
The Use of SNePS
for Cyber Security Reasoning∗

SNeRG Technical Note 44

Michael Kandefer, A. Patrice Seyed, and Stuart C. Shapiro
Department of Computer Science and Engineering

Center for Cognitive Science
National Center for Multisource Information Fusion

State University of New York at Buffalo
{mwk3|apseyed|shapiro}@cse.buffalo.edu

18th July 2008

1 Introduction

The National Center for Multisource Information Fusion (NCMIF) has endeavored to automate
the process of detecting and handling an attack on a cyber network. Part of this process utilizes
information fusion, a process of accumulating and refining data across disparate sources, to gather
information from various network sources and provide an estimate of abnormal network activity.
Such information is typically interpreted and acted upon by a cyber security Subject Matter Expert
(SME). To at least partially automate the reasoning and acting processes of the SME, an automatic
reasoner with acting is required, and for these purposes, we have chosen SNePS (Shapiro, 2000;
Shapiro and The SNePS Implementation Group, 2008).

Much of our work has been discussed in (Kandefer et al., 2007). Though preliminary,
it serves as a general statement of the goals of the project, and initial attempts at capturing the
reasoning processes of a cyber security expert. The rest of this paper will discuss contents already
found in the cited report, adding updates when necessary. Work done since that report will also be
discussed.

∗This work was supported in part by CUBRC under prime contract FA8750-06-C-0184 between CUBRC and U.S.
Air Force Research Laboratory, Rome, NY.

1

2 Cyber Reasoning and SNePS

SNePS is a knowledge representation, reasoning, and acting system that is well suited for repre-
senting the reasoning processes of a SME. Some general capabilities that SNePS possesses that
can aid in the process are:

• higher-order logical representation of facts and rules;

• backwards and forward inference;

• contradiction detection;

• acting;

• and procedural attachment.

Through the use of higher-order logic SNePS can represent any background knowledge or
information sources the SME utilizes when reasoning about network abnormalities, and through
the use of rules, any inferential processes needed to draw conclusions about that knowledge and
data. However, this process does require translation, and, typically, the intercession of a knowl-
edge engineer, an individual familiar with the process of representing information in logic, al-
though graphical user interfaces (GUI) (such as the one discussed in (Kandefer et al., 2007)) and
conversion tools from semantically defined formats (like OWL (W3C, 2004)) can help remove the
knowledge engineer from the process.

SNePS employs a reasoning engine that is capable of performing backwards inference,
a form of goal-directed or query driven reasoning, and forward inference, a process of deriving
conclusions from new knowledge. Both are useful for reasoning in the cyber security domain.
Backwards, because given the existing knowledge about the network and abnormalities one needs
to query the reasoner about the abnormality (e.g., a query assessing whether the abnormality is an
attack), and forward, because new information is constantly being processed by the reasoner. As
part of its reasoning engine, SNePS also can detect contradictions made when reasoning or adding
new information to the knowledge base, and then correct the issue with user input.

To help capture the ability of an SME to handle attacks when they are detected, a method
for representing and executing planned acts is necessary. SNePS processes an acting system that
is integrated with the reasoning system (Kumar and Shapiro, 1994). With this ability a variety of
conditional plans can be represented, such that, when the system reasons to some conclusion it can
act on the results appropriately (e.g., when an abnormality is detected and reasoned to be an attack,
then execute a procedure for notifying the users of the system).

Finally, procedural attachment is available in SNePS for efficient computation of mathe-
matical predicates, or for performing look-ups in huge data repositories, a feature necessary for
reasoning in the cyber security domain, which relies on vast vulnerability databases.

2

3 Example of Cyber Reasoning

An “attack track” is a report that alleges that some network device, referred to as the “target,”
was attacked, that the attack originated from some “source” device, and that it exploited some
vulnerability of the target. The vulnerability is identified by a “signature identifier” (SID). There
is additional information in the attack track that is not relevant to the discussion in this paper. One
problem is that some attack tracks report attacks that didn’t really happen, or were incidents that
did not really constitute attacks. SNePS is being used to try to identify such “false positives.”

