clause of the scope. In each of these cases the fact
can be used for generating other facts. For example, if a
fact is the negation of a substitution instance of one of a
set of disjuncts, it has some significance because it allows
the elimination of a possible case. Whenever deduction rules
are being considered or counted for calculating significance,
recursive deduction rules should be counted more heavily than
non-recursive ones. A recursive deduction rule is one that
is capable of generating a consequence which can be used in
that same deduction rule to generate other conseguences, OX
which can be used in some other deduction rules to generate
consequences which can be used in other deduction rules, etc.
eventually generating a consequence which can be uSea in the
original deduction rule. Actually all deduction fﬁles can be

weighted with a weight directly proportional t¢ their own
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significance (previously calculated). 1Individual items can
also be measured for significance according to the number. of
deduction rules in which they appear.

Thus the value, V, of keeping a consequence in the data
structure is some formula of the form awWw + bs, where a and b
are constants, W is the amount of work required to generate
it, and S is its significance.

The measure V has several uses other than deciding what
consequences to keep in a data store. In a theorem prover,

a line of the proof which has a large V may be a useful lemma.
If vV isAhigh enough, the line may ke an interesting theorem

on its own. In programs to generate interesting theorems

cf. Slagle /67/, V is a good measure for which theorems are
interesting. In a computer aided instruction program that
generates its own questions, a fact with a high V is a good
one to change to question form and ask. Clearly, further work

on developing measures of significance would be useful.
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5. Uses To Reé%esent and Explbre Semantic Theories

The MENS structure is’intended to represent the meanings
of the terms that are represented by its constant items. It
embodies a theory of semantics in the same sense as this is
done in Quillian's "Semantic Memory" /477 and "TLC" /48/ and
in the Protosynthex programs Z§8;64}6§7;kcf;”£§é7{;‘Min bei994,4
a conceptual structure, MENS fits the class of theories pro-
mulgated by the cognitive psychologists. For example, Ausubel
states, "According to the cognitive structure view, new meanings
are acquired when potentially meaningful symbols, concepts, or
propositions are related to, and incorporated within, a par-
ticular individual's cognitive structure on a nonarbitrary,
substantive basis" [3,p7§7} Thus, in MENS! as7in the systems
mentioned above, the meaning of a word is the totality of its
relationships with the entities represented by the items in
the net, including its capabilities to partake in the gene-
ration of new substructures as embodied in the deduction rules
that refer to it.

It is not, however, claimed that MENS represents one
semantic theory in its entirety. It is, rather, an approach
and an environment in which various theories may be tested.
Theories testable on MENTAL may vary as to what the items are
used to represent, what the system relations are, the design
of substructures to represent natural language text, how ex-
tensively deduction rules are used and the design of specific

deduction rules. The method for using MENTAL as an experi-

mental system is to attempt to store a large corpus of general
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information in MENS using some theory on how information from
natural language senﬁénces may be represented. The corpus
should be derived from an actual natural language text and
deduction rules should be devised and entered so that proper
consequences can be drawn from the information in the text.
The theory may immediately be tested on the criteria of ease
of translating natural language sentences into its representa-
tion, and value of the representation for organizing the in-
formation from several sentences and for deducing sentences
that should be deducible from given sentences. The rest of
this chapter is devoted to a variety of suggestions and ques-
tions in current linguistic theory and how they may be real-
ized or investigated in the MENTAL system.

The examples in this paper have utilized the case grammar
approach as discussed by Fillmore 4517. Although case grammars
seem to be an approach to the problem of syntax, they may be
viewed as an approach to semantics by considering the cases to
be semantic relations between the terms of a sentence and the
fact or event represented by the sentence. It is thus satis-
fying and not surprising that all the following sentences (and
more) may be generated from the structure whose buildspec* is

(. VERB:OPEN,AGENT : JOHN, OBJECT : DOOR, INSTRUMENT : KEY)

i) John opens the door with the key.

ii) John uses the key to open the door.

iii) John opens the door.

