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Abstract—Tractor is a system for understanding English mes-
sages within the context of hard and soft information fusion
for situation assessment. Tractor processes a message through
syntactic processors, and represents the result in a formal knowl-
edge representation language. The result is a hybrid syntactic-
semantic knowledge base that is mostly syntactic. Tractor then
adds relevant ontological and geographic information. Finally, it
applies hand-crafted syntax-semantics mapping rules to convert
the syntactic information into semantic information, although
the final result is still a hybrid syntactic-semantic knowledge
base. This paper presents the various stages of Tractor’s natural
language understanding process, with particular emphasis on
discussions of the representation used and of the syntax-semantics
mapping rules.

I. INTRODUCTION

Tractor is a system for message understanding within the
context of a multi-investigator, multi-university effort on “Hard
and Soft Information Fusion” [1]. Information obtained from
physical sensors such as RADAR, SONAR, and LIDAR
are considered hard information. Information from humans
expressed in natural language is considered soft information.
Tractor [2] is a computational system that understands iso-
lated English intelligence messages in the counter-insurgency
domain for later fusion with each other and with hard infor-
mation, all to aid intelligence analysts to perform situation
assessment. In this context, “understanding” means creating
a knowledge base (KB), expressed in a formal knowledge
representation (KR) language, that captures the information
in an English message.

Tractor takes as input a single English message. The ul-
timate goal is for Tractor to output a KB representing the
semantic information in that message. Later systems of the
larger project combine these KBs with each other and with
hard information. Combining KBs from different messages
and different hard sources is done via a process of data
association [1], [3] that operates by comparing the attributes
of and relations among the entities and events described in
each KB. It is therefore important for Tractor to express
these attributes and relations as completely and accurately as
possible.

Many systems that are used for the same purpose as Tractor

use information extraction techniques. For example, on its
web site, Orbis Technologies, Inc. says, “Orbis Technologies,
Inc. is a leader in providing cloud computing-based semantic
text analytics, using MapReduce, to support entity extraction,
relationship identification, and semantic search”, ! and infor-
mation extraction is defined as “the process of identifying
within text instances of specified classes of entities and of
predications involving these entities” [4, emphasis added].
Rather than merely trying to identify certain pre-specified
classes of entities and events (people, places, organizations,
etc.) in a top-down fashion, by looking for them in the text,
we want to faithfully identify and describe all the entities and
events mentioned in each message in a bottom-up fashion,
converting to a semantic representation whatever occurs there.

Our approach is to use largely off-the-shelf software for
syntactic processing, to be discussed briefly in §III. The output
of syntactic processing is actually a hybrid syntactic-semantic
representation, due to the semantic classification information
added by named-entity recognizers. We translate the output of
the syntactic processing to the KR language we use. The KR
language is introduced in §II, and the translator in §IV. This
KB is enhanced with relevant ontological and geographical
information, briefly discussed in §V. Finally, hand-crafted
syntax-semantics mapping rules are used to convert the mostly
syntactic KB into a mostly semantic KB. This is still a
hybrid syntactic-semantic representation, because the mapping
rules do not yet convert all the syntactic information. The
specific representation constructs we use are introduced in
§VI-VIIIL. The syntax-semantics mapping rules are discussed
in §IX, and some summary information drawn from a semantic
KB is shown in §X. Although even the remaining syntactic
information in the final KB is useful for data association, our
intention is to add mapping rules so that, over time, the KBs
that are produced are less syntactic and more semantic. The
results of testing and evaluating the system are presented and
discussed in §XI.

This paper constitutes an update and current status report on

Uhttp://orbistechnologies.com/solutions/cloud-based- text-analytics/ empha-
sis added.



Tractor, which has been introduced and discussed in a previous
set of papers [1], [2], [5], [6], [7]. An overview of the entire
Hard and Soft Information Fusion project, and the architecture
of the process is given in [1]. An introduction to Tractor
and its initial architecture is given in [2]. An introduction to
the Context-Based Information Retrieval (CBIR) subprocess
of Tractor, its proposed use of spreading activation, and how
spreading activation algorithms might be evaluated is given in
[6]. A general overview of the role of contextual information
in information fusion architectures is given in [5]. Tractor’s use
of propositional graphs for representing syntactic and semantic
information is introduced in [7]. That paper ends with the
comment, “The graphs used in this paper have been hand-
built using the mappings detailed in section IV. Automating
this process to produce propositional graphs such as these is
the major implementation focus of future work™ [7, p. 527].
That work has now largely been done. This paper reports on
the results of that work.

