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Abstract

The GLAIR grounded layered architecture with integrated reasoning for cognitive robots and intelligent autonomous agents
has been used in a series of projects in which Cassie, the SNePS cognitive agent, has been incorporated into hardware- or
software-simulated cognitive robots. In this paper, we present an informal, but coherent, overview of the GLAIR approach to
anchoring the abstract symbolic terms that denote an agent’s mental entities in the lower-level structures used by the embodied
agent to operate in the real (or simulated) world. We discuss anchoring in the domains of: perceivable entities and properties,
actions, time, and language.
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1. Introduction

GLAIR (grounded layered architecture with in-
tegrated reasoning) is a three-level architecture for
cognitive robots and intelligent autonomous agents
[15,16]. GLAIR has been used in the design and imple-
mentation of Cassie, a cognitive robot[20–23,39,41,
44,46–48,50], which has been implemented as a hard-
ware robot and in various software-simulated ver-
sions. The capabilities of the embodied Cassie have
included: input and output in fragments of English,
reasoning, performance of primitive and composite
acts, motion, and vision.

Previous papers have described various aspects of
GLAIR and Cassie. In this paper, we present, for the
first time, a coherent, unified, overview of the GLAIR
approach to anchoring the abstract symbolic terms that
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denote an agent’s mental entities in the lower-level
structures used by the embodied agent to operate in
the real (or simulated) world.

In Section 2we give an overview of the three levels
of the GLAIR architecture. InSection 3we discuss
a hardware implementation of Cassie. InSection 4,
we discuss anchoring in the domains of: perceivable
entities and properties, actions, time, and language.
In Section 5, we discuss some related work, and in
Section 6, we summarize the paper. This paper has
deliberately been kept as an informal, but coherent,
overview of our approach. For more details, and more
formal presentations, of particular aspects of our ap-
proach, see the papers cited herein.

2. GLAIR

GLAIR (grounded layered architecture with in-
tegrated reasoning) consists of three levels: the
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knowledge level, the perceptuo-motor level, and the
sensori-actuator level.

The knowledge level (KL) is the level at which
conscious reasoning takes place. The KL is im-
plemented by the SNePS knowledge representation
and reasoning system[46,48,50], and its subsystem
SNeRE (the SNePS rational engine)(see [28–31] and
[53, Chapter 4]), which is used for scheduling and
initiating the execution of intentional acts.

We refer to the KL as the “conscious” level, since
that is the locus of symbols accessible to reasoning
and to natural language interaction. It is the level con-
taining the “abstract-level representations of objects”
[5,6]. Similarly, the KL-level acts are “intentional” in
the sense that they are scheduled as a result of natural
language understanding and reasoning.

Atomic symbols in the KL are terms of the SNePS
logic [42]. Symbol structures in the KL are functional
terms in the same logic[40,42]. All terms denote men-
tal entities[31,46]. For example, if Cassie is asked to
“Find a green thing”, she conceives of an entity whose
only properties are being green and being a thing, by
creating a KL term denoting that entity, and KL terms
denoting propositions that the entity is green and that
the entity is a thing, even though no such object, with-
out further properties, exists in the world. When, in
response to this request, Cassie find a particular green
robot she recognizes (re-cognizes), by already having
a KL term for it, she adds a KL term for the propo-
sition that the two entities have the same extension.
(Compare Frege’s example that “The Morning Star
is the Evening Star”[10].) This approach is in gen-
eral accord with what Jackendoff calls “conceptualist
semantics”[25,26]. We will consistently use “entity”
for such a mental entity—the denotation of a KL term,
and “object” for an object in the real (or simulated)
world.

SNePS (and hence the KL) is implemented in Com-
mon Lisp.

The perceptuo-motor level (PML) is the level con-
taining the “physical-level representations of objects”
[5,6] consisting of object characteristics such as
size, weight, texture, color, and shape. At this level
objects are not characterized by KL terms such as
categories (box, robot, person, etc.) or properties
(green, tall, etc.). The PML also contains routines
for well-practiced behaviors, including those that are
primitive acts at the KL, and other subconscious ac-

tivities that ground Cassie’s consciousness of its body
and surroundings.

The PML has been implemented in three sub-levels:

(1) The highest sub-level (which we will refer to as
PMLa) has been implemented in Common Lisp,
and contains the definitions of the functions that
implement the activity represented by KL primi-
tive acts.