* '
Remember that relspecs may be used to define a system

relation for each case (see Sec. 2.5).
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iv) The key opens the door.
v) The door is opened by John.

vi) The door is oéened with the key.
This view that syntactic deep structures are really semantic
representations is currently held by various linguists, e.g.,
McCawley following Lakoff and Ross Z§27 argues that “the syn-
tactic and semantic components of the earlier theory will have
to be replaced by a single system of rules which convert se-
mantic representation through various intermediate stages into
surface syntactic representation" /44, pl67/ and Fillmore
states, "I have the feeling that real progress can be made in
understanding ... the semantic and syntactic properties of
the major parts of speech, by abandoning a conception of syn-
tax that restricts itself to categories and sequences in favor
of a conception of syntax-semantics that is based on a theory
of the essential ways in which aspects of linguistically co-
dable experiences are relatable to each other and to the ex-
perience as a whole" /22, p393/.

An open question in case grammar theory is what cases are
required /21, p24-25/. Examining this question from the point
6f view of MENS, we see that_the main problem is identifying
the various relationships that might exist between a term and
a fact or event. These relationships are candidates for being
cases. A set of them must be chosen* that best satisfy the

criteria mentioned above for a theory being tested on MENTAL.

*
It may be that instead of finding one universally ade-
quate (correct?) set of cases, various sets will be found,
each adequate (good enough) for a particular context.
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There are actually Ehree ways of répresenting such a relation-
ship in MENS -- as a system relation (case) of the sentence
describing the fact or event, as a system relation in a sen-
tence about the sentence, or as an item relation which is the
verb of a sentence about the sentence. For example the lo-
cative relationship between an event and the place in which
the event occurred might be handled in any.of the three ways.
The sentenceA"John kissed Mary in Chicago." might be entered

into MENS with either of the three buildspecs (assuming system

relations as éppropriate):‘
i) (.VERB:KISS,AGENT : JOHN,OBJECT : MARY , LOCATIVE : CHICAGO)
ii) (.OBJECT:(.VERB:KISS,AGENT:JOHN,OBJECT:MARY),LQCATIVB:
CHICAGO)
iii) (.VERB:LOCATION,AGENT: (.VERB:KISS,AGENT:JOHN,OBJECT :
° MARY) ,OBJECT:CHICAGO)
The resultant structures are shown in Figs. 9a, 9b and 9c
respectively. These represéntations differ in the deductions
they allow to be drawn. For example, if we wanted to store
the rule that whenever two events take place at the same place
they are "collocative", this might be done as follows if the
representations of (ii) or (iii) are used respectively:
iv) (.Q:ALL,VB:%X,S: (.Q:ALL,VB:%Y,R: (.OBJECT: 'X,LOCATIVE:
'Yy,
S:(.Q:ALL,VB:%2,R: (.OBJECT:"'Z,LOCATIVE:'Y),
S: (.VERB:COLLOCATIVE,MARG: 'X,MARG:'2))))
V) (.Q:ALL,VB:%X,S;(.Q:ALL,VB:%Y,R:(.VERB:LOCATION,AGENT:

'X,
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Fig.9 —Different structures for showing location
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OBJECT:'Y),S: (.Q:ALL,VB:%%Z,R: (.VERB: LOCATION,AGENT :

12,

OBJECT:'Y),S: (.VERB: COLLOCATIVE,MARG: 'X,MARG: '2))))
An equivalent rule could not be expressed if the represen-
tation of (i) were used since it would require a statement of
the formVxX¥y(y is a term in the locative case of statement
XD...) and this cannot be expressed in MENTAL because it
violates the rule that a system relation cannot be a term of
a sentence. If we wanted to store the information that lo-
cation is transitive so that the deduction rule for transitive
relations could be used with location, we would have to use
the representation of (iii) Since it is the only one in which
location is an item. The temporal relationship between an
event and the time interval in which it occurs as well as
other relaticnships could be examined in a similar manner.