II. SNEPS 3

We use SNePS 3 [8] as the KR system for the KBs created
by Tractor from the English messages. SNePS 3 is simultane-
ously a logic-based, frame-based, and graph-based KR system
[9], and is the latest member of the SNePS family of KR
systems [10]. In this paper, we will show SNePS 3 expressions
using the logical notation, (R a4 ay,), where R is an
n-ary relation and aq,...,a, are its n arguments. We will
refer to such an expression as a “proposition”. We will use
“assertion” to refer to a proposition that is taken to be true
in the KB, and say “assert a proposition” to mean adding the
proposition to the KB as an assertion. We will also speak of
“unasserting a proposition” to mean removing the assertion
from the KB. The arguments of a proposition are terms that
could denote words, occurrences of words in the message
(called “tokens™), syntactic categories, entities in the domain,
events in the domain, classes (also referred to as “categories”)
of these entities and events, or attributes of these entities and
events.

We can classify relations, and the propositions in which they
occur, as either: syntactic, taking as arguments terms denoting
words, tokens, and syntactic categories; or as semantic, taking
as arguments entities and events in the domain and their
categories and properties. A KB is syntactic to the extent that
its assertions are syntactic, and is semantic to the extent that
its assertions are semantic. The KB first created by Tractor
from a message is mostly syntactic. After the syntax-semantics
mapping rules have fired, the KB is mostly semantic. A subtle
change that occurs as the mapping rules fire is that terms that
originally denote syntactic entities are converted into denoting
semantic entities.”

2What we call in this paper the “syntactic KB” and the “semantic KB” were
called in other papers the “syntactic propositional graph” and the “semantic
propositional graph,” respectively. The reason is that, in this paper, we are
exclusively using the logic-based view of SNePS 3, whereas in those papers,
we used the graph-based view of SNePS 3. Their equivalence is explained in

[9].

III. SYNTACTIC PROCESSING

For initial syntactic processing, we use GATE, the General
Architecture for Text Engineering [11], which is a framework
for plugging in a sequence of “processing resources” (PRs).
The most significant PRs we use, mostly from the ANNIE
(a Nearly-New Information Extraction System) suite [12],
are: the ANNIE Gazetteer, for lexicon-based named-entity
recognition; the ANNIE NE Transducer, for rule-based named-
entity recognition; the ANNIE Orthomatcher, ANNIE Nominal
Coreferencer, and ANNIE Pronominal Coreferencer, for coref-
erence resolution; the GATE Morphological Analyser for find-
ing the root forms of inflected nouns and verbs; the Stanford
Dependency Parser, for part-of-speech tagging and parsing;
and the GATE Co-reference Editor, for manual corrections of
and additions to the results of the three automatic coreference
resolution PRs. We added to the lexicons, added some rules
to the rule-based PRs, and fixed some program bugs. We did
not modify the parser nor the morphological analyser. We can
have a person use the Co-reference Editor as part of processing
messages, or can process messages completely automatically
without using the Co-reference Editor.

The results of GATE processing, with or without the Co-
reference Editor, is a set of “annotations”, each consisting of
an ID, a start and end position within the message’s text string,
a Type, and a set of attribute-value pairs. Each PR contributes
its own set of annotations, with its own IDs, and its own set of
attributes and possible values. Only the start and end positions
indicate when an annotation of one PR annotates the same text
string as an annotation of another PR.

IV. THE PROPOSITIONALIZER

The Propositionalizer examines the annotations produced by
the GATE PRs, and produces a set of SNePS 3 assertions. The
stages of the Propositionalizer are: annotation merging; correc-
tion of minor errors in syntactic categories; canonicalization of
dates and times; and processing the structured portion of semi-
structured messages. Annotations covering the same range of
characters are combined into one SNePS 3 token-denoting
term. Dates and times are converted into ISO8601 format.
Annotation types, subtypes (where they exist), parts-of-speech,
and dependency relations are converted into logical assertions
about the tokens. The actual text string of an annotation and
the root found by the morphological analyzer are converted
into terms and related to the annotation-token by the TextOf
and RootOf relations, respectively. Coreference chains are
converted into instances of the SNePS 3 proposition (Equiv
ti...tn), where t1...t, are the terms for the coreferring
tokens.

Most of the messages we are dealing with have structured
headers, generally consisting of a message number and date,
and sometimes a time. A message reporting a call intercept
generally lists a description or name of the caller and of
the recipient, duration, medium (e.g., “cell phone” or “text
message”), and intercepting analyst. These are converted into
SNePS 3 assertions.

As an example, consider message syn194:



194. 03/03/10 - Dhanun Ahmad has been placed
into custody by the Iraqi police and transferred to
a holding cell in Karkh; news of his detainment is
circulated in his neighborhood of Rashid.