(2) The middle sub-level (henceforth PMLw) contains
a set of Common Lisp symbols and functions de-
fined in theWorld package which use Common
Lisp’s foreign function facility to link to the low-
est sub-level.

(3) The lowest sub-level (henceforth PMLc) has been
a C implementation of “behavioral networks”
[17,18].

The sensori-actuator level (SAL) is the level con-
trolling the operation of sensors and actuators (being
either hardware or simulated). The SAL has been im-
plemented in C and other languages, depending on the
implementation of the hardware or software-simulated
robot.

The Common Lisp programs, PMLc, and the SAL
run on different processes, and, in some circumstances,
on different machines.

The topic of this paper is our approach to an-
choring the KL terms that denote Cassie’s (or any
GLAIR-based agent’s) mental entities in the PML
structures used by embodied Cassie to operate in the
real world. Briefly, our theoretical stance is that a KL
term (symbol) serves as apivot, supporting and co-
ordinating various modalities. Anchoring is achieved
by associating (we use the term “aligning”) a KL
term with one or more PML structures—more than
one, if different PML structures are used by differ-
ent modalities. Some PML structures are accessible
to sensors, some to effectors. Others are accessible
to natural language interaction. KL terms, but not
PML structures, are accessible to reasoning. Cassie’s
ability to understand a natural language description,
and then visually locate an object in the world satis-
fying that description depends on going from PML
structures supporting natural language perception
to KL symbol structures, possibly clarified and en-
hanced by reasoning, to PML structures supporting
visual perception. Her ability to describe in natu-
ral language an object she is seeing in the world
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depends on the following that same path in the other
direction.

3. The FEVAHR

Cassie in the role of a FEVAHR (foveal extra-
vehicular activity helper-retriever)[2,14,41]was im-
plemented, as a joint project of researchers at the
University at Buffalo and researchers at Amherst Sys-
tems, Inc., on a Nomad 200 mobile robot, including
sonar, bumpers, and wheels, enhanced with an hierar-
chical foveal vision system[1] consisting of a pair of
cameras with associated hardware and software[7].
Henceforth, we will refer to Cassie in the role of a
FEVAHR as CassieF (in [14], CassieF is referred to
as Freddy).

CassieF operates in a 17× 17 ft. room containing:
CassieF; Stu, a human supervisor; Bill, another human;
a green robot; three indistinguishable red robots. In
the actual room in which the Nomad robot operated,
“Stu” was a yellow cube, “Bill” was a blue cube, the
green robot was a green ball, and the red robots were
red balls. CassieF is always talking to either Stu or
Bill. That person addresses CassieF when he talks, and
CassieF always addresses that person when she talks.
CassieF can be told to talk to the other person, to find,
look at, go to, or follow any of the people or other
robots in the room, to wander, or to stop. CassieF can
also engage in conversations on a limited number of
other topics in a fragment of English, similar to some
of the conversations in[39]. While CassieF is moving,
she avoids obstacles.

CassieF’s SAL was designed and implemented by
the researchers at Amherst Systems, Inc. Its hierarchi-
cal foveal vision system[1,2,7] was implemented and
trained to recognize the several colors and shapes of
the objects in the room.

CassieF’s KL and PML were designed and imple-
mented by the researchers at the University at Buffalo,
including the senior author of this paper. During devel-
opment of the KL, and subsequently, we used several
simulations of the robot and of the world it operates in:

The Nomad simulatoruses the commercial simulator
that was included with the Nomad robot, enhanced
by a simulation of CassieF’s world and its vision
system.

The VRML simulationsimulates CassieF and her
world by VRML (virtual reality modeling language
[3]) objects visible through a world-wide web
browser.

The Garnet simulationsimulates CassieF and her
world by Garnet[11] objects in a Garnet window.

The ASCII simulation, used to create examples for
Section 4, implements the PMLw, PMLc, and SAL
as sets of Common Lisp functions which print in-
dications of what CassieF would do.

No code at the KL or PMLa levels need be changed
when switching among the hardware robot and these
four different simulations. All that is required is a dif-
ferent PMLw file of functions that just print messages,
or make calls to the appropriate PMLc sub-level.

4. Anchoring in GLAIR

4.1. Perceivable entities

There are KL terms for every mental entity Cassie
has conceived of, including individual entities, cate-
gories of entities, colors, shapes, and other properties
of entities.

