-t

.V . | : o | 25
' X\/\Wa
_ SNePSLOG : '\cl
A "Higher Order" Logic Programming Language

- - Stuart C. Shapiro, Donald P. McXay
Joao Martins & Ernesto Morgado -

SNeRG :
Technical Note No. 8
Department of Computer Science

State University of New York at Buffalo
Amhsrst, NY, 14226 '
August, 1981

This work was supported in part by the MNational Science
Foundation under Grant No. -MCS80-06314. :

SNePSLOG [21] is a logic programming.iﬁterfacé'to SNePS, the
Semantic Network Précessing System (61, and SSIP, the SNePS
Inferance Package. Assertions and rules written in SNePSLOG are
stored as structures in a semantic network. SNePSLOG‘queries are
translated into top-down daduction requests to SNIP. Assertions
;qﬂ “also ‘be stated in a way that triggers bottom-up SNIP

deductions. OQutput from SNIP is translated into SNePSLOG

formulas for printing to the usar.

Since SNePSLOG predicates and formulas are represented as
nodes in the semantic n2twork, and since SNIP allows variables to
range over any»nodés, SNePSLOG expressions are not lgmited.to
first order predicata calculus. Examples in this paper will show
SNQPSLQG r;les-£hat quantify over predicates, and a SNePSLOG rule

S —

that has a rule in’' antecedent posiﬁion_which is treated 1like an

Page 2

atomic assertion during deduction.

Since SNIP supports saevaral non-standard logical constants
* - i

[6; 8; 9J, the SNePSLOG syntax also allows tham. Some of these

are used below and will be explained where they first occur.

The examples in this paper refar to naval information anq

were'takeh from the text and data of [5].

In a taxonomy, a set is partitioned into several disjoint

subsets, each ona contalning elements which share similar
pfoparties. For example, the Long Beach class of ships have the
sama W2apon and sensor suites. The use of disjoint subsets’

increases the power of the taxonomy by enabling the system to
prove negative assertions. For example, the system can prove
that the Long Beach 1s not a destroyer since it knows that the
Long Beach is a cruiser, and, sincé cruisers and destroyers are

in the partitioning of ships according to ship-type, they are

disjoint sets.

A single set can bé categorized by several different
partitionings. Ships are categorized by ship-type (cruiser,
destroyer, etc.}, as well as by ship-class (Long Beach Class,
California Class, Belknap Class, etc.). Every ship 1is in exactly

one ship-type and exactly one ship-class. We use the assertion

Page 3

partitioning-of(n,s' to mean that the sat p is a partitioning of
the set 5, the assartion pir) to mean that the set r» is a mambar

of the parti;ioning p, and the assertion rix}) to mean that x is a
. -

maember of the st x. Notice that these assertions are not first

order, and that they imply that x is a member of s.

In the examplas below, lines beginning with the prompt ">"

are user input and ";" marks the beginning of a commaent.

; partitioning conveyances

_partitioning-of{convayance-type®,conveyance@®@)
conveyance—-type@i{ship@)
conveyance—typeQ(sub@)
conveyance—typatG({plane@)
conveyance—-typel{helo#)

VVVVVVVVYV

_; partitioning ships into types

e . e e e R e A e —

partitioning-ofiship-type@,ship@)}
ship-type@{cruiser@)
ship~type@(destroyer@)

VVVVVYV

—— e e = = e m o A e Ent E— — w ——t — ————

; partitioning ships into classes
H

partitioning-ofiship-class@,ship@®)
ship-class@(long-heach-class@)
ship-class@(california-class@)
"ship-class@{belknap-class@)

"V VIV V VYV

; partitioning cruisers

——— et e — s —— -

partitioning-of{ecruiser-type@,cruiser@)
cruiser—-typeinuclaar-cruiser@)
cruiser-type@{fossil-fuel-cruissrid)

VVVVVYV

; partitioning nueclear cruisers

s et e e e e A e e e = —

partitioning-of (nuclear—-cruiser—-class@,nuclear—cruiser@)
nuclear-cruiser—-class@(long-beach-class@)
nuclear-cruiser-class@{california-class@)