The basic information about the word “placed” in SNePS 3 is

(TextOf placed n20)

(RootOf place n20)
(token-start-pos n20 38)
(token—-end-pos n20 44)
(SyntacticCategoryOf VBN n20)

Here, n20 is a SNePS 3 term denoting the occurrence of the
word “placed” in character positions 38—44 of the message
text. The last proposition says that the syntactic category (part-
of-speech) of that token is VBN, the past participle of a verb
[12, Appendix G].

Some of the dependency information about “placed”, with
the text to make it understandable is

(nsubjpass n20 nl69)
(TextOf Ahmad nl69)
(prep n20 n22)
(TextOf into n22)
That is, “Ahmad” is the passive subject of “placed”, and
“placed” is modified by a prepositional phrase using the
preposition “into”.3
Some of the information about “Karkh” is*

(TextOf Karkh nl82)
(SyntacticCategoryOf NNP nl82)
(Isa nl82 Location)

Notice that in the first two of these assertions, n182
denotes a token (a word occurrence), but in (Isa nl82
Location), it denotes an entity, specifically a location,
in the domain. This change in the denotation of individual
constants is a necessary outcome of the fact that we form a
KB representing the syntactic information in a text, and then
gradually, via the syntax-semantics mapping rules, turn the
same KB into a semantic representation of the text.

The SNePS 3 KB that results from the Propositionalizer is
what we call the syntactic KB. Although it contains some
semantic information, such as (Isa nl82 Location),
most of the information in it is syntactic.

V. ENHANCEMENT

The syntactic KB is enhanced with relevant information of
two kinds: ontological taxonomic information is added above
the nouns and verbs occurring in the KB; and geographical
information is added to geographic place names occurring
in the message. The information to be added is found by a
process called “Context-Based Information Retrieval” (CBIR)
[13].

3In a dependency parse, each token actually represents the phrase or clause
headed by that token.

4Note that we are using Isa as the instance relation based on sentences
like “Fido is a dog”. For the subtype (or “subclass”) relation we use Type.

CBIR looks up each noun and verb in ResearchCyc’ to find
the corresponding Cyc concept(s). Then it adds to the KB the
terms above those concepts in OpenCyc.5

CBIR also looks up proper nouns in the NGA GeoNet
Names Server database,” and adds information found there
to the KB. For example, the information added about Karkh
is

(Isa Karkh SectionOfPopulatedPlace)
(Latitude Karkh 33.3217)

(Longitude Karkh 44.3938)

(MGRS Karkh 385MB4358187120)

The information added by CBIR is important to the data as-
sociation task in deciding when terms from different messages
should be considered to be coreferential.

VI. MAJOR CATEGORIES OF ENTITIES AND EVENTS

The actual message texts determine what categories of
entities and events appear in the semantic KBs. For example,
in the message, “Owner of a grocery store on Dhubat Street
in Adhamiya said ...”, there is a mention of an entity which is
an instance of the category store. So the category of stores is
represented in the semantic KB. Nevertheless, there are some
categories that play a role in the mapping rules in the sense
that there are rules that test whether some term is an instance
of one of those categories.

Such major categories of entities include: Person; Organi-
zation (a subcategory of Group); company; Location; country;
province; city; Date; Time; Phone (the category of phone
instruments); PhoneNumber (the category of phone numbers);
MGRSToken; JobTitle; Dimension (such as age, height, and
cardinality); Group (both groups of instances of some cate-
gory, such as “mosques,” and groups of fillers of some role,
such as “residents”); ReligiousGroup (such as “Sunni”); and
extensionalGroup (a group explicitly listed in a text, such as,
“Dhanun Ahmad Mahmud, Mu’adh Nuri Khalid Jihad, Sattar
"Ayyash Majid, Abd al-Karim, and Ghazi Husayn.”)

Major categories of events include: Action (such as “break”
and “search”); ActionwithAbsentTheme (such as “denounce”
and “report”); actionWithPropositionalTheme (such as “say”
and “hear”); Perception (such as “learn” and “recognize”); and
Event itself.

VII. RELATIONS

Relations used in the syntactic and semantic KBs can be
categorized as either syntactic relations or semantic relations.

The syntactic relations we use include the following.

e (TextOf x y) means that the token y in the message
is an occurrence of the word x.

¢ (RootOf x y) means that x is the root form of the
word associated with token y.

e (SyntacticCategoryOf x y) means that x is the
syntactic category (part-of-speech) of the word associated
with token y.