There are PML structures (at the PMLw and PMLc
sub-levels) for features of the perceivable world that
Cassie’s perceptual apparatus can detect and distin-
guish. For example, in the hardware and Nomad sim-
ulator versions of CassieF, each distinguishable color
and each distinguishable shape is represented by a sin-
gle integer, while in the VRML simulation, each is
represented by a string, and in the Garnet and ASCII
simulations, each is represented by a Lisp symbol.
Each particular perceived object is represented at this
level by ann-tuple of such structures,〈v1, . . . , vn〉,
where each component,vi, is a possible value of some
perceptual feature domain,Di. What domains are used
and what values exist in each domain depend on the
perceptual apparatus of the robot. We will call the
n-tuples of feature values “PML-descriptions”.

Our approach to grounding KL terms for perceiv-
able entities, categories, and properties is to align
a KL term with a PML-description, possibly with
unfilled (null) components. For example, CassieF
used two-component PML-descriptions in which
the domains were color and shape. In the hardware
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and Nomad simulator versions, the KL term de-
noting CassieF’s idea of blue was aligned with a
PML-description whose color component was the
PML structure the vision system used when it detected
blue in the visual field, but whose shape component
was null. The KL term denoting people was aligned
with a PML-description whose shape component was
the PML structure the vision system used when it
detected a cube in the visual field, but whose color
component was null. We have implemented align-
ment in various ways, including association lists, hash
tables, and property lists.

Call a PML-description with some null compo-
nents an “incomplete PML-description”, and one with
no null components a “complete PML-description”.
KL terms denoting perceivable properties and KL
terms denoting recognizable categories of entities are
aligned with incomplete PML-descriptions. Examples
include the terms for blue and for people mentioned
above, and may also include terms for the properties
tall, fat, and bearded, and the categories man and
woman. The words for these terms may be combined
into verbal descriptions, such as “a tall, fat, bearded
man”, whose incomplete PML-descriptions may be
used to perceptually recognize the object correspond-
ing to the entity so described.

In this paper, we will use “description” (unqual-
ified by “PML”) only to mean a verbal description
that can be used for perceptual recognition, such as
“a tall, fat, bearded man”, and not to mean a ver-
bal description that cannot be used for perceptual
recognition, such as “a college-educated business-
man who lives in Amherst, NY”. Cassie might have
a KL term for an entity about which she knows no
descriptive terms. For example, all she might believe
about Fred is that he is a college-educated business-
man who lives in Amherst, NY. Thus, she would be
incapable of describing Fred (the way we are using
“describe”). Nevertheless, it might be the case that
Cassie’s term denoting Fred is aligned with a com-
plete PML-description. In this case, Cassie would be
able to recognize Fred, though not describe him ver-
bally. We call such a PML-description aligned with an
entity-denoting term, the entity’s PML-description.

A complete PML-description may be assembled for
an entity by unifying the incomplete PML-descriptions
of its known (conceived of) properties and categories.
For example, if Cassie knows nothing about Harry,

and we tell her that Harry is a tall, fat, bearded man,
she would be able to assemble a PML-description
of Harry and recognize him on the street (assum-
ing that Cassie’s terms for tall, fat, bearded, and
man are aligned with incomplete PML-descriptions).
In some cases, this might result in a set of sev-
eral complete PML-descriptions. For example, the
PML-descriptions of some, but not a particular, red
chair might include PML-descriptions with different
shape components. Once a PML-description is as-
sembled for an entity, it can be cached by aligning the
term denoting the entity directly with it. Afterwards,
Cassie could recognize the entity without thinking
about its description.

To find (come to be looking at) an entity, Cassie
finds a PML-description of the entity that is as com-
plete as possible, and directs her perceptual apparatus
(via the SAL) to do what is necessary to cause an ob-
ject satisfying it to be in her visual field. For example,
in the Nomad version of CassieF, the PML-description
of Bill is the 2-tuple〈13, 21〉, which is passed to the ap-
propriate SAL routines, which move the cameras until
a blue cube is in their field-of-view (see the section on
actions, for a description of how actions are grounded).

If Cassie is looking at some object, she can recog-
nize it if its PML-description is the PML-description
of some entity she has already conceived of. If there is
no such entity, Cassie can create a new KL term to de-
note this new entity, align it with the PML-description,
and believe of it that it has those properties and
is a member of those categories whose incomplete
PML-descriptions unify with the PML-description of
the new entity.

