A SNePS Agent for Unexploded Ordnance Disposal
Progress Report

Stuart C. Shapiro and Haythemn O. Ismail

Department of Computer Science and Engineering
State University of New York at Buffalo
226 Bell Hall
Buffalp, NY 14260-2000
Phone: (716) 645-3180
E-mail: {shapiro | hismail}@cse.buffalo.edu
August 27, 1999

1 Introduction

In this document, we present recent developments in the design of the knowledge
level of the UXO disposal agent. Those developments enhance the interrupt han-
dling model that was presented in our 5/31/1999 report. Although there are still
problems to be solved, we have managed to solve two of the problems pointed out
in the last report in addition to discovering and solving other problems. Section
2 provides a brief review of the main ideas underlying the interrupt handling sys-
tem. Section 3 describes changes to the SNePS act scheduler. Section 4 discusses
enhancements of the priority system and the prioritized acting procedure. Section
5 introduces a problem that we discovered with mental acts and outlines our cur-
rent solution. Finally, Section 6 discusses problems and future work. Appendix A
contains a demonstration of the system.

2 Interrupt Handling

In this section, we briefly review the main contents of our last (5/31/1999) report.
In that report we explained in detail how the SNePS systemn was used to allow the
UXO disposal agent to handle interrupts. By outlining the main ideas presented
therein, we lay the ground to a detailed discussion of recent enhancements of the
system.

1. A theory of interrupt handling subsumes one for error recovery. An error
is just a special kind of an interrupt, one resulting from the unexpected
situation of tle failure of one of the agent’s acts.

2. We distinguish two types of interrupts. First, an interrupt may occur during
performing a sequence of acts. In particular, the agent has finished per-
forming one act in the sequence and is about to perform the next when the
interrupt occurs. Second, the interrupt may occur while the agent is in the
midst of performing a primitive act. In the first case, the agent needs to
merely revise its intentions regarding what to do next. In the second ease.
the agent may need to stop what it-is doing to handle the interrupt.

3. Priorities define a partial ordering over acts. Formally, the following schema
is used to represent knowledge about priorities.

— Holds(p-higher(ay, aj), t)

The above form means that at time ¢, a; has priority over az. The important
point here is that priorities are dependent on the over-all situation.

4. A special mode of forward inference, prioritized forward inference (PFI),
is used to model perception and bodily feedback. With PFI, actions that
get scheduled as reactions to sensory input are performed in order of their '
priorities. This is achieved using the control act p-do-all.

-~ p-do-all(objectl), where object! is a set of act terms. p-do-all re-
duces to cascade(do~all(MA X (objectl)), p-do-all(objecti— MAX(objectl))),
where MAX(object1) = {a € object! | there is no & € object! such that
Holds(p-higher(d, a), *NOW)}.!

Note that this only takes care of the first type of interrupts.

5. Interrupting primitive acts is achicved by using the control act interrupt.
Basically, interrupt results in stopping all the currently on-going acts (those
pointed to by some of the modality pointers) and scheduling them together
with the interrupting act.

~ interrupt(iodo), where todo is an act term. interrupt reduces to

cascade(do-all({Stop(*u) |u € M}), p-do-al1({*u|u € M} u
{todo})) '

where todo is the interrupting act, M is the set of modality pointers,
and *1 denotes the term pointed to by .

Four problems were pointed out regarding the above interrupt handling mechanism
(see Section 7 of our 5/31/1999 report). Of these, two were resolved given the new
enhancements to the system. In what follows, we discuss how this was achieved.

1 r .-] .
do-all is a control act that initiates a set of acts in some nondeterministic order. ecascade is
one that controls the execution of sequences of acts. See our previous report for more details.

3 The New Scheduler

Given the above discussion, there seems to be three unsatisfying issues regarding
the proposed interrupt handling mechanism.

1. There are two different mechanisms for handling primitive and composite
acts.

2. The agent always stops everything that it is doing when an interrupt occurs.
Those on-going acts with high priorities should be allowed to continue to
completion.? j

3. It is not clear when exactly to use interrupt. The act is used as a reaction
to some situation that requires the agent to stop everything that it is doing
and take some appropriate action. But then all situations that require the
agent to react should make use of interrupt. In general, whenever the
agent is doing something and it decides that it is appropriate to perform
some other act (whether because it was told to do so or because it needs to
react to some situation) it should reason about whether to interrupt what it
is currently doing. Since this is a general requirement, it would be better to
build interrupt handling into the acting system rather than require explicit
use of interrupt in the knowledge base.

