R SET

MBI ey e

e N
LRI L s T

Ak,

t i

I3 :
£ i

APPLICATIONS OF
ARTIFICIAL
INTELLIGENCE IN
ENGINEERING
PROBLEMS

Proceedings of the 1st International Conference,
Southampton University, U.K.
April 1986

Volume 11

Editors:

D. Sriram
R. Adey

A Computational Mechanics Publication

Springer-Verlag
Berlin Heidelberg New York Tokyo

&8

D SRIRAM

Department of Civil Engineering
M.L.T

Cambridge

Massachusetts 02139

USA

R ADEY

Computational Mechanics Inc
Suite 6200

400 West Cummings Park
Woburn MA 01801

USA

British Library Cataloguing in Publication Data

International Conference on the Application of Artificial Intelligence in
Engineering Problems (1986: University of Southampton) Proceedings
of the Ist International Conference on the Application of Artificial
Intelligence in Engineering Problems, Southampton University U.K.,
April 1986.

1. Engineering design—Data processing

2. Artificial intelligence 3. Pattern recognition systems
I. Title M. Sriram, D. 111. Adey, R.

620'.00425' 0285 TAL174

[SBN 0-905451-47-3

ISBN 0-905451-47-3 Computational Mechanics Centre, Southampton
ISBN 3-540-16349-2 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-16349-2 Springer-Verlag New York Heidelberg Berlin Tokyo

This Work is subject to copyright. All rights are reserved, whether the
whole or part of the material is concerned, specifically those of translation,
reprinting, re-use of illustrations, broadcasting, reproduction by
photocopying machine or similar means, and storage in data banks. Under
§54 of the German Copyright Law where copies are made for other than
private use, a fee is payable to ‘Verwertungsgesellschaft Wort’, Munich.

© Computational Mechanics Publications 1986
Springer-Verlag Berlin, Heidelberg
Printed in Great Britain.

The use of registered names trademarks etc. in this publication does not
imply, even in the absence of a specific statement that such names are
exempt from the relevant protective laws and regulations and therefore free
Tor general use.

ar

T

925

VMES: A Network-Based Versatile Maintenance Expert System!

Stuart C. Shapiro, Sargur N. Srihari, Ming-Ruey Taie, James Geller
Department of Computer Science, State University of New York at Buffalo,
Buffalo,

NY 14260, USA

ABSTRACT

We are developing a versatile maintenance expert system (VMES) for trouble-
shooting circuits. Like several other research teams we are using structural and
functional descriptions to avoid difficulties of empirical-rule-based diagnosis sys-
tems in knowledge acquisition, diagnosis capability, and system generalization.
Our diagnosis system has successfully pinpointed the faulty part of a
multiphier/adder board, a favorite example for researchers in this field. We have
embedded VMLS in the SNePS Semantic Network Processing System, using it as a
form of expert system tool. A central part of VMES is the “SENDING” graphical
interface. While troubleshooting, it displays the given device and dynamically
indicates the state of the reasoning process. All knowledge used by “display” is
directly retrieved from the semantic network. This operation of “display” is com-
parable to natural-language generation from a knowledge base. An important
aspect of our research is to find a good knowledge-representation scheme to support
diagnosis and display.

INTRODUCTION

Diagnosis expert systems have been developed for two main areas of application,
hardware trouble-shooting and medical diagnosis. Some diagnosis systems, such as
MYCIN [Shortliffe76]} for medical diagnosis and CRIB [Ilartley84] for computer
fault diagnosis, are built on rules which represent empirical associations. Though
these systems have had considerable success, there are some important drawbacks:
knowledge acquisition from domain experts is difficult, all possible faults (diseases)
have to be enumerated explicitly which results in a limitation of the diagnosis
power, and such programs have almost no capability of system generalization.

Structural and functional descriptions, usually referred to as “design models”
of a device, have been widely used by fault diagnosis researchers as a solution to

' Work reported here was supported in part by the Air Force Systems Command, Rome Air
Development Center and the Air Force Office of Scientific Research.