Shttp://research.cyc.com/
Shttp://www.opencyc.org/
"http://earth-info.nga.mil/gns/html/



e (r x y), where r is one of the dependency rela-
tions listed in [14], for example nsubj, nsubjpass,
dobj, prep, and nn, means that token y is a depen-
dent of token x with dependency relation r.

The semantic relations we use include the ones already
mentioned (such as Isa and Equiv), and the following.

e (Type cl c2) means that cI is a subcategory of c2.

¢ (hasName e n) means that n is the proper name of
the entity e.

e (GroupOf g c) means that g is a group of instances
of the class c.

e (GroupByRoleOf g r) means that g is a group of
entities that fill the role, r.

e (MemberOf m g) means that entity m is a member of
the group g.

e (hasPart w p) means that p is a part of entity w.

e (hasLocation x y) means that the location of en-
tity x is location y.

e (Before tl1 t2)
time t2.

e (r x y), where r is a relation (including possess,
knows, outside, per—-country_of_birth,
org-country_of_headquarters, agent,
experiencer, topic, theme, source, and
recipient), means that the entity or event x has the
relation r to the entity or event y.

means that time t1 occurs before

e (a e v), where a is an attribute (including
cardinality, color, Date, height,
Latitude, Longitude, sex, per-religion,

per—-date_of_birth, and per—age), means that
the value of the attribute a of the entity or event e is v.

Two relations, although syntactic, are retained in the se-
mantic KB for pedigree purposes: (token-start-pos x
i) means that the token x occurred in the text starting at
character position i, and (token-end-pos x i) means
that the token x occurred in the text ending at character
position i. These are retained in the semantic KBs so that
semantic information may be tracked to the section of text
which it interprets. Two other syntactic relations, TextOf and
RootOf, are retained in the semantic KB at the request of the
data association group to provide term labels that they use for
comparison purposes.

We believe that the syntactic relations we use are all that
we will ever need, unless we change dependency parsers, or
the dependency parser we use is upgraded and the upgrade
includes new dependency relations. However, we make no
similar claim for the semantic relations.

Assertions that use syntactic relations are called “syntactic
assertions,” and those that use semantic relations are called
“semantic assertions.”

VIII. REPRESENTATION OF EVENTS

To represent events, we use a neo-Davidsonian represen-
tation [15], in which the event is reified and semantic roles
are binary relations between the event and the semantic role

fillers. For suggestions of semantic roles, we have consulted
the entries at [16]. For example, in the semantic KB Tractor
constructed from message syn064,

64. 01/27/10 - BCT forces detained a Sunni muni-
tions trafficker after a search of his car netted IED
trigger devices. Ahmad Mahmud was placed in cus-
tody after his arrest along the Dour’a Expressway,
//MGRSCOORD: 38S MB 47959 80868//, in East
Dora.

the information about the detain event includes

(Isa nl8 detain)

Date nl8 20100127)

agent nl8 nlo6)

GroupOf nlé6 force)

Modifier nl6 BCT)

theme nl8 n26)

Equiv n230 n26)

Isa n230 Person)

hasName n230 "Ahmad Mahmud")

That is, n18 denotes a detain event that occurred on 27
January 2010, the agent of which was a group of BCT forces,
and the theme of which was (coreferential with) a person
named Ahmad Mahmud.
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IX. THE SYNTAX-SEMANTICS MAPPER

The purpose of the syntax-semantics mapping rules is to
convert information expressed as sets of syntactic assertions
into information expressed as sets of semantic assertions. The
rules were hand-crafted by examining syntactic constructions
in subsets of our corpus, and then expressing the rules in
general enough terms so that each one should apply to other
examples as well.

The rules are tried in order, so that earlier rules may make
adjustments that allow later rules to be more general, and
earlier rules may express exceptions to more general later
rules. As of this writing, there are 147 mapping rules, that
may be divided into several categories:

e CBIR, supplementary enhancement rules add ontological
assertions that aren’t in Cyc, but that relate to terms in
the message;

o SYN, syntactic transformation rules examine syntactic as-
sertions, unassert some of them, and make other syntactic
assertions;

o SEM, semantic transformation rules examine semantic
assertions, unassert some of them, and make other se-
mantic assertions;

e SYNSEM, true syntax-semantic mapping rules examine
syntactic assertions and maybe some semantic assertions
as well, unassert some of the syntactic assertions, and
make new semantic assertions;

o CLEAN, cleanup rules unassert some remaining syntactic
assertions that do not further contribute to the understand-
ing of the message;

o INFER, inference rules make semantic assertions that are
implied by other semantic assertions in the KB.



