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Abstract

Inference can be viewed as a search through a space
of inference rules. Backward and forward inference
differ in the direction of the search: backward
inference searches from goals to ground assertions;
forward inference searches from ground asserctioms
to goals. This paper describes an inference pro-
cedure, called bi-directional inference, which
limits the number of inference rules searched.
Bi-directional inference results from the incer-
action baetween forward and backward inference and
loosely corresponds to bi-directional search. We
show through an example that, when used through-
out a session of related tasks, bi-directional
inference sats up a conversational comtext and
prunes the search through the space of inference
rules by ignoring rules which are not relevant to
that context.

l. Introduction

Bi-directional inference (BDI) combines forward
{nference (FI) and backward inference (BI) to limit
the search through a space of inferemce rules by
astablishing a context on the basis of an ongoing
session. We use the term "bi-directional infer-
ence" because the resulting search loosely corre=
sponds to bi-directiomal search (Kowalski 72, Pohl,
7). n

The benefits of BDI become clear durfng an
extended session in which the user asks questions
and adds assertions all of which are related. BDI
sets up a conversational context and prunes the
space of inference rules searched (either during
BI or FI) by ignoring rules which are not relevant
to the context.

In BDI there are two sets of inference
frontiers, one growing from the assertions added
in FI and the other growing during BI from the
questions asked. Whenever two frontiers meet some
answers are produced.

BDI has been implemented in SNIP, the SNePS
Inference Package. We present examples of BDI and
compare the results obtained using BDI with the
results obtained using BI or FI only. Although
SNIP has a much richer rule syntax than used in
these examples (Shapiro, 79a, 79b) they suffice to
illustrace BDI.

2. Basic notions of SNIP

SNIP relies on a declarative representation of
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inference rules (SNePS semantic network (Shapiro,
79a). Every rule may be used both in FI and BI.
When a rule is used, it is activated, remaining
that way until explicitly de-activated by the user.
The activated rules are assembled into an active
connection graph (acg) (McKay and Shapiro, 81),

a collection of MULTI processes (McKay and Shapi-
ro, 80) which carry out the inference. The acg
also stores all the results generated by the
activated rules. If during some deduction SNIP
needs some of the rules activated during a previ-
ous deduction, it uses their results directly
instead of rederiving them. The acg that is built
for one query or assertion is noc discarded after
the query has been answerad or the assertion
"fylly" understood by making all possible inferem—
ces from it. Rules of the natwork remain active,
allowing a dynamic context to be comnstructed. The
dynamic context is the collection of rules which
have been activated. Ln addition, the active rules
are more prominment: when searching for inference
rules to be used, Lf any previously activated rules
are appropriate then only those rules will be con-
sidered and no other rules will be activated.

Hence rules apparently irrelevant to the current
dynamic context are ignored.

3. Backward Inference

We present an example of BL, explaining very
briefly how acg's work. A complete explanation can
be found in (McKay and Shapiro, 81).

Suppose that SNIP is being used as a database
retrieval system for some company interested in
recruiting computer science (CS) majors. The
recruiting policies of the company are stored as
rules in the database (Lines l-4, Fig. l). The

Vix,y) | Planning-to=visit(x) & cs-major-at(y,x} =» Good-prospect (y) !
¥ix,y) | Top=schoolix) & cS-mjor-ac(y,x) => Good-prospect (¥) ]

v(x) [ Good-prospect(x) -> Send-literature=to(x)]

¥ix) [ Good-p (x) & G {x) => Inwite-for-inesrview(xl]
Top=school (MIT)

Top-school (O}

S-ma joc-ax (Don, ST

CS-major-at (Ted, 241

CS~ma jor-at (Anna, MIT)

CS~ma jor-at {Jahn, UCLA)

Figure 1
Initial database

company's database also contains a list of top
schools and a list of the CS majors at different
schools (Lines 5-10, Fig. l).
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Every year the company updates its database with

the names of all students graduating in C5S and all
the schools that the company will visit during cthat
year (Fig. 2). The company then uses SNIP to find
out .