926

the difficulties of empirical-rule-based diagnosis systems in knowledge acquisition,
diagnosis capability, and system generalization [Davis84, Genesereth84] . T'he
knowledge needed for building such a system is well-structured and readily avail-
able at the time when a device is designed. There is no need to explicitly
enumerate all possible faults since they are defined generically as violated expecta-
tions at the output ports. This approach makes the adaptation for the system to a
new device much easier, because the only thing needed is to describe the device to
the system.

For our own research, we have implemented a diagnosis system called VMES
(Versatile Maintenance Expert System) that has successfully pinpointed the faulty
part of a multiplier/adder board, a favorite example for researchers in this field
(see e.g., [Davis84])

Since a design-model-based fault diagnosis system reasons directly on the
structure and function of a device and usually uses a simple inference engine, the
knowledge representation is vital to the performance of such a system. Many
researchers use predicate logic, but this has drawbacks: the representation, the reso-
lition rule, and the diagnosis assumptions seem fairly unnatural-[Fikes85]. We are
implementing our system using SNePS the “Semantic Network Processing
System{Shapiro79]. S$NelS provides several advantages which will be discussed in
detail later in the paper.

VMLS contains an integrated knowledge base and a device independent infer-
ence engine. A hierarchically arranged knowledge base provides abstraction levels
of devices, and makes the inference engine able to focus on a limited number of
objects at any time. Initially only component types are represented in the
knowledge hase, an object is instantiated only when needed. Since devices in the
domain share common components, this approach avoids redundant representations.
When the svstem is adapted 10 a new device, the only thing needed is to add
descriptions of the new component types used by the new device.

The main mode of communication between the SNePS reasoning mechanism
and the user is intended to be a graphical interface. We have implemented a ver-
sion of such an interface called “SENDING” that is used in tracing the reasoning
process of the Adder/Multiplier diagnosis program. Besides the user friendliness
and naturalness of such an interface we want to use it as a testbed for research in
the area of visual knowledge.

While visual knowledge has been dealt with implicitly in Computer Vision
and from a different aspect in Computer Graphics, and in Cognitive Psychology for
quite some time, we lately have been experiencing a growing interest in an explicit
treatment based on Knowledge Representation methods. [Latto84, Davis85]). The
crucial point here is the interest in a natural representation that lends itself to rea-
soning processes as opposed to a representation for ease of “recognition”,

STRUCTURAL DESCRIPTION

Although we are planning to use multiple sources of knowledge for the process of
diagnosis, in our current implementation, only the logical structure of a device is
represented and used. lInstead of hand-coding every detail of the device, the system
keeps a component library which describes every “type” of component. lach com-
ponent type is abstracted at two levels and represented by two SNePS rules which
are categorized as instantiation rules. The structural representation reflects the
part hierarchy of a device. Sub-parts of a device are instantiated only when they
are needed. This increases memory efficiency.

927

At level-1 instantiation, an object is built as a module (a black box) with its
I/0) ports and a pointer to its functional description. The functional description is
implemented as a LISP function which simulates/infers the value of one port in

‘ terms of the others. This will be discussed later.

. At level-2, the sub-parts of the object at the next hierarchical level are built,
and the wire connections between the object and its sub-parts, as well as those
among the sub-parts themselves are created. When being built, each sub-part is
assigned a name which is an extension of the name of its super-part (the object),
and it is instantiated at level-1 so that its 1/0) ports are available for the wire con-
nections.

The instantiation rules for objects of the type “M3A2” are as follows: (M3A2
is an artificial multiplier/adder board which consists of three multipliers and two
adders. See Figure. 1 for its structure.)

Al annotations are shown in italics.
level-] description: 1/0 ports and functions.

(build
avb $x
ant (build object *x type M3A2 state TBI-1.1)
¢q (build inport-of *x inp-id 1) = vIND1
¢q (build inport-of *x inp-id 2) = VINP2
¢q (build inport-of *x inp-id 3) = VIND3
¢q (build outport-of *x out-id 1) = VOU'TT
¢q (build outport-of *x out-id 2) = vOUT2
¢q (build port *vOUT1 f-rule M3A 2outl
pn 3 p1 *VINP1 p2 *vINP2 p3 *vIN]3)
cq (build port *vOUT2 f-rule M3A2out2
pn 3 p1 *VINP1 p2 *VINP2 p3 *vINP3)]

The first three lines say that “if x is an M3A2 and is to be
instantiated at level-1{T'BI-L1), then do what follows"

T'he next five lines instantiate the 1/0 ports. The last two “builds”
link the output ports to the functional description of the ob ject.