Due to space constraints, only a few rules will be discussed.?
An example of a syntactic transformation rule is

(defrule passiveToActive
(nsubjpass ?verb ?passsubij)

=>

(assert ‘(dobj ,?verb ,?passsubij))
(unassert

‘(nsubjpass , ?verb ,?passsubij))
(:subrule

(prep ?verb ?bytok)
(TextOf by ?bytok)
(pobj ?bytok ?subij)
=>
‘(nsubj ,?verb ,?subj))
‘(prep ,?verb ,?bytok))
‘(pobj , ?bytok ,?subj))))

(assert
(unassert
(unassert

This rule would transform the parse of “BCT is approached
by a man” to the parse of “a man approached BCT”. The rule
fires even if the “by” prepositional phrase is omitted.

There are also some rules for distribution over conjunctions.
One such rule would transform the parse of “They noticed
a black SUV and a red car parked near the courthouse”
to the parse of “They noticed a black SUV parked near the
courthouse and a red car parked near the courthouse” by
adding an additional partmod relation, from the token for “car”
to the head token of “parked near the courthouse”. Then
another rule would transform that into the parse of “They
noticed a black SUV parked near the courthouse and they
noticed a red car parked near the courthouse” by adding a
second dobj relation, this one from the token of “noticed” to
the token of “car.”

Some examples of true syntax-semantics mapping rules
operating on noun phrases (presented in the relative order in
which they are tried) are:

(defrule synsemReligiousGroup
(Isa ?g relig_group_adj)
(TextOf ?name ?9g)
=>

assert

assert

assert
unassert

( ‘(Isa ,?g ReligiousGroup))

( ‘' (hasName , ?g , ?name))

( " (Type ReligiousGroup Group))

( ‘(Isa ,?g relig_group_adj)))
This rule would transform the token for “Sunni”, which
the GATE named entity recognizers recognized to name
a relig_group_adj, into an entity that is an instance of
ReligiousGroup, whose name is Sunni. It also makes
sure that the relevant fact that ReligiousGroup is a sub-
category of Group is included in the semantic KB for the
current message.

(defrule hasReligion
(Isa ?religiongrp ReligiousGroup)
(nn ?per ?religiongrp)

8The rules are shown using the actual rule syntax.

(hasName ?religiongrp ?religion)

>

(assert (MemberOf ?per ?religiongrp))
(assert (per-religion ?per ?religion))
(unassert (nn ?per ?religiongrp)))

This rule would assert about the token of “youth” in the parse
of “a Sunni youth” that it is a member of the group named
Sunni, and that its religion is Sunni. It also would unassert
the nn dependency of the token of “Sunni” on the token of
“youth”.

(defrule properNounToName
(SyntacticCategoryOf NNP ?token)
(TextOf ?text 7?token)
=>

Y (hasName , ?token ,?text))

‘(SyntacticCategoryOf

NNP , ?token))
‘' (TextOf , ?text ,?token)))

(assert
(unassert
(unassert

This rule would transform a token of the proper noun “Khalid
Sattar” into a token denoting the entity whose name is
"Khalid Sattar".

(defrule nounPhraseTolInstance
(SyntacticCategoryOf NN ?nn)
(:when (isNPhead ?nn))
(RootOf ?root ?nn)

(:unless (numberTermp ?root))
=>

assert ‘(Isa

unassert

‘(SyntacticCategoryOf NN , ?nn))

(unassert ' (RootOf ,?root ,?nn)))

,?nn , 2root))

(
(

This rule would transform the token of “youth” in the parse of
“a Sunni youth” into an instance of the category youth. The
function 1 sNPhead returns True if its argument is the head of
a noun phrase, recognized by either having a det dependency
relation to some token, or by being an nsubj, dobj, pobj, iobj,
nsubjpass, xsubj, or agent dependent of some token. (In the
corpus we work on, determiners are sometimes omitted.) The
(:unless (numberTermp ?root)) clause prevents a
token of a number from being turned into an instance of that
number.

Another rule makes the token of a verb an instance of the
event category expressed by the root form of the verb. For
example, a token of the verb “detained” would become an
instance of the event category detain, which is a subcategory
of Action, which is a subcategory of Event

Some examples of syntax-semantics mapping rules that
analyze clauses (presented in the relative order in which they
are tried) are:

(defrule subjAction
(nsubj ?action ?subj)
(Isa ?action Action)
=>



(assert ‘(agent ,?action ,?subj))
(unassert ‘(nsubj ,?action ,?subj)))

This rule would make the subject of “detained” the agent of
a detain Action-event.

(defrule subjPerception
(nsubj ?perception ?subj)
(Isa ?perception Perception)
=>
(assert
‘' (experiencer ,?perception ,?subj))
(unassert ‘(nsubj ,?perception ,?subij)))

This rule would make the subject of “overheard” the experi-
encer of a overhear Perception-event.