Solving the above problems was achieved be revising both PFI and the procedural
semantics of p~do-all. In this section, we discuss the revised PFI procedure and
defer the discussion of p-do-all to the next section. As pointed out in Section 2,
PFT results in all scheduled acts being performed in order of their priorities. More
specifically, the acts scheduled on the act stack, T, are replaced by a p~do=-all of
those acts. That is:

L« {p-do-all(X)}

To build interrupt handling into the act scheduler, we revised PFI so that the
contents of ¥ are replaced by a p-do-all of all the scheduled acts in addition to
those that are currently being performed.

L «— {p-do-all(Z UII)}, where II is the set of on-going acts (processes).

This way, whenever the agent is about to act (while in PFI mode), it has to reason
about (i) what to do first and (ii) whether to interrupt its on-going activities.

>This is the fourth problem pointed out in our last report (page 12).

This solves the first and third problems above. We no longer need the control act
interrupt since its effects have been built into the acting system. In addition,
PFI now provides a single, albeit more complicated, mechanism for handling the
two types of interrupts that we distinguish. Solving the second problem mentioned
above is based on the new procedural semantics of p-do=all.

4 Prioritized Acting

According to Section 2, p~do=-all reduces to a cascade of a do-all of those acts
with highest priority followed by a p-do-all of the rest of the acts. Obviously,
this presupposes that all of these acts are not in progress. Given the revised PFI
procedure, we needed to revise p-do-all so that it results in the appropriate
behavior in case any of its argument acts is in progress. Before getting into this,
however, let us first discuss two important revisions of p-do-all and the priority
system.

4.1 Priorities

Consider the following problem.® The agent is performing an iterative act of
searching for, picking up, and dropping UXOs. This loop is cascaded so that the
agent starts picking up when it has finished searching. starts dropping when it
has finished picking up, and starts searching again when it has finished dropping.
Suppose that the battery goes low just when the agent is about to drop a UXO
(or actually is dropping one). This will result in a p-do-all with the acts of
dropping the UXO and recharging the battery to be performed. Dropping the
UXO should have higher priority and thercfore should be done first. However, once
comnpleted, two pending cascades would be activated: one with Recharge-battery
and another with the search, pick up, and drop cycle. These two acts are arbitrary
and emerge from the particular situation. The problem is that arbitrary cascades
are not prioritized with respect to each other and the agent may end up searching
instead of recharging the battery.

The way out of this problem is to define a more complicated version of the
priority relation.

Definition 4.1 Let a; and ay be two distinct acts. a1 >p ag (read, ay. has higher
priority over ap) iff:

1. ay = cascade(a;,...,a;1q) and a; >p ag,

3The third problem in our 5/31/1999 report (page 12).

2. ag = cascade(a;,...,a;4m) and a; >p aj, or

3. Holds(p-higher(a;, a3), *NOW) is deducible.

Accordingly, the relation >, holds between two cascades, ¢; and ¢y, if it holds
between their first elements. The base case of the recursion is the explicit assertion
of priorities (in terms of p-higher) among acts. However, the above does not say
that ¢; should be completed before starting to perform ¢y, it only defines the >,
relation. What should be done when this relation holds between two acts is a
different issue that we now turn to.

Definition 4.2 Let A be u set of acts. Define the set AT as follows. An act
a € At iff:

1. a € A, a is a cascade, and for every @ € A, Holds(p-higher(a, &), *"NOW)
i3 deducible;
2. a € A, a is not a cascade, and there s no & € A such that & >pa; or
3, ¢ = cascade(a,...,u,) € A und there is no & € A such that & >pc.
Intuitively, A+ is the set of acts in A4, or embedded within cascades in A, that

should be performed first, i.e, those with top priorities. A complementary set
contains whatever remains.

Definition 4.3 Let 4 be u set of ucts. Define A, = (A—AT)U{cnscade(agi,...,am)
| cascade(a,,,ay,,...,a,,) € A and ai, € At}

Informally, a p-do-all with a set of acts A reduces to a cascade of do-all(Ar)
followed by p~do-al1(4;).* Going back to the problem discussed at the beginning
of this section, and assuming that Holds(p-higher(Recharge~battery, Search),
*NOW) is deducible, we have the following situation:

e A= {cascade(Recharge-battery), cascade(Search, Pick-up, Drop)}.

¢ At = {Recharge-battery}.