Although Fillmore sees negation as appearing in the mo-
dality constituent of the sentence 121, p2§7, it seems more
productive to make it an operator on the sentence using a
containing sentence, since if it were within the sentence,
the theorem VP (Pv-P) could not be stored as a deduction rule.
éerhaps all qualities should be handled this way.

Bach [4) discusses the view that nouns enter sentences
through relative clauses and presents as an example the sen-
tence, "The professors sighed a petition" /p97/. His claim
is that this derives from the underlying sentence, "Those who
are professors signed that which is a petition" and that this
is shown by the three interpretations of the negation of the

sentence, viz.:
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i) The professors didn't sign a petition.
i.e. It is not true that the professors signed a
petition.

ii) The professors didn't sign a petition.

j.e. Those that signed a petition aren't professors.
iii) The professors didn't sign a petition.
i.e. The professors signed something that isn't a
petition.
Bach's analysis may be represented in MENS as in Fig. 10.
The three negative sentences may then be derived from this
structure by negating the item labelled 1, 2, or 3 respecti-
vely. Fillmore suggested as a fourth possibility AZ, p98f§7
iv) The professors didn't sign a petition.
i.e. The professors did something, which was not
signing, to a petition.
To include this possibility, the original sentence would be
structured as in Fig. 11, and the item labelled 4 would be
negated to represent sentence (iv).
Another example Bach gives ZZ, pll§7 is, "The man is
working." which, he says, should be analyzed as
i) The one who is a man is working.
thus being similar to
ii) The one who is working is a man.
The differences in surface structure "result from transforma-
tional rules and are not to be attributed to the deeé struc-~
tures." In Fig. 12 is a MENS structure to represént this

sentence such that if item 1 is taken as the head, sentence (i)
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2 1 3
olVv]A Afv]T]O Alv]iO
— C —

*Ol | *A l *O l ! *A *O I
PROFESSORS PETITIONS
L \

] ] ] V]
SUBSET SIGN PAST €
- Fig.10— A structure with three places for negation
2 1 4 3
olVv]A AlV]IT]O Alv]o AlV]O
*A l *A l *T l iro‘ *O ‘
PROFESSORS PAST SIGNINGS PETITIONS
*O | *A
[*v | vl A
SUBSET
*V ‘

Fig.11 — A structure with four places for negation
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] [A] B 0]

WORK

Fig.12— A structure allewing choice of main and subordinate clause

.
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results, while if item 2 is taken as the head, sentence (ii)
results.

Lyons' meaning relations /437 of incompatibility,.an-
tonymy (gradable and non-gradable), hyponomy, and conversity
may be handled within a MENS semantic structure along with a
theory for the representation of facts and events (such as a
case grammar) by providing a deduction rule for each meaning
relatibn. For example incompatibility could be represented
by a deduction rule whose buildspec is:

(.Q:ALL,VB:%P,R: (.OP: INCOMPATIBLE ,MARG: 'P),S: (.Q:ALL,
VB:%3Q,R: (.0OP: INCOMPATIBLE ,MARG: 'P,MARG:'Q),S: (.
Q:ALL,VB:%X,R: (.VERB:'P,AGENT:'X),S: (.OP:NOT,ARG:
(.VERB: 'Q,AGENT:'X)))))

To demonstrate the possible use of MENS with a semantic
theory totélly unlike case grammars, we will show how Schank's
conceptual dependency diagrams 4327 may be represented in MENS.
Referring especially to Schank's list of conceptual rules
/57, pl89-907/, we might decide to represent his theory as
follows.