If there are multiple entities whose PML-
descriptions match the object’s PML-description, dis-
ambiguation is needed, or Cassie might simply not
know which one of the entities she is looking at.

We are currently investigating the issue of when
Cassie might decide that the object she is looking at
is new, even though it looks exactly like another she
has already conceived of (see[36]).

We have not worked on the problem of recogniz-
ing an entity by context. For example, a store clerk
might be recognized as any person standing behind a
cash register.1 We speculate that this problem requires

1 This example was suggested by one of the anonymous review-
ers of Shapiro and Ismail[43].
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Table 1
Objects and descriptions of CassieF’s world

Object Color Shape

World:Bill World:blue World:square
World:Stu World:yellow World:square
World:Cassie World:cyan World:circle
World:Greenie World:green World:circle
World:Redrob-1 World:red World:circle
World:Redrob-2 World:red World:circle
World:Redrob-3 World:red World:circle

Table 2
Some of CassieF’s KL terms and their PML-descriptions

KL term 〈Color, Shape〉
b1 〈World:cyan, World:circle〉
b5 〈World:yellow, World:square〉
b6 〈World:blue, World:square〉
m21 〈World:green, nil〉
m25 〈World:red, nil〉
m19 〈nil, World:square〉
m22 〈nil, World:circle〉

a combination of KL knowledge and KL–PML align-
ment. Knowing that a person standing behind a cash
register is a clerk is KL knowledge. Recognizing a
person, a cash register, and the “behind” relation re-
quires KL–PML alignment.

Consider an example interaction with the ASCII
version of CassieF. In this simulation, created so that
interactions can be shown in print, the entire PML
and the simulated world are implemented in Common
Lisp. The PML-descriptions have two domains, called
“color” and “shape”. There are seven objects in the
simulated world. The Common Lisp symbols that rep-
resent these objects and their PML-descriptions are
shown inTable 1.2 Recall that Lisp symbols of the
PMLw are in theWorld package, so Lisp prints them
preceded by “World:”.

The KL terms that are aligned with PML-
descriptions are shown inTable 2. Notice thatb1, b5,
andb6 are aligned with complete PML-descriptions,
while m21, m25, m19, and m22 are aligned with
incomplete PML-descriptions.b1, b5, and b6 de-
note individuals.m21 andm25 denote the properties

2 The examples in this paper were created using SNePS 2.6[50]
running under Franz, Inc.’s Allegro CL 6.2[9].

Table 3
Some of CassieF’s beliefs

b1’s name is Cassie Bill and Stu are people
b5’s name is Stu Robbie is a green robot
b6’s name is Bill b8, b9, and b10 are red robots
Cassie is a FEVAHR People and robots are things
FEVAHRs are robots

green and red, respectively.m19 andm22 denote the
categories of people and robots, respectively.

CassieF’s relevant beliefs about the entities denoted
by these terms may be glossed as shown inTable 3.
The only descriptive terms CassieF has for Bill and
Stu are that they are people, and the only descrip-
tive term she has for herself is that she is a robot.
Nevertheless, Bill, Stu, and Cassie are aligned with
complete PML-descriptions, so she can recognize
them. On the other hand, neither Robbie,b8, b9,
norb10 are aligned with PML-descriptions, although
PML-descriptions can be assembled for them from
their properties and categories.

Following is an interaction with CassieF about these
entities. Sentences preceded by “:” are human inputs.
Sentences preceded by “PML:” and “SAL:” are re-
ports of behaviors and simulated actions and percep-
tions by the ASCII version of CassieF at the respective
levels, and are not output by the other four versions.
Notice that the PML deals with PML-descriptions, and
only the SAL deals with (simulated) objects in the
world. Sentences beginning with “I” are generated by
CassieF. At the beginning of the interaction, CassieF
is looking at, listening to, and talking to Stu. (See next
page).