* A, = {cascade(Search, Pick-up, Drop)}.5

Thus the agent would exhibit the correct behavior; recharging the battery and
then resuming what it was doing before.

‘But see below for some subtle differences.
*Note that empty cascades are not allowed by Definition 4.3.

4.2 The Revised p-do-all

Consider a situation similar to the above one. The agent is performing the cascade
cascade(Drop, Goto(Safe-zone), Talk-to(Bill)). It starts dropping the UXO that
it is holding while having the belief that, when it is done, it will perform the rest of
the caseade. While in the midst of dropping the UXO, the battery goes low. This
results in the performance of p-do-all({Recharge-battery, Drop}) Assuming
that dropping the UXO has higher priority than recharging the battery, the agent
believes that when it is done it will perform p~do-all({Recharge-battery}). Now
the agent finishes dropping the UXO thereby scheduling two acts with PFI, namely
cascade(Goto(Safe-zone), Talk-to(Bill)) and p-do-all{{Recharge-battery}).
The second of these is an arbitrary p~do-all. and in the general case may con-
tain more than one act. How can a p~do=-all embedded within a p~do-all be
compared with other acts? The intuitive answer is to first ezpand the embedded
p~do-all and prioritize the acts in the resulting set.

More precisely, given a set of acts, A, as an argument to p~do-all, the set
that actually gets prioritized is defined as follows.

Definition 4.4 Let A be a set of acts. Define AF = A={p-do-all(5;)| p-do-all(Ss,)
€ A} u Ui(sz)p—do—all(&)EA

We are now ready to give the precise semantics of the revised p-do-all.

e p-do-all(objecil), where object! is a set of act terms. p-do=-all reduces to

cascade(do-all({Stop(p) |p € IINohject1Z}),
do-all(object!Z — 1),
p-do-all(ob]ectﬂf)).

That is, first the agent stops all on-going acts with low priorities, then it performs
acts with top priorities unless they are already on-going, and then performs a
p-do-all of the acts with low priorities. Note that all of this is based on an
expanded set of acts according to Definition 4.4. Evidently, the agent only stops
those acts with low priorities whereas top priority on-going acts are allowed to
continue uninterrupted. This solves the second problem presented in Section 3.

5 The Mental Acts Queue

Consider the situation described in Section 4.2. The agent is performing the cas-
cade cascade(Drop, Goto(Safe-zone), Talk-to(Bill)). Let us refer to this cascade

6

as ¢1. Assume that the agent starts performing ¢; while it is in the field (21). To
drop the UXO it needs to achieve the precondition for dropping; being in the drop-
off zone (Z4). This is done be performing the cascade cascade(Goto(Z4), Drop).
Let us call this cascade ¢, Before starting to perform co, the agent senses that the
battery is low. This results in scheduling a p-do-all of ¢ and Recharge-battery.
Assuming that ¢y has higher priority over recharging the battery, the agent sets
out to perform cascade(cy, Recharge-battery).” Let us refer to that as c3. To
perform 3, the agent needs to start performing c; and to form the belief that when
the goal of cy has been achieved it should perform Recharge-battery. What is
the goal of ¢? According to Definition 3.1 in our last report (page 4), it is achiev-
ing the state complete(cs). This state gets asserted by appending the mental act
believe(complete(cy)) to the end of ¢o. That is, co expands to cascade(Goto(Z4),
Drop, believe(complete(c;))).

Now the agent reaches Z4. At this point, it would be useful to inspect the
agent’s intentions. In particular, it has the following beliefs.

o when-do(Empty-handed, cascade(Goto(Safe-zone), Talk-to(Aill))).

* when-do(Empty-handed, believe(complete(cy))).

The first form represents the agent’s intention to continue ¢; after dropping the
UXO. The second represents its intention to continue ¢;. Once the agent finishes
dropping the UXO and becomes empty-handed, the two acts cascade(Goto(Safe-
zone), Talk-to(Bill)) and believe(complete(cs)) get scheduled. These two acts
are then performed in order of their priorities. However, this seems very unsat-
isfying. The only 1eason the mental act was introduced is to enable scheduling
Recharge~battery once the agent has finished dropping the UXO. It is the pri-
ority of Recharge-battery that should be compared to that of the rest of ¢;, not
the priority of the mental act

One way out of this problem is to introduce a rule to the affect that mental
acts have higher priority over all other acts. This might indeed solve the problem.
However, it seems awkward for the agent to reason whether it should believe before,
say, search. If the agent has the intention to believe some proposition, it should do
so once the appropriate conditions are met (in the above example, having dropped
the UXO). This requires us to build the higher priority of mental acts into the
acting system rather than explicitly represent it in the knowledge base. This
was done by introducing a special queue, Q, for mental acts. The acting system
only starts processing the contents of Z, the non-mental acts stack, when it has
processed all the contents of Q. This way, mental acts will be performed before

®See Section 5 of our 5/31/1999 report.
"A do-all or a p-do-all with one act reduces to that act.

other physical and control acts and will not be considered in priority checks that
are only applicable to the contents of .