VVVVVYV

partitioning fossil-fuel cruisers

e m i B Rt B A . e e b e dw B Pk

VvV

»
’
.
r
-
’

Pag=a 4

partitioning-of(fossil-fuel-cruiser-class@,
fossll~fuel-cruiserd)
fossil-fuel-cruiser—-class@(belknap-class@)

Vv v

long-beach-class@(long-beach@)
california-claass@{california@)
california~class@{south-caroclinag)
belknap-class@(balknap@)

VVVVYVY Y

Hhen considering ships and ship classes, it is necessary to
distinguish the name of an object and the objact itself because
diffarsnt objects can share the same name. This feature allows a
user to ask if the California is a California, - where the first
name refars to the ship named California and the sacond to tha
ship-class named California. For example, the rule
> ALL(x,xname,y,yhama)
> [name—-of {xname,x), name—-of{yname,y)l}
> &=> {{y(x) V=> is—-alxnama,ynama}l
> [~y(x) V=> ~is-a(xname,yname)l)
asserts that the "is—a" relation holds, or not, depending on the

undarlying relatilonship of the named entities. Every entity

which has a suffix "@" and needs to be referenced by a nama has

the appropriate name-of assertion, e.g. name-of(California,
c&;;fornia@) and name-of(California, california-class@). These
are used as follows. (Lines folldwing a query are abbreviated

system responsas,.)

> ?7is-af{California, California)

SINCE

california-class@{california@) name~ofi{California,california®)
name~of {California,california-class@)

HE INFER

is—-ai{California,California)

The above rule demonstrateé SNePSLOG's ability to handle

second order rules, and usas the connectives ~, &=>, and V=>. -~

Page 5

is the standard negation. A, ..., B_ &=> C,, c.., C_ asserts
1 n 1 m

that the conjunction of Al, Ve ey An implies the disjunction of

Cl' ey Cm. Al, . ey An v=> Cl' ey Cm asserts that the

disjunction of Al’ e An implies the disjunction of _Cl’ ey

C .

m

As an adequatae representation for reasoning with partitions,
wa use two rulaes. The first expresses the normal sat inclusion
proparty of partitions:

> ALL{x,p,p-1ing,s)
> - [partitioning-of(p-ing,s), p-ing(p)]
.2 &=> [(pix) Vad> si{x)]

which assertas that if p-ing is a partitioning of a set 8 and p is
an alement of p-ing then if Xx is an elemeant of pn thsn it's an
elemant of 5 as well. For example, this ruls allows the
pfoposition tgat the California 4is a conveyanca to pe deducsd
bacausa conveyanca type is a partitioning of conveyances, ship is
a conveyanca type and the California is a ship. (The "1" after
the "?” tells the system to suspand deduction as soon as one
answer is found.)

> 7?1 is-a(California, convayanca)
SINCE
'Qéma—of(California,california@) name-of {(conveyance,convayanca@)
HE INFER
{(conveyance@{california@) V=> is-af{California,conveyance)]}

SINCE

name—of{Callfornia,california~-class’d)

nama-of {conveyance,conveyance@)

WE INFER ‘

(convey-nce@{california-class@) V=> is~a(California,conveyancel))

SINCE

conveyance—typel{ship@)
partitioning - »f ({conveyance-type@®,conveyanca@)

WE INFER :

{ship@(california®) V=> conveyance@{california@))

SINCE

Page 6

ship@(california@)
HE INFER -
conveyance@(california@

SINCE
cdnveyancel(california®)
WE INFER
is-a(California,conveyanca)

A second rule expresses the disjointnass property:

> ALL{(x,s,p-ing)
> Ipartitioning-of(p—-ing,s), six}]
> ' &=> NEXISTS(_,l,_){p)lp-ingl(p} : pix)}]

which states that if p-ipg is a partitioning of a sat 5 and X is
an:element of 3 then there is at most one p such’ that p is an
elemant of p-ing and x is in n. NEXISTS(i,j,n)(x)(Al(x), P,
Am(x): Cix)1 usas.tha numerical quantifier [8] and asserts that
of the n individuals X which satisfy Al(x), .oy Am(x), at Jlsast
4 and at most J also satisfy C(x). In this case, only tha J
paraﬁeter is being used. That the Long Beach'is not a destroyer
can be deduced using this rule because ship-type |is a
partitioning of ships, the Long Beach is a ship, both cruiser anad

destroyer are ship-types and tha Long Beach is known to be a

cruiser.