The first one says “in order to simulate the value of the first output,
use the function M3A2outl which takes three parameters namely
the inputs of the object x in correct order”.

level-2 description: sub-parts and connections.

(build

avh *x

ant (build object *x type M3A2 state TBI-1.2)

¢y (build
avb ($xp1 $xp2 $xp3 $xpd $xp3)
ant (build name: Give-PlI>-M3A2 object *x

p1 *xp1 p2 *xp2 p3 *xp3 p4 *xpd pS *xp5)
¢q ((build object *xp1 type MULT state TBI-1.1)
(build object *xp2 type MUL state TBI-1.1)

928

(build object *xp3 type MULT state TBI-L1)
(build object *xp4 type ADDER state TBI-L1)
(build object *xp5 type ADDER state TBI-L1)
(build super-part *x
sub-parts (*xp1 *xp2 *xp3 *xp4 *xp5))
(build from *vINP1
to ((build inport-of *xp1 inp-id 2)
(build inport-of *xp2 inp-id 1)))
; Lo save space, not all wire connections are shown here.
(build from (build outport-of *xp3 out-id 1)
to (build inport-of *xp5 inp-id 2))
(build from (build outport-of *xp5 out-id 1)
to *vOuUT2)

The first seven lines say: “if x is an M3A2 at level 2 (TBI-12), use
Junction Give-PID-M3A2 to generate names Jor x's sub-parts’.
The next seven lines declare the types o [the sub-parts which will
activate appropriate rules o instantiate them at their level-1.

The super-part/sub-parts hierarchical relation between the ob ject x
and its sub-parts is also built. .
The remainder of the example connects the wires between x and its
sub-parts as well as those among the sub-parts themselves.

All instantiation rules are stored in a file, which is regarded as a component
library. Representing the structure of a device via the instantiation rules and the
use of a component library gives the system several important advantages. We do
not have to hand-code knowledge representations for several almost identical ele-
ments on a digital circuit board; also memory is saved, because the representation is
generated by the system only when required during the course of diagnosis. In
other words we gain efficiency at the system development time, as well as during
diagnosis. We have found that this is especially important in a memory critical
environment.

Although instantiation during diagnosis is good for memory efficiency, it is
slower during diagnosis because of the time required for instantiation. To over-
come this problem without degrading the benefit of fast system construction, we
designed the representation in a way which aliows pre-instantiation of the device
before diagnosis. This can be done easily by changing all TBI-L2 nodes in the com-
ponent library to TBI-L1. Since the instantiation rules are used in a forward way,
if a device is declared to be some type at its level-1 instantiation, it would activate
all required instantiation rules throughout its structural hierarchies and build
every detail of the device. This design gives the system one more dimension of
versatility, namely that the system is versatile in both memory-critical and
diagnosis-speed-critical situations.

The most important advantage of the current implementation is the extreme
ease in adapting the system to other devices. All that the user has to do is to add
the structural and functional information of the “new” component types to the
component library and the lunction library, which will be discussed later. A pew
component type is defined as a component type which has not been described to the
component library. The new device itself is a new component type by our
definition. The effort required to adapt the system to new devices should be

929
minimal since digital circuit devices have a lot of common components, and the
structural and functional description are readily available at the time when a dev-
ice is designed.

FUNCTIONAL DESCRIPTION

The functional description should be useable to simulate the component behavior,
i, to calculate the values of output ports if the values of the input ports are -

. given. It should also be useable to infer the values of the input ports in terms of

the values of other 170 ports. This is important if hypothetical reasoning is used
for fault diagnosis. Though we have only used the functional description to calcu-
late the value at the output port, our representation scheme can be used both ways.

The functional description is implemented as a LISP function, which calcu-
lates the desired port value in terms of the values of other ports. Every port of a
component type has such a function associated with it, the link between the port
and the function is described in the structural description. Since different ports of
different component types might have the same function, some functions can be
shared. Several examples of functional descriptions follow:

All annotations are shown in italics.