To go back to our example, the act believe(complete(cs)) shall be per-

formed resulting in Recharge-battery to be scheduled with the rest of ¢; on ©. A
p-do-all of these two will be performed thereby comparing the correct priorities.

6 Problems and Future Work

1,

In the current state of the system, the agent always resumes what it was
doing after handling an interrupt. However, it is not always appropriate for
the agent to resume what it was doing. For example, if one of its motors
needs service, the agent should completely abort what it is currently doing.

Currently the agent cannot correctly resume what it was doing in some cases.
In particular, consider the agent being near a UXO and about to pick it up
when the battery goes low. Assuming that recharging the battery has higher
priority than picking up the UXO, the agent would go to the recharge station
and recharge the battery. Given the way the system currently works (i.e.,
the use of PFT), the agent would next attempt to pick up the UXO. However,
it is no longer near the UXO and therefore cannot pick it up. One might
think that the problem can be solved by having the state of being near a
UXO a precondition for picking it up and that this would cause the agent
to first achieve being near the UXO. However, the problem is that what the
agent is trying to do is to pick up a particular UXQ, the one that it was near
when the battery went low. Since UXOs are indistinguishable and the agent
does not have a record of where it was before, it cannot go back near that
particular UXO. The solution is to start searching for UXOs again, instead
of trying te pick up some specific one. That is, the agent should resume
what it was doing but not exactly at the point where it left off.

We have started using multi-processing in the implementation of the agent.
Currently, multi-processing features are only used in simulating some as-
pects of the agent’s environment. In particular, we use a different process -
to simulate the explosion of a UXO. The simulated agent sets a charge on
the UXO and thereby initiates a process that simulates the explosion. In the
future, we intend to make more use of multi-processing since it provides a
more accurate model of the environment and implementation of the actual
robot.

We need to test the system with different types of interrupts. The only type
of interrupt that we have implemented so far is the battery going low.

A Ascii World Demonstration

The following is a demonstration of the high level behaviors Gather-Objects and
Blow-up Objects in the ASCII world. Sentences surrounded by asterisks are the
output of the world simulation. Sentences preceded by semi-colons are explanatory
comments. Otherwise, it is the agent explaining what it is doing. In both cases,
the first sentence, following the prompt (:), is the natural language input to the
system. For this demonstration. we manually set the field to contain only four
objects.

133-——-—-The High-Level Behavior: Gather-Objectg======

: Clear the field.
I am going to Z1.
*+*The robot is going to WORLD:Z1, %«
**The robot is in WORLD:Z1 at the point: (150.00, 5.00).%*
I went to 21.
I am in Z21.
I am searching.
**The robot is searching for a UX0 . . .#*
xx0bject found at: (204.06, 22.04).%%
**The robot is going near the object (WORLD::DRANGE 204.0638 22.035358)
»*The robot is looking at the object (WORLD::DRANGE 204.0638 22.035358) .«
#*The robot is near the object (WORLD::0RANGE 204.0638 22.035358).+*#
**The robot is going to examine object.sx
**0BJECT FOUND IS A UX0.»»
I searched.
I am near a UXO.
I am picking up the UXO.
**The robot is picking up the UXD.mx
I picked up the UXO.
I am holding the UXO.
I am turning to Z4.
The robot is looking towards WORLD:Z4.
I turned to Z4.
I am looking at Z4.
I am going to Z4.
**The robot is going to WORLD:Z4.*x
*»*The robot is in WORLD:24 at the point: (35.81, 3.69).*x
I went to Z4.

BT

I am in Z4.

I am dropping
««The robot is

I dropped the

the UXO.
dropping the UXO,#*x
Uxo0.

I am .empty handed.
I am turning to 21.

**The robot is

looking towards WORLD:Z21. ==

I turned to Z1.
I am looking at Z1.

I am going to
**The robot is
**The robot is

I weat to Z1.