> 7)1 is-a(Long-Beach,destroyer)

SINCE
partitioning-of(nuclear-cruiser-class@,nuclear-cruiser@)
nuclear-cruiser—-class@(long-beach-class@)
long-beach-class@(long-baach@)

WE INFER

nuclear-cruiser@{long-beach@)

SINCE

paxrtitioning-of(ship-class®,ship@)
ship~class@{long-beach-~class@) long-bsach-class@(long—beach@)
WE INFER

ship@{long-beach@)

SINCE - : : .
nuclear-cruigertd(long-beach@) .
partitioning-of{cruiser-type@,cruiser@)
cruiser—-type@(nuclear-cruiser@)

Page 7
WE INFER
cruiser@(long-baach@)
SINCE . .
ship@{long~beach®) partitioning-of{ship-type@,ship@)
WE-INFER :
NEXISTS((_,1,_),(p)){ship-type@{(p) : pllong—~baach®)]
SINCE
ship-type@(daestroyer@)

WE INFER
~dastroyer@{long-beach@}

One advantage of explicity reprasen£ing partitions 1is that
the .system is able to answer guestions about how the hierarchy is
arranged. Thus, the system is able to answer quastions such as
"What are the partitionings of ships 7" and answer with "The set
of ships is partitioned into ship classes and ship types." This
is deﬁonstratea with the £following quary. (The character %"
flags a free variable in a query.)
> 7 partitioning—of(zp. ship®)

WE KNOW
partitioning-of(ship-class@,ship@)

WE KNOW
partitioning-of (ship-type@,ship@)

2.2, Bi-diractional Infersnca and Dafanlt Reasoning.

RBi-directional inferance {1} occurs when the user does
top-down inference followed by bottom—up infarence. It 1is
characterized by tha focusing of the deductions towards

previously asked questions. In other words, bottom-up inference

[

does not. result in the deduction of everything that could be

deduced but rathar in the deduction of everything which 1=

Paga 8

relevant to previously asked quastions.

We first enter information about the weapons and sensors of

the Converted Forrast Sherman (CFS) class,

VVVYVYvVvVYV

VVVVVVYVY VVVVVVVVY,

VVVVVVVVVY

v v v

VVvVVVY

‘y- we we

t
-r 99 Wa

Ships in the Converted Forrest Sharman Class have Veapons
of type CFS-W and sensors of typa CFS 5.

LL{S)}I Class{S,Converted-Forrest~Sherman)
V=>
{Heapons(S,CFS-H), Sensors{S,CF5-5))1

Tha weapons of type CFS-H ara ona single Tartar, one
Mk—~42, one ASROC B-tubs and two Mk-—-32,

ALL(S){ Heapons(S,CFS-W)
V=2
{ Has(5,ona,Singla~-Tartar),
Has(S,ona,Mk-42),
Has{S,ona ,ASROC~-8-tube},
Hasa($§S, two,Mk—-32))]

; Single Tartar and ASROC 8-tube are launchers,
; Mk~42 is a gun, and Mk-32 are torpedo tubes.
Launchar{Singla-Tartar)

Launcher {ASROC-B-tube)

Gun(Mk-42)

Torpedo-tubas(Mk—~32)

i+ The sensors of type CFS-S are one SQS5-23, one SPS5-10,
.: eithar one of SPS~37 or SPS-40 and onea SPS-48:
v
ALL(S)I Sensors(S,CF5-S)
v=>
{ Has({S,one,505-23),
Has{S,one ,5PS-10),
ANDOR{Y,1) (Has(S,ona,SP5-37),
Has(S,one ,SPS5-40)),
-Has (5,one,SPS-48))1~

; By default, the sensors of typa CFS-S have one SPS-37
ALL(S}!I Sensors(S,CFS-S) V=> DELTA(Has(S,one,SPS-37))]