Let items represent named concepts and instances of named
concepts. An instance of a named concept has the CNCP system
relation to the named concept it is‘an instance of. All arrows
connect instances of named concépts or have either or both
ends at a horizontal or vertical double barred double headed
arrow. Therefore we must have a substructure for the horizon-
tal or vertical double barred double headed arrow relational

statement. ILet HDD be the item representing the horizontal
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double barred double headed arrow and VDD be the item repre-
senting the vertical double barred double headed arrow. Then
we will have the system relation ARGL peint to the left or
upper item, ARG2 to the right or lower item and OP to HDD or
VDD. We will also let this substructure have the M system
relation to either NEG, COND or INTER for negative, condition-
al and interrogative respectively and the TNS system relation
to either FUT, PST, PR, or FAC for future, past, present or
timeless fact respectively. All other arrows will beifgpre—
sented by system relations thusly:
VSS for vertical single barred single headed
VSD for vertical single barred double headed
HDS for horizontal double barred single headed
HSS for horizontal single barred single headed
VDS for vertical double barred single headed
— VIS for vertical triple barred single headed
VBS for ver;ical dotted bar single headed
The relspecs defining all these system relations are:
§ CNCP S *CNCP M
ARGl S *ARG1 s
ARGZ S *ARG2 S

OP S *OP M

$

$

$

$ MS *MM
$ TNS s *TNS M
$ VSS s *vss s
$ VSD S *VSD s
$

HDS S *HDS s
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$ HSS S *HSS S

$ VDS S *VDS s

$ VIS S *vTs s

$ VBS S *VBS §

We will now give examples of several sentences from
L? /. showing Schank's conceptual dependency diagrams and

our buildspecs.

1) The big man steals the red book. (57, p56-77
m;n {(==> steals {(— b%ok
big red .
(.OP:HDD,ARGI:(.CNCP:MAN,VSS:(.CNCP:BIG)),ARGZ:
(.CNCP:STEALS,HSS:(.CNCP:BOOK,VSS:(.CNCP:RED))))

2) If he hits the girl she will cry. /57, p61/
girl <?f> cry

; will
he <J=3 hit <«— girl

(.OP:HDD,ARGl:(.CNCP:GIRL),ARGZ:(.CNCP:CRY,VSS:
(.CNCP:WILL)), VBS:(.OP:HDD,ARGI:(.CNCP:HE),'
ARGZ:(.CNCP:HIT,HSS:(.CNCP:GIRL))))

3) My father did his errand at city hall today. /57,
p7§f§ today

father <==> do <— errand

city hall he
(.OP:HDD,TNS:PST,ARGI:(.CNCP:FATHER),ARGZ:(.CNCP:DO,
HSS:(.CNCP:ERRAND,VDS:(.CNCP:HE))),VSS:(.CNCP:TODAY),
VDS: (.CNCP:CITY HALL))

We have shown how various semantic theories may be rep-

resented in MENS. MENTAL may be used for extensive testing
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of such theories of the criteria of ease of use for represent-

ing natural language sentences and value for organizing in-

formation to allow proper deductions.
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6. Summary

In retrospect, we can see severai significant facets
of the MENS structure and the MENTAL system. First, the work
has been developed with a unified viewpoint grounded in the
theoretical basis represented by the six motivating factors
discussed in Section 2.2. Underlying these have been the
desires to maintain complete generality and to keep the
executive routines as simple and general as‘possible. Thus
the number of ad hoc features have been kept to a minimum.

The only departure from building just a structure and those
routines necessary to manipulate the structure was the es-~
tablishment of the system relations and item relations used

to store deduction rules and the executive routines to inter-
pret them. Once that was done, however, no further constraints
were placed on the deduction rules so that generality was main-
tained to a large degree.

Another sigﬁificant facet of MENS is the two levels of
relations -- system relations and item relations. System
relations are the basic organizational mechanism of the struc-
ture, yet the user is allowed to define the ones he wants to
use and thus may experiment with different semantic structures.
Item relations are the conceptual, meaningful relations that
hold between other concepts, yet the fact that they are rela-
tions is preserved only by the way they are connected in the
structure, which is determined and interpreted by the user.
Item relations, as conceptual entities, may havefétored in-

formation about them as well as information using them.
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A very important facet of MENS and MENTAL is the ability
to enter, retrieve and manipulate deduction rules the same
way specific facts are entered, retrieved and manipulated,
yvet deduction rules are used by the system to deduce infor-
mation that was not previously explicitly stored in the
structure. Thus one may explain to the system what a con-
cept means by giving, in general terms, the implications of
the concept, and one may give this explanation just like he
gives the system any other information.