I am in Z1.

Z1.
going to WORLD:Z1,xx
in WORLD:21 at the point: (38.00, 3.68).**

I am searching,

=xThe robot is
=x0bject found
*»The robot is
*xThe robot is
»*The robot is
*xxThe robot is
=x0BJECT FOUND
»xThe robot is
=»0bject found
»»The robot is
x%«The robot is
**The robot is
=xThe robot is
»x0BJECT FOUND

I searched.

I am near the

searching for a UXO . L ok

at: (49.88, 109.08), %+

going near the object (WORLD::WHITE 49.881214 109.07636) .
looking at the object (WORLD::WHITE 49.881214 109.07636) . %x
near the object (WORLD::WHITE 49.881214 109.07636),%x

gEoing to examine object.ww

IS NOT A UXO.mx
searching for a UXOD .
at: (84.77, 125.84).**
going near the object (WORLD::DRANGE 84.7668 125.843216)
looking at the object (WORLD::DRANGE 84.7668 125.843216) . xn
near the object (WORLD::ORANGE 84.7668 125.843216).%*

going to examine object.sx

IS A UXOD.#**

, ok

Lxx

Uxo.

I am picking up the UXO.

*xThe robot is

picking up the UXOD.*»

I picked up the UXO.
I am holding the UXO.
I am turning to Z4.

**The robot is

looking towards WORLD:Z4.*x*

I turned to Z4.
I am looking at 24.

I am going to
*»The robot is
**The robot is

24,
going to WORLD:Z4.x*x
in WORLD:Z4 at the point: (19.69, 30.14) .xx

10

**x<<<THE BATTERY IS LOW>>>.=x

;31 The battery goes low while the agent is about to drop the UXO.
1+ This is similar to the situation discussed in Section 4.1.
iAlso similar to that discussed in Section 5.

I went to Z4.
I am in 24
and a battery is low.
I am dropping the UXO.
**«The robot i1s dropping the UXD.==
I dropped the UXO.
I am empty handed.

n:Dropping the UXO has higlier priority over recharging the battery if in Z4.

1 am turning to Z3.
**The robot is looking towards WORLD:Z3.w»
I turned to Z3.
I am looking at Z3.
I am going to Z3.
**The robot is going to WORLD:Z3.x
*xThe robot is in WORLD:Z3 at the point: (19.89, =5.00).w»
I went to Z3.
I am in Z3.
I am recharging the battery.
**The robot is recharging the battery.=s
I recharged the battery.
the battery is full.
I am talking to you.

;;Correctly prioritized the two cascades of recharging the battery and of the main
»+; gathering loop (see Sections 4.1 and 5).
;»»The on-going talking was stopped while recharging and now resumes.

I am turning to 21.
**The robot is looking towards WORLD:Z1.##
I turned to Z1.
I am looking at 21.
I am going to Z1.

11

**The robot is
*»The robot is
I went to Zit.
I am in Z1.

going to WORLD:Z1,#%
in WORLD:Z1 at the point: (38.00, 5.00).x»

I am searching.

»xThe robot is
=s0bject found

searching for a UX0 . EX

at: (30.00, 151.88).xx

**The robot is going near the object (WORLD::WHITE 30.004522 151.88202) Lk
*+The robot is looking at the object (WORLD::WHITE 30.004522 151.88202).%%
**The robot is near the object (WORLD::WHITE 30.004522 151.88202) .+
»*The robot is going to examine object.=**
»+0BJECT FOUND IS NOT A UXO.*x
**The robot is searching for a UXO .)k

21 is cleared.

I am turning to 22.
**The robot is looking towards WORLD:Z2,*+

I turned to 22,

I am looking at 22.

I am going to Z2.
*»The robot is going to WORLD:Z2.wx
*»#The robot is in WORLD:Z2 at the point: (38.00, -5.00).m=

I went to 22.

I am in 22.

yi3--—---The High-Level Behavior: Blow-up Objects------

: Blow up the UXOs.

I am going to Zi.
**The robot is going to WORLD:Z1.#%
The robot is in WORLD:Z1 at the point: (150.00, 5.00).

I went to Z1. '

I am in Z1.