Below is the function for the first output port of M3A2-type objects

(defun M3A2outi (inpl inp2 inp3)
(plus (product inp1 inp2)
(product inp1 inp3)))

Below is the function for the output port of MU LTiplier-type objects

(defun MUL Tout1 (inp1 inp2)
(product inp1 inp2))

Below is an arti ficial example to show a function shared by several
different component types namely by the type “super-bu ffer”,

the type "wire"and the type “1-to-] trans former”.

All these component types show the same behavior at our level o f
component abstraction: they echo the input to the out put.

(defun LECHO (inp1)
inp1)

As depicted above, the functional description is versatile in that it supports
the simulation and the inference of the device behavior; it also supports hypotheti-
cal reasoning and the representation scheme is quite simple.

930

INFERENCE ENGINE

The inference engine for fault diagnosis follows a simple control structure. It
starts {rom the top level of the structural hierarchy of the device and tries to find
output ports that violate an expectation. “Violated expectation” is defined as a
mismatch between the expected (calculated) value and the observed (measured)
value at some output. After detecting a violated expectation, the system uses the
structural description to find a subset of components at the next lower hierarchical
level which might be responsible for the bad outputs. This process is then contin-
ued with the suspicious parts. A part is declared faulty if it shows some violated
expectation at its output port and it is at the bottom level of the structural hierar-
chy. The bottom of the hierarchy will contain the smallest replaceable units for
the intended maintenance level. In other words, if a device can be replaced but not
repaired in a certain situation, then there is no need to represent its internal struc-
ture.

The inference engine is a rule-based system implemented in the SNePS
Semantic Network Processing System. The control flow is enforced by a LISP driv-
ing function called “diagnose”. SNelS$ can do both forward and backward infer-
ence, and it is capable of doing its own reasoning to diagnose a fault. The LISP
driving function has been introduced lor efficiency reasons only.

A small set of SNePS rules is activated at every stage of the diagnosis. For
example, three rules are activated when reasoning about a possible violated expec-
tation of a specific port of a device. One rule is to deduce the measured value of
the port. If the value can not be deduced from the wire connections, the rule
would activate a LISP function which asks the user to supply one. A similar rule
is activated for the calculated value, and the last rule is used to compare the two
values to decide if there is a violated expectation. The last rule is shown below in
both SNePS code and in Inglish.

In SNePS code:

(build

avb ($p $vc $vm)

&ant ((build port *p value *vc source calculated)
(build port *p value *vm source measured))

cq (build
min 1 max 1
arg (build name: THEY-MATCII p1 *vc p2 *vm)
arg (build port *p state vio-expct]

In English:

If the calculated and measured values of port p are known as
ve & vm, one and only one of the following statements is true:
(1) ve and vm agree;
(2) port p displays a violated expectation.

The diagnosis strategy along with the combination of a LISP driving func-
tion and SNeP$S rules turns out to be very efficient. The diagnosis can be monitored

931

by the SNePS$ text or graphic inference trace.
THE GRAPHICAL INTERFACE

Motivation

An important part of VMES is its graphical interface which comprises a separate
subsystem called “SENDING” (Slimantic Network Domain Interface Graphics). Our
interst in this interface is twofold. Currently there is a growing interest in multi
media communication. Looking at technical literature which would be impossible
without diagrams and drawings it becomes immediately clear that adialogue about a
technical object like a circuit board would profit very much from a graphical com-
ponent. This component can be used by both the user and the computer to refer to
parts which are currently under discussion.

The second source of our interest in graphical interfuces is of a more theoreti-
cal nature. We are investigating principles of visual knowledge representation. In
computer vision or computer graphics, representations are mainly designed in order
to permit efficient recognition or projection of objects. We are interested in
Tepresentations that can be used in reasoning, as well as for display purposes.