5P5-10, SPS-37, SPS-40 and SPS-48 are radars
and S0Q5-23 is a sonar

e wma W

Radar{SPS-10)
Radar(5PS-37)
Radar({(S?5~-40)

Paga 9

> Radar(SPS—-48)
> Sonar!{sQ5-23)

In these rules, we have . sean ‘two new connactivesa.
.ANﬁOR(i,j)(AI, .. An} asserts that at least i‘éna at most j of
Al' s ey An are trua, so ANDOR({(1l,l) is exclusive or. DELTA is a
default operator. DELTA(A) asserts that if ~A is not derivable
in the current data base, A should be dedu;ed. This particular
deafault rule is used because the text says that all ships in the
CFS class have one SPS—-37 except the Somars, which has one SP5-40

instead.

To ses bottom—up reasoning, we asseaxt that the John Paul
Jonas i3 in the CFS class using the "!" command. (The tracing is
not shown here.)

John-Paul-Jones is of class
Converted~Forrest-Sherman!

VWV VY

H
Class{John~-Paul-Jones,Convarted-Forreat~Sherman) !

Surface description of value:
Class{John-Paul-Jonas,Converted—-Forrest-Sherman)}
HWeapons (John~Paul-Jones,CFS-KW)
Sensors{John-Paul-~-Jones, CF5-5)

Has {John-Paul-Jonas,one, Single-Tartar)
Has(John—-Paul-Jones,one,Mk~42)
Has({John-Paul-Jones,cne ,ASROC~-8-tube)
Has{John-Paul-Jonas, two,Mk-32)

Has (John-Paul-Jones,onea, SQ5-23)
Has(John-Paul-Jones,one, SPS~10)

Has (John—-Paul~Jones,one, SPS—-48)
Has{John—-Paul-Jones,one,SP5-37)

~Has {John-Paul~Jonas,one,SP5-40)

Motice that the defult rule and the exclusive or rule wvere

used.

To deonstrate bi-directional inference, we first ask if thea

Dacatur has an SPS5-10. The system can’t answa2r because 1t naver

Page 10

heard of the Dacatur before. Ha than assert that the Decatur is

in

tha CFS class wusing the "!" command. Above, making this

wssartion about the John Paul Jones resulted in eleven inferred

facts. Here, bacause of the influence of tha previous query,

only two facts ara infaerred.

. > +3 Doas Decatur have ona SPS-107
>
> Has{Dscatur,one ,S5P5-10) 7
Surface description of valua:
> i No answar givan, indicating "I don't know"”
5 ; Dacatur is of class Converted-Forrest-Shearman!
>
> Class{Dacatur,Convertad-Forrest-Sharman) 1!
>
SINCE .
Class(Decatur,Convartad~Forrest-Sherman)
HE INFER

Sensors{Dacatur,(F5-5)

SINCE
Sensors{Decatur,CFS-5}
HE IMFER
Has(Decatur,one,SP5-10)

Surface description of value:
Class(Dacatur,Converted~Forrest-Sherman)
Senaors{Decatur,CFS5-5)
Has{Decatur,one,SP5-10)

Above, we saw the default zrule used to infar that the John

Paul Jones has one SPS5-37 and no SP5-40. We now tell the system

about the exceptional Somers, and ask the system if it,

neverthalass, believes that the Somers has ona SpPS—-37.

VVVVV

v v

s Scomers is in the Converted Forrest Sherman class
; but has one SPS-40.

H B} . .
Class(Somars,Converted-~Forrest~Sharman)
Has{Somers,one,5PS5-40)

Does Somers have ona SPS5-37 radar?