Flanning—to—visit (SN}
Flanning-to-visit (Q4)
Graduating(Don)
Graduating(Ted)
Graduating(Jahn)

Figure 2
Information updating the database

which CS majors should be invited for interviews,
which ones should be sent the company's literature,
etc.

We now consider the acg describing the reason-
ing of SNIP when it is asked who should be invited
for an interview.

An acg is represented as rectangles and
circles. Each rectangle represents a rule -
instance (a deduction rule together with a sub-
stitution for the variables in the rule); the
antecedents appear to the left of the double line
and the consequents to the right. Circles (called
goal nodes) represent goals to be proved. Rule
instances and goal nodes are connected by directed
edges. Substitutions flow through the edges. Rule
instances and goal nodes can be viewed as producers
of formulas sent out on the edges leaving them and
as consumers of formulas coming in on the edges
pointing to them. Some edges have switches (repre-
sented by square brackets) which have the effect
of renaming the variables in the substitutions
flowing through them. For ease of reference, rule
instances have labels of the form An (where n is
an integer). Those labels are used for notation-
al convenience only and have no relation with the
way acg's work.

Initially, a request is created which contains
the atomic formula being sought. The rule instance
labeled Al in Figure 3 represents the request to

Al

| Imvite-for=intarviewiwo) ||

A2

{{Ted/who} , (Don/whol} i
{ i
|

| Good=prost (x) | duating(x) || Invite-for-interview(x) |

{{Dony/x}, (Ted/x} . [Annas/x}) é; {{Ted/x} , (Don/x} ; [John/x}]

lrfl x] Ty/xl

| Top-schoolix) | Cs-major-at(y,x) || Good-prospect(y) |

éb {(mrz/x), lOW/x1}

| Planning—to-visit(x) | C-major—atiy,xl || Good-prospeet (y) |

ii}llsnﬂfnhiGHVxH |
((STME/x.Deny} , (ON/x, Ted/y} , (MIT/x. Aoma/ Y} « (OGN Jebwy/y) )

Figure 3
acg for backward inference

deduce all instances of the atomic formula Invite-
for-interview(who). The next step is to create a
goal node for the atomic formula. A goal node

(G1) is added below the instance being sought. One
of the jobs of the goal node is to match its atomic
formula against the network to find all formulas
which unify with it. 1If there are ground instances

the goal node produces them immediately. For every
matching formula in consequent position of some
rule, a new rule instance is added to the acg. The
other job of the goal node is to remember all sub-
stitutions it receives (these substitutions are
represented enclosed in curly brackets next to the
goal node). When a goal node receives a new sub-
stitution, it sends it to all rule instances to
which it points. In this case, Gl can't find any
ground instances of Invite-for-interview(who) but
the rule ¥(x)[Good-prospect(x) & Graduating(x) -+
Invita—for—interview(x)ﬁ may be used to derive such
instances. Rule instance A2 is thus created by Gl
(Fig. 3). Notice that-the variable 'x' in A2
should be bound to 'who' in Al when an answer is
produced by A2. For this reason a switch ([x/whe])
is inserted in the link between A2 and Gl and has
the effect of translating between variable con-
texts. Switches are computed by the network
matching function (Shapire, 77) which was used by
Gl. For details of how this is done see (McKay and
Shapiro, 81).

Goal nodes G2 and G3 are created for the ante-
cedents of A2. G2 finds two rules which cam pro-
duce instances of Good-prospect(x) and creates the
corresponding rule instances (A3 and A4, Fig. 3).
G3 finds three ground instances of Graduating(x),
namely Graduating(Ted), Graduating(Domn) and
Graduating(John). The substitutions {Ted/x},
{Don/x} and {John/x} are stored by G3 and sent to
its consumer (A2).