{(Zomponents of the Interface

The SENDING graphical interface contains several parts, the most important of
which are the “display” function and the “readform” function. The readform
function is our (simple) version of a CAD device. It permits a user to create a sim-
ple object, consisting of arcs, lines, circles, boxes, text, etc. by drawing them on the
screen of a graphics terminal. Objects can contain several unconnected parts and
are stored immediately as a named objects, namely as LISP functions.

liven more important than readform is the “display” function. Display takes
one or more nodes of a semantic network as arguments. These nodes can be either
base nodes, representing objects, or assertion nodes, representing simple propositions
about one object. Assuming the semantic network contains propositions about
form, position and attributes of an object, "display” can retrieve this information
and create a picture of the object on the screen.

It should be noted that this approach to image generation is different from
the techniques usually employed by computer graphics programs. Our object
descriptions are given in a declarative format, incorporating them together with a
part and a type hierarchy into a single network.

llow display works
‘The “form” itself is a LISP function (created by readform), which is represented in

the semantic network as a base node whose node label is identical to the function
name. This method of picture generation is comparable to a language generation
program that takes a semantic network as its input and generates a surface utter-
ance from it.

‘The detailed process of displaying an object is: first the part hierarchy is used
to retrieve subparts of the given object; then forms and positions of all parts are
retrieved. We are permitting several different methods of positioning which are
expressedt with different case frames in the network. The simplest case is absolute
positioning in device coordinates. More involved are relative position of an object
to another object or to its super-object. The most complicated version retrieves the
relative position of a part relative to its super-part by using the type hierarchy
that part and super-part belong to.) :

932

After knowing position and form, attributes of objects are retrieved. Attri-
butes can be either symbolic attributes or iconic attributes. An iconic attribute is
directly displayable, and the simplest form of such an attribute is “color™. Sym-
bolic attributes have to be mapped into iconic attributes, in order to make them
displayable. I‘or instance we are marking faulty objects by changing their genuine
color into a signal color (red). In this case the same medium (color) is used to
express a different fact.

Attributes in our system are teated in a way that we have not seen described
in the literature before, namely by making the attribute class itself a LISP func-
tion. An attribute value is passed to this LISP function as an argument (sometimes
a dummy value), together with the form function, effectively making the
attribute-class function a functional. The returned value of the attribute-class
function is again a form function, but it is modified according to the given attri-
bute.

Our approach to attributes guarantees that we can apply new predicates to
old forms, without ever changing the form-functions. Any alternative that comes
to mind would require adding new parameters to form-functions.

Special display Parameters

Modality The display function permits the user to specify a number of different
parameters. One is a “modality” parameter. In our maintenance domain we are
dealing with structural and functional properties of objects. This implies that it is
possible and desirable to display objects in both these aspects (or as we say, modali:
ties). The user can select which of the stored aspects he wants to see, by specifying
the modality parameter accordingly. IF'unctional display is the default.

The modality parameter is perfectly general and can be extended to any
number of different aspects, however we currently see no need for others than
structural and functional displays. Assertions for different modalities are not
structured in a Hendrix type [Hendrix79] partition system but they contain a
modality slot in the object description case frame.

Our current research has led us to the result that structural and functional
displays should be treated differently, and we will talk about this more in the sec-
tion on future work.

Pruning the display If a display function is used as an intelligent system as

opposed to a simple mapping from a data structure to a display device, there hasto

be a way to “prune” the display to avoid “overloading” the user, by presenting
irrelevant and therefore confusing information. One of our goals in this project s
to find a method to create a cognitively appealing representation.

Several optional parameters for display have been defined, that permit the
user to control the amount of information that he receives. Our goal is to automa-
tize this process entirely, but currently the user has to decide himsel{ what he con
siders appealing. The following paragraphs contain a description of these user
options.

As mentioned hefore, our representation uses a part hierarchy. A “level”
parameter permits the user to limit the number of levels in the part hierarchy that
are displayed. If, for example, an object has sub-parts which have sub-parts in
turn, it is possible to limit the display to showing only sub-parts, but not ther
sub-parts (i.e. the the sub-sub-parts of the object are not shown). Any number of
levels can be represented in the semantic network, and correspondingly any

933

natural number can be specified for the level parameter.