.
14
-
]

Page 11

> Hasl{Gomers,ona,S5PS-37) & Radari{SPsS-37) 7

SINCE .
Clasg{Somers,Converted-Forrest~Sharman)

HE INFER

Sensors(Somers,CFS5-5) -

SINCE

Sensors{Somers,CFS-5)

HZ INFER
DELTA(Haz(Somers,ona,SPS~-37))

SINCE

Sensors(Somers,CF5-5)

WE INFER

ANDOR(1,1) (Has{Somers,one,S5PS-37) ,Has(Somars,one,SPS~40)}

SINCE

Has{Somers,one ,SP5-40)
WE INFER

~Has (Somers ,ona,SPS~-37}

Surface dascription of valua:
Sensors(Somers,CF5-5)
~Has{Somers,ona,SP5-37)
Has({Somers, ona,SP5-40)

This example shows that rules can be treated as data. Tha

information in this example \is ‘mainly from tha following
paragraph of (5, p. 71:

"PLANES are 1like ships, except that they have an ALTITUDE, a
PILOT, a SQUARDRON, and a HOME-SHIP. PLBANES do not have DRAFT,
DISPLACEMENT or NAME. PLANES also have types and classes, and

have TAIL-NUMBERS in place of HULL-NUMBERS."

The ﬁain_‘point to note about this example is that in the

rule about "Like” thare is a rule in antecedent position which is

Page 12

treatad as data during the deduction process: whea ths sysatem is
asked whether the Flying Dutchman has a cruise spased it tries to
find out whether all ships have a.crulsé spaed and since this
rule is explicitly asserted in the network 1t is used as data.

Also note that this rule is expressed as a second order rule --

Al, X2, and R are quantified variables used as predicates.

3 Ships have a Cruise spead and a Draft.

VoV

ALL(S) [Ship(8) V=> (Has-a(S,Cruise-speed),Has-a(S5,Draft)))

; He define the relation "Like" by saying that

; 1f X1 is like X2, then 1f all the elements_of X2 have the
; relation R to some P, then, by default |

; 50 have the elementzs of Xl.

ALL(X1,X2}){ Lika(X1l,X2)
=2
ALLt{R,P) I (ALL{(E2)}{ X2(E2) Vv=> RI{E2,P) 1)
V=>
ALL(EL)[H1I{(E1) V=> DELTA(R(EL,P)}) 1 1)1

VVVVVVVVVV
-

> Planes are lika ships
>
> VLike(Plane,Ship)
> 3 .. except that they have an altituda, a pilot, a squadron
> ; and a home-ship.
- This rulaea wuses tha THRESH connectivea, THRESH(i)(Al,
An}

asserts that either fewer than 1 or all n of

By, <., A are true. THﬁESH(l) says that all the
argumants have tha> same truth valus,

so this rgle states that having an altitude, a

pllot a squadron and a home-ship are characteristics of

Page 13
planes in the sense that if we know that an object has
one of these properties we can conclude that it is a

plane and that it has all the others.

> ALL(P) [THRESH(1) ¢ Plane(P), Has-a(P,Altitude),

> Has-a(P,Pilot), Has—-a(P,Squadron),
> Hags—-al(P,Home-ship) 31

> . ; Planes do not have draft, displacement or name. .

> 3

>, ALL(P) [Plane{P) V=> ANDOR(0,0) (Has-al(P,Draft),

> ‘ Has—-a(P,Displacement),
> Has—-a(P,Name))1}

> ; This use of ANDOR is as an axtanded nor.

> ; Tail numbers and Hull numbers are mutually exclusive
> 3

. > ALL(X) [ANDOR(O l)(Has—a(X Tail—-number),

> ~ ‘Has-a(X,Hull- numbar))]

> ; This uss of ANDOR is as a nand.

> : Planes have tall numbers

>

> ALL(P) [Plana(P) V=> Has-al{P,Tail-numbex)]

> 3 Flying Dutchman is a plane

> '

> Plane{Flying—Dutchman)

> _; Does Flying—Dutchman have a cruise-speed?

> 0

> Has—a(Flylng—Dutchman,Cruisa—spaed) ?

SINCE

Like(Plane,Ship)

HE INFER

({Ship(E2) V=> Has-~-a(E2,Cruise-speed))

v=>

(Plane(Flying—Dutchman)

V=>
DELTA(Has~alFlying-Dutchman,Cruisa-speed}))}))

SINCE

(Ship(S) V=> - Has-al(S,Cruise-speed))

WE INFER . | | R
(Plane{Flying-Dutchman) ' o

v=>
(DELTA (Has~a(Flying-Dutchman,Cruise-speed))})

SINCE

Plane(Flying-Dutchman)

HE INFER
Has-a(Flying-Dutchman,Cruise-speed)

> 3 Does Flying-Dutchman have a Hull Number?