[}

Goal nefies are created for the antecedents of
A3 and A4. " G4 finds two top schools (MIT and CMU),
and sends the substitutionms to A3. G5 finds the
CS majors at different schools, informing both
A3 and A4. A3 deduces that both Ted and Anna are
good prospects. A4 deduces that both Don and Ted
are good prospects after receiving from G6 the
information that SUNY and CMU will be visited.

The information about goed prospects flows
through the acg reaching A2 which deduces that both
Ted and Don (good prospects who are graduating)
should be invited for interviews and the answer is
finally produced by Al.

Notice that BI tries to get each amswer in all
possible ways, and so the same answer can be pro=-
duced several times. In this particular case the
answer Good-prospect(Ted) was produced twice, by
rule instances A3 and A4.

4. Forward Inference

In this section we discuss the results obtained
if the company chooses to use FI. We will assume
that the information represented in Figure | is
stored in the database and that FI is dome with the
information represented in Figure 2.

Doing FI with Planning-to-visit(SUNY) generates
the acg of Fig. 4: rule instance Al is created
along with goal nodes for its antecedents (Gl and
G2). Gl is immediately satisfied, amd G2 finds
CS-major-at(Don, SUNY), sending to Al the substi-
tution {Don/y}. Notice that G2 is performing some
amount of BI, reflecting a characteristic of SNIP
in which BI and FI are closely interconnected. Al

" deduces Good-prospect(Don), creating rule instances

A2 and A3 to do further FI. A2 deduces its conse-
quent but A3 doesn't since Graduating(Dom) is not
in the database yet. i
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a
| Good-prospect (Donl | | Send=literature-to(Don) |

{Don) | 3(Don) || Invite=for—interview(Den) |

e
T Planning-to—wisit(SON{) | CS-major-at(y,Sm¥) |1 Good=prospect (y) |
@ @ { {Don/'yH}

Figure &4
acg for forward inference

After entering all the information of Figure 2,
SNIP has deduced (acg not shown) that Don, Ted and
Anna should be sent literature and that Don and Ted
should be invited for interviews. In other words,
all possible inferences were made, even if the user
was only interested in some of them. FI does not
take the user's interests into account filling the
database with assertions which may never be used.

5. Bi-directional Inference

In this sectiom, we introduce BDI and show that
it establishes conversactional contexts, focusing
SNIP's inferences within those contexts and thereby
limiting the space of rules searched. BDI rasults
from the interaction of FI and BI and can be
obtained either by doing BI following FI or by
doing FI following BI. We conmsider each of these
cases in turn.

5.1. Backward [nference Following Forward
Inference

Suppose that the user says "I am planning to
visit SUNY, who shall I invite for am interview?".
[n this context, by asking 'Invite-for-interview
(who)?' the user wants to consider omly the CS
majors from SUNY, We show how FI can be used to
set up the 'SUNY context' which is then used to
answer the user's query. In a pura BI system,
finding the CS majors from SUNY who should be imvi-
ted for an interview requires finding theé}uxer—
section between all CS majors from SUNY and all
persons who should be invited for an intedview
(or, in some systems, generating all of one and
testing each to see if it satisfies the other).

The user begins by doing a small amount of FI
with Planning=-to-visit(SUNY)., The amount of
inference can be defined by the number of network
pattern matches performed. Let us assume, for the
sake of argument, that by "small amount of FI" we
mean that FI is only allowed two network matches.
The first match finds the rule ¥(x,y)[Planning=to-
visit(x) & CS-major-at(y,x) -+ Good-prospect(x)],
secting up the rule instance Al (Fig. 5) and the
second match is used by G2 to look for imstances of

A2

| Invite-for=-intarview(who) ||

@ {{oonvtol]

= i (x/so)
| Good x) | G 3(x) || Invite-for—intecview(x) |
{Donv/x}} @ ((red/x, (Danv'xl, (Gotwvel)
% [w?l

| Planning-to—wisit(SUNY) | CS-major-at(y,SINY) || Cood-peospece(y) |

é é {{Danv/y}}

Figure 5
acg for bi-directional inference
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CS-major-at(y,SUNY), finding CS-major-at(Don,SUNY).
This is enough to deduce Good=prospect(Dom) buc
nothing can be done with this because finding
unactivated rules requires a match. Therefore, the
inference stops, leaving behind the active rule
instance Al (Fig. 3).