Another rule makes the date of an event either the date
mentioned in the dependency parse tree below the event token,
for example the date of the capture event in “Dhanun Ahmad
Mahmud Ahmad, captured on 01/27/10, was turned over to ...”
is 20100127, or else the date of the message being analyzed.

A final set of syntax-semantics mapping rules convert
remaining syntactic assertions into “‘generic” semantic asser-
tions. For example, any remaining prepositional phrases, after
those that were analyzed as indicating the location of an entity
or event, the “by” prepositional phrases of passive sentences,
etc., are transformed into a assertion using the preposition as
a relation holding between the entity or event the PP was
attached to and the object of the preposition.

As syntax-semantics mapping rules convert syntactic in-
formation into semantic information, semantic transformation
rules move some of that information to their proper places.
One example is

(defrule repairLatitude
(Latitude ?name ?lat)
(hasName ?entity , ?name)

>
(assert (Latitude ?entity 7?lat))
(unassert (Latitude ?name ?lat)))

This, and similar, rules move the geographic information
shown in §V from the the name of a location to the location
itself.

Cleanup rules unassert syntactic assertions that were already
converted into semantic assertions, for example unasserting
(TextOf x y) and (RootOf x y) when (Isa y x)
has been asserted. Other cleanup rules unassert remaining
syntactic assertions that do not contribute to the semantic KB,
such as the SyntacticCategoryOf assertions.

The inference rules make certain derivable assertions ex-
plicit for the benefit of the data association operation. For
example, the agent of an event that occurred at some location
on some date was at that location on that date, and the member
of a group g; that is a subgroup of a group g- is a member
of ga.

X. RESULTS

In order for a person to get an idea of what is in the
semantic KBs, we have implemented a simple natural language
generation function that expresses the information in a KB
in short formalized sentences. Each relation is associated
with a sentence frame whose slots are filled in from the
relation’s arguments. A term with a proper name, or which
is coreferential with one with a proper name, is expressed by
its name. Otherwise, terms that are instances of some category
are expressed by a symbol constructed from its category. For
example, some of the information in the semantic KB that
Tractor constructed from syn064, shown and discussed in
§VIIL, is

detainl8

Instance of: detain

detainl8’s Date is [20100127].
detainl8 has the relation agent

to |BCT forces]|.
relation theme

to |Ahmad Mahmud]| .
relation after

to search32.

detainl8 has the

detainl8 has the

|BCT forces|

Instance of: Organization

detainl8 has the relation agent
to |BCT forces].

search32

Instance of: search

search32’s Date is [20100127].
search32 has the relation theme
to carl08.
relation after
to search32.

detainl8 has the

| Ahmad Mahmud |
Instance of: (setof Person trafficker)
|Ahmad Mahmud|’s sex is male.
|Ahmad Mahmud|’s Religion is Sunni.
| Ahmad Mahmud| has the relation possess
to carl08.
is located at Expressway.
is located at Expressway’s
Date is [20100127].

detainl8 has the relation theme

to |Ahmad Mahmud]| .
arrest65 has the relation theme

to |Ahmad Mahmud] .

| Ahmad Mahmud |
| Ahmad Mahmud |

arrest6b

Instance of: arrest

arrest65’s Date is [20100127].
arrest65 is located at Expressway.
arrest65 has the relation theme



to |Ahmad Mahmud]| .
place55 has the relation after
to arrest65.

placeb5

Instance of: place

place55’s Date is [20100127].
place55 is located at |East Doral.
place55 has the relation in

to custodyb59.
relation after

to arrest65.

placeb5 has the

|East Dora|
Instance of: (setof Location
SectionOfPopulatedPlace)
Latitude is |33.2482].
Longitude is [44.4091].
MGRS is 38SMB4496078958.
MGRSRadius is [0.5].
|East Dora] .

|East
|East
|East Doral’s
|East Doral’s
place55 is located at

Doral’s
Doral’s

XI. EVALUATION

The mapping rules were developed by testing Tractor on
several corpora of messages, examining the resulting semantic
KBs, finding cases where we were not happy with the results,
examining the initial syntactic KBs, and modifying or adding
to the rule set so that an acceptable result was obtained. These
“training” messages included: the 100 messages from the Soft
Target Exploitation and Fusion (STEF) project [17]; the 7
Bomber Buster Scenario messages [1]; the 13 messages of
the Bio-Weapons Thread, 84 messages of the Rashid IED
Cell Thread, and 115 messages of the Sunni Criminal Thread,
of the 595-message SYNCOIN dataset [18], [19]. None of
these messages were actual intelligence messages, but are “a
creative representation of military reports, observations and
assessments” [19]. Tractor is still a work in progress. We have
not yet finished testing, modifying, and adding to the mapping
rules using these training sets.