>
> Has-a(Flying-Dutchman,Hull-number) ?

SINCE

Like(Plane,Ship)

WE INFER

((Ship(E2) V=> Has-al(E2,Hull-number))

v=>

(Plana(Flying-Dutchman)

v=>
"DELTA(Has~-al(Flying—-Dutchman,Hull-Number))))

SINCE

Plana(Flying-Dutchman)

"WE INFER
Has-a(Flying-Dutchman,Tail-number)

SINCE
Has-ai{Flying-Dutchman,Tail-number)
HE INFER
~Has-a({Flying-Dutchman,Hull-number)

Surfacs description of valus:
Has-atlFlying-Dutchman, Tail-number)
~Has—-a(Flying-Dutchman,Hull-number)}

> ; Does Flying-Dutchman have a Draft ?
=2 _
> Has-a(Flying-Dutchman,Dratt) 7
SINCE
Like(Plane,Ship)
WE INFER
((Ship(E2) V=> Has-alE2,Draft))
V=>
(Plane(Flying-Dutchman)
v=>

DELTA(Has-a(Flying-Dutchman,Draft))})

SINCE |
Plane(Flying-Dutchman)

WE INFER
~Has-a(Flying-Dutchman,Draft)

Surface description of value:

Page 14

Paga 15

~Has~-a(Flying-Dutchman,Draft)

SNePS and its supporting systems are currently implemented
in ALISP, a dialect of LISP, on tha CYBER 174 at SUNY/Buffalo. A
version of the system was +translated into INTERLISP by Bob
Bechtél, of the Naval Oéaan Systems Center, San Diego,
Célifdrnia. An abstract view of SNIP is in [4)." The simulated
multiprocessing system which supports it isb described in [31].
SNePSLOG is currently 'implemented as an Augmented fransition
'Network parser;generator grammar [7} which acts as a user

interface with the rest of the system.

‘_jSNaPSLOG is a loglic programming language implemented as a
userrinterface to SNePS, tha Semantic Network Processing System,
and SNIP, the SNaPS Inference Package. Examples of SNePSLOG were
shown featuring higher-ordar rulgs, a rule that treats rules as
data (a meta-rule), bottom-up, top—-down, and focussed
bi-dirsctional 4inference, and non-standard connectives. These .

features derive from the semantic network representation used for

assertions and rules.

REFERENCES

Pags 16

Martins J., McKay D. and Shapiro S., Bi-Directional
Inference, Technical Report 174, Dept. of Computer Scienca,
State University of New York at Buffalo,1981.

McKay D. and Martins J., Provisional SNePSLOG User's
Manual, Dept. of Computer Science, State University of New
York at Buffalo, 1981. :

McKay D. and Shapiro S., MULTI - A LISP Based
Multiprocessing System, G ars » 29-37.

McKay D. and Shapiro S., Using Active Connection Graphs for
Reasoning with Recursive Rules, Proc. Saventh International
Joint Conferance of Artificial Intelligenca, 1981.

Naval Ocean Systams Center, Elements of Naval Domain
Knowladga, NOSC HWorking Paper, San Diego, CA, April, 1981.

Shapiro, S.C. The SNePS semantic network processing system.
In a o npano + 1 o

Kngal4dga_hx_damnnL&£3 Findler, N.V., ed., Academic Press,
New York, 1979, 179-203.

Shapiro, §S.C., Generalized augmented transition network

grammars for genaration from semantic networks, Proc, 17%th

WWMWL
! Univarsity of California at San Diego, August,

1979, 25-29.

Shapiro, S.C., Numerical qguantifiers and their wuse 'in

reasoning with n2gative information. 243 £
Sixtn International Jaink Conference on Axtificial
Intelligenca, Computer Science Dept., Stanford University,

Stanford, CA, 1979, 791-796.

Shapiro S., Using Non-Standard Connactives and Quantifiers
for representing D'2duction Rules in a Semantic Network,
presented at "“Curre = Aspects of AI Research” a seminar held
at the Elactrotechnical Laboratory, Tokyo, August 22-27,
1979.