[f the user now asks the question 'Invite-
for-interview(who)?' rule instances (A2 and
A3) and goal nodes (G3, G4 and G5) are created
(Fig. 5) as discussed in section 3. Here, however,
goal node G4 finds that there is an active rule
that can produce instances of Good=-prospect(x),
namely Al. Instead of doing a network pattern
match to find additional rules, it uses rule
instance Al immediacely. The substitution {Don/y}
flows through the acg producing the answer Invite-
for-interview(Don). In this case the CS majors
from other schools were not even considered since
SNIP had set up the "SUNY context".

Suppose that CS5-major-at(Don,3SUNY) were not in
the network and thus rule instance Al could not
produce any answer even though instances of Invite-
for=interview(who) could have been derived for
CS majors of other schools. Following the query
'"Invite=for=-interview(who)?', SNIP would return an
"I don't know" answer. This, at first glance,
seems to be wrong. However, taking into account
that the user only wants to consider the CS majors
from SUNY this makes perfect sense, showing a
feature of BDI in which derivable instances which
are irrelevant to the context are effectcively
ignored by SNIP.

5.2. Forward Inference Following Backward
Inference

Suppose that the database contained the infor-
macion of Figure | and the user asked who should be
invited for an interview. SNIP builds an acg as
shown in Figure 3, except that goal nodes Gl and
G6 have no stored data. The acg produces no
answers since the information in the database is
insufficient. If the user now does FI with any
of the propositions of Figure 2, the waiting goal
nodes are found. Whenever a new assertion is pro-
duced for FI, and a goal node already exists that
wants it, no network match is dome to find addi-
tional relevant rules. For example, if Graduating
(Ted) ia entared, SNIP tells the user to invite
Ted for an interview, and ignores that Send-
literature=to(Ted) could also have been derived,
since presumably the user was not interested in
this latter proposition. Again, BDI takes into
account the conversational context, ignoring the
rules irrelevant to the active context.

6. Conclusions

We presented an overview of BDI, pointing out
the two characteristics required by a system to
make the BDI behavior possible:

1. Every rule may be used both in FI and BI.
2. There is a distinction between rules which
have been activated and rules which haven't.

Relying on these two characteristics, when SNIP
(a system which uses BDI) searches for rules to be
used, it looks for activated rules first and just
in case of failing to find any activated rule,
non-activated rules are considered. In additionm,
as a matter of efficiency, activated rules remem-
ber all the results produced, not solving the same
problem twice. The resulting inference loosely



corresponds to a bi-directional search. We say
'loosely corresponds' because not only may there

be several bi-directional searches going on in
parallel (one for each question asked) which can
intersect each other, but also there are two levels
of search, the first through the activated rules,
and the second, which is tried only after failure
of the first, through the non-activated rules.

The example presented, although very small and
simplistic, shows that BDI effectively prunes the
search through the space of inference rules by
focusing the system's attention towards the
interests of the user.

In BDI, some of the disadvantages of pure FI
and pure BI do not exist. One of the disadvanta-
ges of pure FI is that it may fill the database
with derived propositions which may never be used.
We showed that BDI ignores some derivatioms which
do not interest the user. One of the disadvanta-
ges of BI is that all apparemntly relevant rules
are tried, regardless of the actual data. We
showed that BDI ignores inactive rules in favor
of rules activated by previous (forward or back-
ward) deductiom.
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