Sometimes the number of effectively visible objects might be responsible for
overloading of the user. Therefore an “objects” parameter limits the number of
(subJobjects displayed. As in the level case, objects are retrieved from the part
hierarchy by using breadth first selection. If the specified number of objects has
been shown, display will terminate in the midst of a level.

In our current representation there is no way to express different importance
for different sub-parts; therefore an “object” parameter results sometimes in
displaying “unimportant” parts, a problem which has been criticized by several
users. We plan to investigate this question in the future.

Objects in the VMLS system can themselves be of quite different complexity.
A simple wire is an object, but a 16 leg integrated circuit is also one object. In
order to take care of this problem another display option has been programmed, the
“complexity” parameter.

Display’s “complexity” parameter extends the ideas developed above by
counting not the number of objects, but the number of graphical primitives con-
tained in them. So it is possible for the user w0 limit the number of graphics prim-
itives that are displayed. In this way two display calls with the same “complex-
ity” parameter might create either a picture of a simple object with five sub-parts,
or a picture of a complicated object with only one sub-part.

We are still not satisfied with this solution, because there are graphics primi-
tives of different complexities. A polygon is definitely more complex than a circle
or a point. However we have not yet implemeneted a way of grading complexities
of graphics primitives. We suspect that Gestalt theory could supply a theoretical
foundation for such an analysis.

Optimal _screen use Another type of display option deals with the use of the
given screen space, the so called “fill” option. If display is called with the “fl]”
option, it dynamically computes its own window to viewport mapping to guaran-
tee an optimal use of the given (globally specified) viewport. This option is also
the only way to display parts of the world that do not fit into screen coordinates.
In this way a user sees small objects at a reasonable size, while large objects still fit
into the screen. Still he does not have to know anything about viewports and
windows,

An extension of the “fill” option is the “intell” option. It constitutes another
step in giving the system possibility to decide what to display. Although the
name “intell” seems a little bit ambitious at the current moment, it is definitely a
step towards having the system figure out what the user wants to see. The intell
option is the solution for the following problem. If a user requests to see a certain
obpct, he might at the sume time be interested to see where this object “fits in” (he
might not know that),

A user might also want to know if there are several other objects of the
same type. If display is called with the “intell” option it will display the user
specified object(s) in one viewport and in another viewport, will show the chain of
all super-objects of the user specified object(s). Cu rrently the default viewports are
the left half of the screen for the object, and the right half of the screen for the
wper-objects. Every super-object will be shown to two levels depth (see “levels”
above). So if a user displays a leg of an AND gate, then the AND gate with all its
legs will be displayed. If the super-object of the AND gate is a board, then the

934

board will be displayved with all its gates, but not with their legs. The use of the
“intell” option is shown in Figure 1. Iigure 1 was created with a printer that

directly dumps a screenfull from a graphics terminal.

Graphical Inference Trace

The SNeP’$ system has a tracing facility which permits a user to watch the reason-
ing process of 'SNePS. The function that is used for tracing is independent of
SNePS, and it is possible to plug different interfaces into this position. An impor-
tant aspect of display is that it can be used as such an interface. In other words,
an observer can watch what SNePS is currently “thinking” about.

In our implementation of a diagnosis system for the Adder/Multiplier hoard
that we have mentioned above, the system marks parts that it is currently “think-
ing” about by displaying a questionmark above them, and parts that it found a
conclusion about by showing an exclamation mark above them., The faulty part is
shown in the final display in red.

This is a direct consequence of SNel’s figuring out that the part is bad. Using
the attribute mechanism described above, the “state” attribute class is automati-
cally translated into the signal color red. After the reasoning process has ter
minated, any display command of the object found faulty will again be in the
new color. This is the case, because the semantic network has been changed per-
manently by the reasoning process.

DISCUSSION

An important aspect of our research is to find a good knowledge-representation
scheme to support diagnosis. Many researchers use standard predicate logic, but
this has several drawbacks: the representation, the resolution technique, and the
diagnosis assumptions seem fairly unnatural {I'ikes85). We have implemented our

(display iintall DiM{)

wilt

Figure 1: A Multiphier and its Board

i

'
£
;

935

system in the SNePS Semantic Network Processing System [Shapiro79]). Advan-
tages-are: (1) structural and functional knowledge is integrated into a single net-
work; (2) the powerful SNePS non-standard connectives permit us to express rules
of a degree of complexity which most llorn clause based systems cannot use; (3)
diagnosis assumptions are handled in a natural way; (4) the deduction process can
be monitored; (5) inference can be traced graphically; (6) the representation can be
casily expanded and modified; (7) procedural knowledge is represented and used;
(8) it is smoothly interfaced with 1ISP.