We are currently developing a “grading rubric” to measure
the correctness and completeness of the semantic KBs pro-
duced by Tractor against manually produced “gold standard”
semantic KBs. We will then have to produce those gold
standard KBs, and compare them with those produced by
Tractor. It is not yet clear whether that comparison could be
done automatically, or would require human grading. We hope
to report on this grading rubric, and on Tractor’s grades in a
future paper.

Nevertheless, we can now evaluate how general the mapping
rules are, and whether they are perhaps overly general. The
generality of the rules will be tested through examination of
how often the mapping rules fire on a “test” dataset, not
previously examined. We’ll look at the amount of syntactic
and semantic data there are in the processed graphs from our
test and training sets. We’ll also look at how many mistakes
Tractor makes on the test dataset, to test for over-generality.

Combined, these three experiments will show that our rules are
general, but not overly so, that the amount of semantic data in
the resultant semantic KBs is quite high, and that the degree
of semantization compares well with that of our training sets.

We begin by addressing the question of, given that the
mapping rules were developed using the training messages,
how general are they? To what extent do they apply to new,
unexamined, “test” messages? To answer this question, we
used the 57 messages of the the Sectarian Conflict Thread
(SCT) of the SynCOIN dataset. These messages, averaging
46 words per message, contain human intelligence reports,
“collected” over a period of about five months, which describe
a conflict among Christian, Sunni, and Shi’a groups. The
messages describe events in detail, and entities usually only
through their connection to some group or location.

We divided the rules into the six categories listed in §IX,
and counted the number of rules used in the SCT corpus,
along with the number of rule firings, as seen in Table I. Of

TABLE I
THE NUMBER OF MAPPING RULES IN EACH CATEGORY, THE NUMBER OF
THOSE RULES THAT FIRED ON ANY MESSAGE IN THE SCT DATASET, THE
TOTAL NUMBER OF TIMES THOSE RULES FIRED, AND THE AVERAGE
NUMBER OF TIMES THEY FIRED PER MESSAGE.

Rule Type | Rule Count | Rules Fired | Times Fired | Firings/msg
CBIR 1 1 474 8.32
SYN 23 13 1,596 28.00
SEM 5 5 328 5.75
SYNSEM 99 56 2,904 50.95
INFER 9 8 135 2.37
CLEAN 10 8 6,492 113.89
[ TOTAL ] 147 ] 91 | 11,929 ] 209.28 |

the 147 rules currently part of the system, 91 fired during the
processing of this corpus for a total of 11,929 rule firings.
Sixty-nine rules fired five or more times, and 80 were used in
more than one message. 62% of all the rules and 57% of the
true syntax-semantics mapping rules fired on the test messages.
We conclude that, even though the rules were developed by
looking at specific examples, they are reasonably general.

The purpose of the syntax-semantics mapping rules is to
convert syntactic information about the words, phrases, clauses
and sentences in a message into semantic information about
the entities and events discussed in the message. We are still in
the process of developing the rule set, so it is useful to measure
the percentage of each KB that consists of semantic assertions.
Table II shows the number of syntactic assertions,” the number

TABLE 11
FOR THE TOTAL SCT DATASET, THE NUMBER OF SYNTACTIC ASSERTIONS,
THE NUMBER OF SEMANTIC ASSERTIONS AND THE PERCENT OF
ASSERTIONS THAT ARE SEMANTIC IN THE SYNTACTIC KBS, THE
SEMANTIC KBS, AND IN THE SEMANTIC KBS WITHOUT COUNTING THE
ASSERTIONS ADDED BY CBIR.

Syntactic | Semantic | Percent Semantic
Syntactic 2,469 1,149 31.76%
Semantic 538 48,561 98.90%
without CBIR 538 5,646 91.30%




of semantic assertions, and the percent of assertions that are
semantic in the initial syntactic KBs, the final semantic KBs,
and the final semantic KBs without counting the semantic
assertions added by CBIR (see §V). The numbers are the totals
over all 57 messages of the SCT dataset. As you can see,
before the mapping rules, the KBs are almost 70% syntactic,
whereas after the mapping rules they are more than 90%
semantic. CBIR is purely additive, so it does not reduce the
number of syntactic assertions in the KB, but it does increase
the semantic content of the KBs to nearly 99%.