Various procedures and knowledge required for identifying attack tracks as false positives
were elicited from an SME. As a result, two forms of reasoning were chosen for implementation.

3.1 Vulnerability Correspondence

The first form of reasoning elicited from the SME involves determining whether the SID of the
attack track indeed corresponds with a known vulnerability of the network. The network vulnera-
bilities are provided as “terrain data,” which are translated into SNePS by an automatic interpreter
written for this purpose. If the SID does not correspond to any vulnerability, then the attack is
deemed improbable, and the attack track is flagged as a false positive.

Unfortunately, the network terrain data give the vulnerabilities of the network hosts as
Common Vulnerabilities and Exposure (CVE) (The MITRE Corporation., 2006) identifiers, which
are different from the SIDs reported in the attack tracks. (The terrain data also include exposure
vulnerabilities for hosts, which are basically the English names of the exposures, and don’t use a
particular identification scheme like CVE or SID.) There is a CVE repository that provides a cor-
respondence between CVEs and Bugtraq identifiers (BIDs), a third form of vulnerability labeling.
Finally, files of SNORT (Sourcefire, 2007) sensor rules provide a correspondencs between BIDs
and SIDs.

This technique of identifying false positives is:

1. The attack track, a reports that the target device n was attacked via its vulnerability sid.

2. Use the terrain data to find the CVE identifiers of vulnerabilities that n is subject to.

3. Look up the CVE identifiers in the CVE repository to find their corresponding BIDs.

4. Use the SNORT file to determine if any of those BIDs corresponds to sid.

5. If not, then a is a false positive.

The SID-BID-CVE connection is represented in SNePS with the following two predicates.

• CVE BID Equiv(cve,bid)
CVE cve denotes the same vulnerability as BID bid. (From the CVE repository.)

• SID BID Equiv(sid,bid)
SID sid denotes the same vulnerability as BID bid. (From the SNORT files.)

3

All the instances of these relations are not stored in the SNePS knowledge base ahead of time.
Instead, procedural attachment is used to look up the required information from the appropriate
repository when needed.

In addition, the following SNePS predicates are also used.

• PropertyValue(n,p,v)
The property p (either CVE or BID) of network device n is v .

• NetworkDevice(n,nid,nip)
The network id of network device n is nid and its IP address is nip.

• Alert(a,ip,sid)
Attack track a reports that the target device that has the IP address ip was attacked via a
vulnerability with the SID sid.

• CVE(cinst,cid)
cinst is an instance of the CVE with the id cid.

• PartOf(v,n)
Network device n has the particular vulnerability or exposure v .

• PossibleAttackSID(a,sid)
Attack track a reported an attack via a vulnerability sid that exists on the specified host.

Using these predicates, the rules for determining that an attack track is a false positive are:

• If a network device, ninst has a particular instance of a vulnerability type with identifier
cid, then we say that ninst’s CVE is cid.

all(ninst,nid,nip)(NetworkDevice(ninst,nid,nip)
=> all(cinst,cid)(CVE(cinst,cid)

=> (PartOf(cinst,ninst)
=> PropertyValue(ninst,CVE,cid))))

• A network device has the BID bid that corresponds to every CVE id that it has.

all(ninst,nid,nip)(NetworkDevice(ninst,nid,nip)
=> all(cid)(PropertyValue(ninst,CVE,cid)

=> all(bid)(CVE_BID_Equiv(cid,bid)
=> PropertyValue(ninst,BID,bid))))

• An attack track is possible if its SID corresponds to any BID (or CVE) its alleged target has.

all(a,sid,nip)(Alert(a,nip,sid)
=> all(n,nid)(NetworkDevice(n,nid,nip)

=> all(bid)(PropertyValue(n,BID,bid)
=> (SID_BID_Equiv(sid,bid)

=> {PossibleAttackSID(a,sid)))))).

4

3.2 Firewall Rules

Even if the target device does have the vulnerability which the attack track reported that the source
exploited, the attack track could be a false positive if there was no way for the source to com-
municate with the target. This is the second form of reasoning elicited from the SME, and uses
connectivity rules for the network—what network devices are allowed access to which others on
specific ports. These rules are supplied by the network terrain data in addition to the vulnerability
information. The basic relation is represented by the SNePS predicate,

• ConnectedByPort(src,dst,port,prot)
The source network device, src, is connected to the destination network device, dst, on
port port using protocol prot.