The structural description is represented by instantiation rules at two
different levels. This scheme turns out to be very effective and flexible. It can be
used to pre-instantiate the target device with only little change. We ran the sys-
tem on the same M3A2 board in both regular mode, which did the instantiation
only when needed, and pre-instantiation mode. As expected, the former proved to
be relatively more memory efficient, the latter better concerning diagnosis speed.

The main feature of our device representation scheme is the versatility of the
svstem. 1o adapt the system to new devices, the only thing that necds to be done
is 1o add new components to the system’s libraries. In order to test this idea as
well as the suitability of hierarchical structural representation, we invented
another artificial device type called NM3A2 and entered its description into the
svstem. ‘The NM3A2 type has three inputs and two outputs exactly like the
M3A2 type, but it only has a single sub-part which is of M3A2 type. Actually, it
w i device which has an extra layer of packaging on top of an M3A2 type device.

Given that the M3A2 type has been known to the system, only the XM3A2
type had to be added, which was done by adding two simple instantiation rules.
There was no need for a new functional description since the function of XM3A2
1s the same as the function of M3A2. The XM3A2 device has three levels of struc-
tural hierarchy, and our test successfully found the faulty part at the lowest
level. Though the example of XM3A2 is somewhat simplistic, it shows the capa-
hility of our system to deal with a wide range of devices in the domain with arbi-
trary complexity.

FUTURE WORK

In our current scheme, similar component types, which have the same function but
dufferent specifications, are represented individually. An example is the representa-
tion of 1-to-1, 1-t0-2, and 1-to-3 transformers. It would be better to represent all
types of transformers by a single representation with a parameter to specify the
transforming ratio. There is also no specific user interface for adding new com-
ponents so far.

Qur future plans include the investigation of domain knowledge, and further
development of the knowledge representation scheme {or reasoning and display.
We also have noted interesting differences between structural and functional
displays which we will follow up.

ACKNOWLEDGEMENT

We would like to thank Bill Rapaport for reading an initial draf't of this paper.

936

References

Davis85.
Randall Davis, lloward Shrobe, and al., “The Hardware Troubleshooting
Group,” SIGART Newsletter 93 pp. 17-20 (Jul. 1985).

Davis84.
R. Duvis, “Diagnostic Reasoning Based on Structure and Behavior,” Artificial
Intelligence 24 pp. 347-410 (1984).

Fikes8S.
R. Fikes and 7. Kehler, “The Role of I'rame-Based Representation in Reason-
ing,” Communications of the ACM 28(9) pp. 904-920 (Sep., 1985).

Genesecreth84.
M. R. Genesereth, “The Use of Design Descriptions in Automated Diagnosis,”

Arti ficial Intelligence 24 pp. 411-436 (1984).
Hartlev84.,

R.°T% Nartley, “CRII}: Computer Fault-finding Through Knowledge Lingineer-
ing,” Computer, pp. 76-83 (March, 1984).
lendrix79.

Gary G, Hendrix, “Enciding knowledge in Partitioned Networks,” pp. 5191
In Associative Networks: The Representation and Use of Knowledge by
Computers, ed. Nicholas V. Findler,Academic Press, New York (1979).

Latto84.
Andrew "Latto, David Mumford, and Jayant Shah, The Representation of
Shape, IL:l}]; (1984),

Shapiro79.
S. C. Shapiro, *“I'he SNel’S Semantic Network Processing System,” pp. 179-203
in Associative Networks: The Representation and Use of Knowledge by
Computers, ed. Nicholas V. Findler,Academic Press, New York (1979),

Shortliffe76.
LIl Shortliffe, Computer-Based Medical Consultations: MYCIN, American

Lilsevier/North llotland, New York (1976).