I am searching.
**»The robot is searching for a UX0 . LR
**Object found at: (21.10, 317.18).*x
**The robot is going near the object (WORLD::WHITE 21.103125 317.18237) . kX

**The robot is
*xThe robot is
=*The robot is
**0BJECT FOUND
**The robot is
**x0bject found

looking at the object (WORLD::WHITE 21.103125 317.18237).##*
near the object (WORLD::WHITE 21.103125 317.18237).#x
going to examine object.**

IS NOT A UXO.x*=x
searching for a UXO0 .
at: (187.23, 327.45).x*x

Lk

12

**The robot is going near the object (WORLD::WHITE 187.23366 327.44772) .
**The robot is looking at the object (WORLD::WHITE 187.23366 327.44772) .*x
The robot is near the object (WORLD::WHITE 187.23366 327.44772).
The robot is going to examine object.
**0BJECT FOUND IS NOT A UXO. ==
**The robot is searching for a UX0 . . .*=*
**0bject found at: (36.72, 347.09) .
**The robot is going near the object (WORLD::ORANGE 36.72171 347.08948) .
**The robot is looking at the object (WORLD::ORANGCE 36.72171 347.08948) . *=*
**The robot is near the object (WORLD::0RANGE 36.72171 347.08948) . xx
*»The robot is going to examine object. *x
**0BJECT FOUND IS A UXO.x*x

I searched.

I am near a UXO.
The robot has a charge.

I am placing a charge.
**The robot is placing a charge on the UXO (WORLD::0RANGE
36.72171
347.08948) . *x*

**The charge is on the UXD.*x

I am empty handed.

I placed the charge.

the charge is on the UXO.

I am hiding.
**The robot is looking for a safe Place. . .=*=x
**The robot is going to the point: (141.67, 346.41). . .*x

**The robot is at a safe place. xx
**<<<THE BATTERY IS LOW>>>.xx

;s While waiting for the explosion, the battery goes low.
;;Note that continuing to wait should have higher priority.

I hid.

I am safe
and the battery is low.

I am turning to Z3.
**The robot is looking towards WORLD:Z3. s+
I turned to Z3.

I am looking at 23.
** ! IBANG! ! *x

I am going to 23.
**The robot is going to WORLD:Z3.#x

13

L xX

L xk

*x| |BANG! | %
*x! IBANG! ! #=

;1:Note how the two processes (the explosion and the agent’s going to Z3) are
sminterleaved in the simulation.

*%] IBANG! ! 4%
k| |BANG] | &
k| IBANG! 1 wm
) 'BANG! Lo
»x! IBANG! ! =x

**The robot is in WORLD:Z3 at the point: (32.00, -5.00).%=
I went to Z3.

I am in Z3.

I am recharging the battery.
**The robot is recharging the battery.#

1l am sensing an explosion.

sEven though it has sensed the explosion. it does not interrupt recha.rgmg the
iiibattery (see Section 4.2).

1 recharged the battery.
the battery is full,
I am talking to you.

n:Now it reacts to sensing the explosion

I am turning to Z1i.
**The robot is looking towards WORLD:Z1.*#*

I turned to Z1.

I am looking at 2Z1.

I am going to Z1.
**The robot is going to WORLD:Z1.*x
*+The robot is in WORLD:Z1 at the point: (38.00, 5.00).**
I vent to Z1.

I am in Z1.

I am searching.
**The robot is searching for a UX0 . . .#x
**Object found at: (172.34, 368.48) .#»
*+The robot is going near the object (WORLD::WHITE 172.33784 368.4796)

14

LRk

**The robot is looking at the object (WORLD::WHITE 172.33784 368.4796) .%
**The robot is near the object (WORLD::WHITE 172.33784 368.4796).%*
**The robot is going to examine object.*x*

**0BJECT FOUND IS NOT A UXOD.*x*

*xThe robot is searching for a UXD . . .**

21 is cleared.

I am turning to Z2.
xThe robot is looking towards WORLD:Z2.
**<<<THE BATTERY IS LOW>>>.#*x*

I turned to Z2.

I am looking at Z2.

I am going to Z2.
**The robot is going to WORLD:Z2.*x
The robot is in WORLD:Z2 at the point: (170.60, =5.00).
I went to Z2.

I am in 22
and the battery is low.

I am turning to Z3.
*xThe robot is looking towards WORLD:Z3.**

I turned to Z3.

I am looking at Z3.

I am going to Z3.
**The robot is going to WORLD:Z3.*x*
**The robot is in WORLD:Z3 at the point: (32.00, -5.00).*x
I went to Z3.

I am in Z3.

I am recharging the battery.
**The robot is recharging the battery.*

I recharged the battery.

the battery is full.

I am talking to you.

15