The system and structure as presented in this paper
provide an environment in which important problems in question-
answering and computer understandiﬁg may productively be‘in-
vestigated. Also MENS and MENTAL may be used as an experi-

mental vehicle for further research in semantic structures.
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Appendix A

We will step through setting up ang using an LSG (see

Section 2.6) to evaluate the expression:

((L UL )D(L U L4 UL )ﬂ(L U (L n L )U L9)) (L (Lll-le))
where:
L, = q2)

L, = {3,4}

Ly = {0,1,2,5,6,8,9}

L4 = {0,2,3,4,5}

Lg = {2,3,6,8,9}

Le = {4}

Ly = {0,1,2,3,7,9}

Lg = {4}

Ly = {1,7,8)

LlO {3,7)}

Ly;= {0,2,4,5,8)

L= {2,3,5,6}
1. Initialize DLSG
1.1 Initialize ILSG
'l.l.l Initialize ULSG for (L, UVLZ)
1.1.1.1 Initialize PLSG for Ly » getting 1:2
1.1.1.2 Put in ULSG, getting (U 1:2 )
1.1.1.3 - Initialize PLSG for L,, getting 2:3
1.1.1.4 Put in ULSG, getting (U 1:2,2:3 )

l1.1.2 Put ULSG in ILSG, getting (I(U 1:2,2:3 ))



1.1.3
l1.1.3.1
1.1.3.2
l.1.3.3
1.1.3.4
1.1.3.4.1
1.1.3.4.2
1.1.3.5
l.1.3.6
l.1.3.6.1
1.1.3.6.2
1.1.3.6.3
1.1.3.6.4
l.1.4
l1.1.5
l.1.5.1
1.1.5.2
1.1.5.3
1.1.5.3.1
1.1.5.3.2
1.1.5.3.3
1.1.5.3.4
1.1.5.3.5
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Initialize next ULSG at or past 2

Initialize PLSG for Ly at or past 2, getting 3:2
Put in ULSG, getting (U 3:2 )

Initialize PLSG for L4 at or past 2, getting 4:2
Put in ULSG -- but equal to datum already there
Increment 4:2, getting 4:3

Now put in ULSG, getting (U 3:2,4:3 )

Initialize PLSG for Ly at or past 2, getting 5:2
Put in ULSG -~ but equal to datum already there
Increment 5:2, getting 5:3

Still equal to datum already in ULSG

Increment 5:3, getting 5:6

Put in ULSG, getting (U 3:2,4:3,5:6 )

Put ULSG in ILSG, getting (I(U3:2,4:3,5:6)(Ul:2,2:3))
Initialize next ULSG at or past 2

Initialize PLSG for L6 at or past 2, getting 6:4
Put in ULSG, getting (U6:4)

Initialize ILSG for (L7,Q_L8) at or past 2
Initialize PLSG for L, at or past 2, getting 7:2
Put in ILSG, getting (I7:2)

Initialize PLSG for L8 at or past 2, getting 8:4
Put in ILSG, getting (18:4,7:2)

Increment the ILSG to or past 4, so datum is a member

of the set it generates

1.1.5.3.5.1 Increment 7:2 to or past 4, getting 7:7 and

(18:4,7:7) for the ILSG
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1.1.5.3.5.2 Increment 8:4 to or past 7, finishing the PLSG

1.1.5.4

1.1.5.5
1.1.6

1.1.7

1.1.7.1
1.1.7.1.1
1.1.7.1.2
1.1.7.1.3
1.1.7.1.4
1.1.7.2

1'1.7.2.1

1.1.7.2.2
1.1.7.2.3

1.1.7.3

for LS' which finishes the ILSG -- the inter~
section was null

The ILSG was finished before being initialized so
initialize a PLSG for L9 at or past 2, getting 9:7
Put in ULSG, getting (U6:4,9:7)