4.2. Deictic registers

An important aspect of being embodied is being sit-
uated in the world and having direct access to compo-
nents of that situatedness. This is modeled in GLAIR
via a set of PML registers (variables), each of which
can hold one or more KL terms or PML structures.
Some of these registers derive from the theory of the
Deictic Center[8], and include:I, the register that
holds the KL term denoting the agent itself;YOU,
the register that holds the KL term denoting the indi-
vidual the agent is talking with; andNOW, the regis-
ter that holds the KL term denoting the current time.
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: Find a robot.
PML: The FEVAHR is looking at (World:yellow World:square)
PML: The FEVAHR is looking for something that’s (nil World:circle)
SAL: The FEVAHR found World:RedRob-1
PML: The FEVAHR found (World:red World:circle)
I found a red robot.
PML: The FEVAHR is looking at (World:red World:circle)
I am looking at a red robot.

: Find a person.
PML: The FEVAHR is looking at (World:red World:circle)
PML: The FEVAHR is looking for something that’s (nil World:square)
SAL: The FEVAHR found World:Stu
PML: The FEVAHR found (World:yellow World:square)
I found you, Stu.
PML: The FEVAHR is looking at (World:yellow World:square)
I am looking at you.

: Find a green thing.
PML: The FEVAHR is looking at (World:yellow World:square)
PML: The FEVAHR is looking for something that’s (World:green nil)
SAL: The FEVAHR found World:Greenie
PML: The FEVAHR found (World:green World:circle)
I found Robbie.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

: Find Bill.
PML: The FEVAHR is looking at (World:green World:circle)
PML: The FEVAHR is looking for something that’s (World:blue World:square)
SAL: The FEVAHR found World:Bill
PML: The FEVAHR found (World:blue World:square)
I found Bill.
PML: The FEVAHR is looking at (World:blue World:square)
I am looking at Bill.

It was by use of these registers that, in the exam-
ple interaction shown inSection 4.1, Cassie used
“I” to refer to the individual denoted byb1 (her-
self), “you” to refer to the individual denoted byb5
(Stu), and the appropriate tense in all the sentences
she generated. The use ofNOW is discussed further
in Section 4.5, and language is discussed further in
Section 4.6.

Embodiment is further modeled in GLAIR via a set
of modality registers.

4.3. Modality registers

How does an agent know what it is doing? A stan-
dard technique in the Artificial Intelligence literature
amounts to the following steps:
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(1) I started doinga at some previous time or in some
previous situation.

(2) I have not done anything since then to stop me
from doinga.

(3) Therefore, I am still doinga.

However, we human’s do not have to follow these
steps to know what we are doing, because we have
direct access to our bodies.

GLAIR agents know what they are doing via di-
rect access to a set of PML registers termed “modality
registers”. For example, if one of Cassie’s modalities
were speech, and she were currently talking to Stu, her
SPEECH register would contain the KL term denot-
ing the state of Cassie’s talking to Stu (and the term
denoting Stu would be in theYOU register). In many
cases, a single modality of an agent can be occupied
by only one activity at a time. In that case the regis-
ter for that modality would be constrained to contain
only one term at a time.

One of the modality registers we have used is for
keeping track of what Cassie is looking at. When she
recognizes an object in her visual field, the KL term
denoting the state of looking at the recognized entity is
placed in the register, and is removed when the object
is no longer in the visual field. If one assumed that
Cassie could be looking at several objects at once, this
register would be allowed to contain several terms. If
asked to look at or find something that is already in her
visual field, Cassie recognizes that fact, and doesn’t
need to do anything. The following interaction with
CassieF continues from the previous one:

: Look at Robbie.
PML: The FEVAHR is looking at (World:blue World:square)
PML: The FEVAHR is looking for something that’s (World:green World:circle)
SAL: The FEVAHR found World:Greenie
PML: The FEVAHR found (World:green World:circle)
I found Robbie.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

: Find a robot.
PML: The FEVAHR is looking at (World:green World:circle)
I am looking at Robbie.

Comparing Cassie’s response to the second request
with her response to the previous requests, one can

see that she realized that she was already looking at a
robot, and so did not need to do anything to find one.

4.4. Actions

Some KL terms denote primitive actions that the
GLAIR agent can perform. We call a structure con-
sisting of an action and the entity or entities it is per-
formed on, an “act”. For example, the act of going to
Bill consists of the action of going and the object Bill.
Acts are denoted by KL functional terms.