The percentage of the semantic KBs from the test message
set that is semantic, 91.30%, is very similar to that of the
training message sets. For example, the semantic content of
the semantic KBs of two of these training sets, the BBS
and STEF datasets, are 92.94%, and 94.15%, respectively, as
shown in Table III. We conclude that, even though we are

TABLE III
PERCENT OF THE SEMANTIC KBS WHICH ARE SEMANTIC FOR THE BBS
AND STEF TRAINING SETS, EXCLUDING THE CBIR ENHANCEMENTS.

Dataset | Syntactic | Semantic | Pct Semantic
BBS 57 750 92.94%
STEF 517 8,320 94.15%

still developing the mapping rules, the ones we have so far
are converting a large part of the syntactic information into
semantic information, and doing so in a way that generalizes
from the training sets to test sets.

Since the mapping rules were designed using the training
datasets, it is possible that some of the rules that fire in our test
dataset (as shown in Table I) are erroneous. That is, the rules
may be foo general. In order to verify that the rules function
as expected, we manually verified that the rules were applied
only where they should be.

In order to perfrom this experiment we ran the mapping
rules on each message in the dataset, noting after each rule
firing whether the firing was correct or incorrect. Rules which
fired due to misparses earlier in the process were not counted
as rules used. A rule was counted as firing correctly if its
output was semantically valid and in accord with the intent of
the rule.

As Table IV shows, very rarely were rules applied overzeal-
ously. Therefore we can say with some certainty that the rules
are not only general enough to fire when processing messages
from corpora other than the training set, but they are not
overly general; the firings produce a valid semantization of
the messages.

Comparison with Other Systems

Our system produces results which are much different from
those of the most related system we’re aware of—Orbis
Technologies’ proprietary Cloud Based Text-Analytics (CTA)
software. The output of the two systems are not directly

9The token position, TextOf, and RootOf assertions, which are syntactic,
but are retained in the semantic KB for pedigree information and to assist in
the downstream scoring of entities against ench other, as explained at the end
of §VII, have been omitted from the count.

TABLE IV
THE NUMBER OF RULES USED IN EACH CATEGORY, ALONG WITH THE
NUMBER OF TIMES RULES FROM EACH CATEGORY WERE USED IN THE
SCT DATASET, AND THE NUMBER OF TIMES THEY WERE USED

CORRECTLY.

Rule Type | Rules Used | Times Fired Fired Correctly

Number | Percent
CBIR 1 474 474 100%
SYN 13 1,567 1,548 | 98.79%
SEM 5 328 328 100%
SYNSEM 56 2,651 2,431 91.7%
INFER 8 85 72 84.7%
CLEAN 8 6,492 6,492 100%

[ TOTAL ] 91 | 11,597 | 11345 [ 97.8% |

comparable. CTA attempts to identify and find relationships
among entities, in the process identifying the entities’ types
as either Person, Organization, Location, Equipment, or Date.
Where we identify all the types of entities (and have more
types, such as Group and Event), Orbis only seems to identify
them when they are in a relation. An Orbis relation is simple—
an entity is associated with another entity. Tractor uses
a large set of relations for representing complex relationships
between entities.

Within the 57 SCT messages, Tractor identified (among
many other things) 34 entities which were members of specific
groups, the religion of 17 entities, 203 locations of events
or entities, and 33 persons or groups with specific roles.
It additionally identified 102 agents of specific events, 128
themes of events, and over 125 spatial relationships such as

“in”, “on” and “near’”’.

XII. CONCLUSIONS

Tractor is a system for message understanding within the
context of hard and soft information fusion for situation
assessment. Tractor’s processing is bottom-up—find whatever
is in the text, rather than top-down—look for pre-specified
entities, events, and relations. Tractor uses GATE Processing
Resources (PRs) for syntactic analysis, including named-entity
recognition, coreference resolution, part-of-speech tagging,
and dependency parsing. The propositionalizer converts the an-
notations produced by the GATE PRs into a hybrid syntactic-
semantic knowledge base (KB) represented in the SNePS 3
knowledge representation system. Relevant ontological and
geographic information is added to the KB, and then hand-
crafted syntax-semantics mapping rules convert the syntactic
information into semantic information. Although these rules
were devised by looking at specific “training” message sets,
62% of them fired on a separate set of “test” messages.
Moreover, not counting syntactic information that is used by
later stages of fusion, Tractor, operating on the test messages,
was found to convert syntactic KBs that are 68% syntactic into
semantic KBs that are 91% semantic (99% semantic when
added ontological and geographical information is counted).
Not counting rule firings on syntactic assertions that resulted
from misparsings, 98% of the rule firings on the test messages
resulted in semantically correct assertions that were in accord
with what the rule was designed to do.
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