Put the ULSG in the ILSG, getting
(I(U6:4,9:7)(U3:2,4:3,5:6)(Ul:2,2:3))

The ILSG is now built, but its datum is not in the
set it generates, so increment it to or past ¢4,
the datum of its first.sub-LSG

Increment the 223 ULSG to or past 4

Increment 3:2 to or past 4, getting 3:5

Replace it in the ULSG, getting (U4:3,3:5,5:6)
Increment 4:3 to or past 4, getting 4:4

Replace it in the ULSG, getting (U4:4,3:5,5:6)
The ILSG is now |
(I(U6:4,9:7)(U4:4,3:5,5:6)(U1:2,2:3)) so
increment the 3%X4 ULSG to or past 4

Increment 1:2 to or past 4, finishing the PLSG
for Ll' so the ULSG is now (U2:3)

Increment 2:3 to or past 4, getting 2:4

Note the ULSG is just (U2:4), so change it to

the PLSG 2:4

The ILSG is now

(1(06:4’9:7)(04:4’3:5’5:6).2?4) so it is

initialized and its datum is 4
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1.2 Initialize the 21-lé LSG.of the DLSG to or past 4
1.2.1 Initialize PLSG‘for L10 at or past 4, getting 10:7
1.2.2 Put it in the ULSG, getting (U10:7)

1.2.3 Initialize DLSG for (L;; - L;,) at or past 4
1.2.3.1 Initialize PLSG for Lll at or past 4, getting 11:4
1.2.3.2 Initialize PLSG for le at or past 4, getting 12:5

1.2.3.3 The DLSG is now initialized as (Dll:4,12:5)
1.2.4 Put the DLSG in the ULSG, getting

(U(Dll:4,12:5) 10:7)
1.3 The DLSG is now

(D(I(U6:4,9:7)(U4:4,3:5,5:6) 2:4) ( 11:4,12:5) 10:7))

U(D
so 4 is the datum of both LSGs in the DLGS and
therefore not an element of the set generated by
the DLSG, so the DLSG must be incremented past 4

1.3.1 Increment the ISLG past 4

1.3.1.1 Increment (U6:4,9:7) past 4

1.3.1.1.1 Increment 6:4 past 4, finishing the PLSG for Le

1.3.1.1.2 The ULSG is now (U9:7) and the ILSG is
(I(U9:7)(U4:4,3:5,5:6) 2:4)

1.3.1.2 Increment (U4:4,3:5,5:6) to or past 7

1.3.1.2.1 TIncrement 4:4 to or past 7, finishing the PLSG for L4

1.3.1.2.2 Increment 3:5 to or past 7, getting 3:8

1.3.1.2.3 Replace it in the ULSG, getting (U5:6,3:8)

1.3.1.2.4 Increment 5:6 to or past 7, getting 5:8

1.3.1.2.5 Replace it in the ULSG -- but datum already there

1.3.1.2.5.1 Increment 5:8, getting 5:9

1.3.2.5.2 Now replace it in the ULSG, getting (U3:8,5:9)



1.3.1.3

1.3.1.3.1

1.3.1.3.2
1.3.1.4

N
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The ILSG is now ( 9:7)(U3:8,5:9) 2:4) so

I(U
increment (U9:7) to or past 8

Increment 9:7 to or past 8, getting 9:8

The ULSG is now just the PLSG 9:8

The ILSG is now (19:8 (U3:8,5:9) 2:4) so increment
2:4 to or past 8, finishing the PLSG for Ly,

which finishes the ILSG, which is the first LSG

of the DLSG so that is now finished

The DLSG was finished while being initialized.

The value of the expression is the null set.
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Appendix B

.

In this Appendix are the flowcharts of the GENERATE

‘routines discussed in Section 3.2.3.
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