Each KL action term that denotes a primitive action
is aligned with a procedure in the PML. The proce-
dure takes as arguments the KL terms for the argu-
ments of the act to be performed. For example, when
Cassie is asked to perform the act of going to Bill, the
PML going-procedure is called on the KL Bill-term.
It then finds the PML-description of Bill, and (via the
SAL) causes the robot hardware to go to an object in
the world that satisfies that description (or causes the
robot simulation to simulate that behavior). The PML
going-procedure also inserts the KL term denoting the
state of Cassie’s going to Bill into the relevant modal-
ity register(s), which whenNOW moves (seeSection
4.5), causes an appropriate proposition to be inserted
into Cassie’s belief space.

Acts whose actions are primitive are considered
to be primitive acts. Composite acts are composed
of primitive “control actions” and their arguments,
which, themselves are primitive or composite acts.
Control actions include sequence, selection, iteration,
and non-deterministic choice[21,27–30,50]. There are

also propositions for act preconditions, goals, effects,
and for plans (what some call recipes) for carrying out
non-primitive acts.
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In the interactions shown above, sentences preceded
by “SAL:” were printed by the simulated action func-
tion, which was called by the PML procedure aligned
with the KL term for finding something. When Cassie
was asked to look at Robbie, she did so by finding
Robbie, because there is a KL belief that the plan for
carrying out the non-primitive act of looking at some-
thing is to find that thing.

4.5. Time

As mentioned above, theNOW register always con-
tains the KL term denoting the current time[20,23,
24,41]. Actually, since “now” is vague (it could mean
this minute, this day, this year, this century, etc.),NOW
is considered to include the entire semi-lattice of times
that include the smallest current now-interval Cassie
has conceived of, as well as all other times containing
that interval.
NOW moves whenever Cassie becomes aware of a

new state. Some of the circumstances that cause her
to become aware of a new state are: she acts, she ob-
serves a state holding, she is informed of a state that
holds.NOW moves by Cassie’s conceiving of a new
smallest current now-interval (a new KL term is in-
troduced with that denotation), andNOW is changed to
contain that time. The other times in the oldNOW are
defeasibly extended into the new one by adding propo-
sitions asserting that the newNOW is a subinterval
of them.

Whenever Cassie acts, the modality registers change
(see above), andNOW moves. The times of the state(s)
newly added to the modality registers are included in
the newNOW semi-lattice, and the times of the state(s)
deleted from the modality registers are placed into
the past by adding propositions that assert that they
precede the newNOW.

The following interaction, following the ones shown
above, shows an action of Cassie’s first being in the
present, and then being in the past:

: Who have you talked to?
I am talking to you.

: Talk to Bill.
PML: The FEVAHR is starting to talk
to b6
I am talking to you, Bill.
: Who have you talked to?

I talked to Stu
and I am talking to you.

The term denoting the state of Cassie’s talking to
Stu did not change between the first of these interac-
tions and the third. What did change were: the state of
Cassie’s talking to Stu was replaced in theSPEECH
register by the state of Cassie’s talking to Bill; a propo-
sitional term was added to the KL that the time of
talking to Stu was before the time of talking to Bill;
and theNOW register was changed to include the time
of talking to Bill and the times that include it.

To give GLAIR agents a “feel” for the amount of
time that has passed, the PML has aCOUNT register
acting as an internal pacemaker[20,24]. The value
of COUNT is a non-negative integer, incremented at
regular intervals. WheneverNOW moves, the following
happens:

(1) The old now-intervalto is aligned with the current
value ofCOUNT, grounding it in a PML-measure
of its duration.

(2) The value ofCOUNT is quantized into a value
δ which is the nearest half-order of magnitude
[19] to COUNT, providing an equivalence class of
PML-measures that are not noticeably different.

(3) A KL term d, aligned withδ, is found or created,
providing a mental entity denoting each class of
durations.

(4) A belief is introduced into the KL that the duration
of to is d, so that the agent can have beliefs that
two different states occurred for about the same
length of time.

(5) COUNT is reset to 0, to prepare for measuring the
new now-interval.

4.6. Language

Cassie interacts with humans in a fragment of En-
glish. Although it is possible to represent the linguistic
knowledge of GLAIR agents in the KL, use reasoning
to analyze input utterances[32–34,45], and use the
acting system to generate utterances[12,13], we do not
currently do this. Instead, the parsing and generation
grammars, as well as the lexicon, are at the PML (see,
e.g.[35,38,49]). There are KL terms for lexemes, and
these are aligned with lexemes in the PML lexicon.
We most frequently use a KL unary functional term to
denote the concept expressed by a given lexeme, but
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this does not allow for polysemy, so we have occa-
sionally used binary propositions that assert that some
concept may be expressed by some lexeme. There may
also be KL terms for inflected words, strings of words,
and sentences. This allows one to discuss sentences
and other language constructs with GLAIR agents.

This facility was used for Cassie to understand the
human inputs shown in the example interactions in
this paper, and for her to generate her responses (the
sentences beginning with “I”). We can also use the
low levelsurface function to see the NL expression
Cassie would use to express the denotation of various
SNePS terms (the prompt for this Lispish interaction
level is “∗”):

∗ (surface b1)
me

∗ (surface b5)
Stu

∗ (surface b6)
you

∗ (surface m21)
green

∗ (surface m115)
I found a red robot.

∗ (surface m332)
I am looking at Robbie.

(Remember, Cassie is currently looking at Robbie and
talking to Bill.)

5. Related work

Coradeschi and Saffiotti[4,6] present a model of
anchoring in an agent with a symbol system, which
includes object symbols and unary predicate symbols,
and a perceptual system, which includes attributes
and percepts. Their grounding relation relates pred-
icate symbols, attributes, and attribute values. Their
anchor is a partial function from time to quadruples
of: object symbols; percepts; partial functions from
attributes to attribute values; and sets of predicate
symbols. Their anchor is “reified in an internal data
structure” [7, p. 408]. Their symbol system corre-
sponds to our KL, and their perceptual system to a
combination of our PML and SAL. While their an-
chor is a data structure that cuts across their symbol
and perceptual systems, our KL and PML commu-

nicate by passing PML-descriptions from one to the
other, sometimes by socket connections between dif-
ferent computers. Their discussion of “perceptual
anchoring of symbols for action”[6] concerns the
anchoring of object symbols of objects the actions are
performed on. We also discussed the anchoring of ac-
tion symbols to the PML procedures that carry them
out.

Santos and Shanahan[37] discuss anchoring as the
“process of assigning abstract symbols to real sen-
sor data” and develop a theory whose “universe of
discourse includes sorts for time points, depth, size,
peaks, physical bodies and viewpoints.Time points,
depthand sizeare variables that range over positive
real numbers (R+), peaks are variables for depth
peaks,physical bodiesare variables for objects of
the world, viewpointsare points inR3” [pp. 39–40,
italics in the original]. We consider data such as these
to belong at the PML, as not being the sort of entities
people reason and talk about, and therefore, not the
sort of entities cognitive robots should have at the KL.
We view anchoring as the aligning of physical-level
representations such as these to the KL terms used
for reasoning.

Jackendoff[26] explicates a theory in which “the
character of a consciously experienced entity is func-
tionally determined by a cognitive structure that con-
tains the following feature types: an indexical feature
to which descriptive features can be attached; one
or more modalities in which descriptive features are
present; the actual descriptive features in the avail-
able modalities”[27, p. 313]. His indexical features
correspond with our KL term, and his descriptive
features correspond with our PML-descriptions. His
suggestion that “we think of the descriptive features
as being linked to a common indexical feature”[27,
pp. 311–312]parallels our suggestion inSection 2of
KL terms as pivots.

6. Summary

We have given an informal, but coherent, uni-
fied, overview of our approach to connecting the
abstract-level representations to the physical-level
representations in GLAIR, an architecture for cogni-
tive robots and intelligent autonomous agents. The
abstract-level representations are terms of SNePS
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logic contained in the knowledge level (KL) of the
GLAIR architecture, while the physical-level repre-
sentations aren-tuples of perceptual features, proce-
dures, and other symbol structures contained at the
perceptuo-motor level (PML) of the architecture.

KL terms denoting perceivable entities, perceivable
properties, and recognizable categories are aligned
with PML-descriptions. Primitive actions are aligned
with PML procedures. Deictic and modality regis-
ters hold KL terms for individuals and states that the
agent is currently aware of, including states of its
own body. They are updated by the PML procedures.
TheNOW register is used to give the agent a personal
sense of time, including keeping track of current and
past states. KL terms denoting times and temporal
durations are aligned with PML numeric measures of
durations created by the PML pacemaker. Lexemes
are represented by KL terms that are aligned with
PML lexicon entries used by the parsing and genera-
tion grammars, which, like PML procedures, mediate
between the agent and the outside world, in this case,
humans with which she communicates.
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