This relation is not directly supplied by the network terrain data, but can be inferred from
the data that is supplied. (See (Seyed et al., 2008, §3.11) for the rule that is used.) Nevertheless, it
still only specifies network devices that are directly connected. Clearly, devices can be indirectly
connected. Rather than using standard logical inference to derive these indirect connections, we
use SNePS’s “path-based inference”. A SNePS proposition is represented by a slot-filler frame,
where the slots specify the argument positions and the fillers are the arguments in those positions.
For example, the proposition

ConnectedByPort(nd1,nd2,p1,tcp)

is represented by the frame

(src (nd1) dst (nd2) port (p1) prot (tcp))

A SNePS knowledge base can also be viewed as a directed labeled graph, in which each frame
is a node and each slot labels a directed arc from the frame it is in to each of the fillers. Path-
based inference involves inferring an arc labelled r from a node n to a node m whenever a certain
path goes from n to m (Shapiro, 1991). Following paths in a SNePS network is more efficient than
using normal logical inference, but is not always applicable. It is particularly appropriate, however,
for reasoning about transitive relations, which connectedness is, being the transitive closure of
ConnectedByPort.

To specify that the presence of an arc may be inferred from the presence of a path, a path-
based inference rule is specified. We will not explain the syntax of path-based inference rules here.
(See (Shapiro and The SNePS Implementation Group, 2008, §2.5.2) for the details.) However, the
rules for the relations src and dst are:

5

• If a has b as a src, and b has c as a src, then a has c as a src.
If a does not have c as a src, but b has c as a src, then a does not have b as a src.

define-path src
(or src

(compose ! src (kstar (compose dst- ! src)))
(domain-restrict ((compose arg- ! max) 0)

(compose src
(kstar (compose src- ! dst)))))

• If a has b as a dst, and b has c as a dst, then a has c as a dst. If a does not have c as a dst,
but b has c as a dst, then a does not have b as a dst.

define-path dst
(or dst

(compose ! dst (kstar (compose src- ! dst)))
(domain-restrict ((compose arg- ! max) 0)

(compose dst
(kstar (compose dst- ! src)))))

A key part of both these rules is the path constructor (kstar p), which means zero or
more occurrences of the path p, and allows an arc to be implied by a path of arbitrary length.

3.3 Using SNePS Reasoning

With the above rules and background knowledge in place SNePS can be “plugged into” the auto-
matic cyber security management system. This is handled through the use of a SNePS executable
and a Java class that provides tell/ask methods for interfacing with the executable. Both the
executable and Java interface were developed for this project utilizing the ACL JLinker libraries
(Franz Inc., 2008) and executable generator. The Java interface provides two methods to the overall
system:

• public InferdSnepsAPI(String snepsExePath, int interfacePort)

A constructor that starts and returns a connection to the SNePS executable.

• public double doFalsePosCheck(Document doc)

Returns a double value that represents a false positive measure for the given attack track doc.
Currently, the possible values are 0.5 or 0.0, the former indicating a false positive, the latter
indicating that a false positive couldn’t be determined.

The most important method is doFalsePosCheck, which works by asserting attack
track information into SNePS, and then querying the system based on the new information. The
algorithm is as follows.

6

1. Given attack track a with:

• Source IP: sip
• Target IP: tip
• Port: port
• Protocol: prot
• SID: sid
• Exposure: exp

2. Assert into SNePS the alert information, Alert(a,tip,sid).

3. Query SNePS to determine if it contains any information about the network devices with
those identifiers (e.g., NetworkDevice(?n,?nid,sip)?), the exposure (e.g.
Exposure(?e, exp)?), or if the exposure is known to be on the host in question (e.g.,
PartOf(eid,tid)?, where eid and tid are the identifiers for the exposure and target
network device in the knowledge base). If not, return 0.5.

4. Query SNePS to determine if the target host has the vulnerability specified (e.g.,
PossibleAttackSID(a,sid)?). If not, return 0.5.

5. Query SNePS to determine if the two devices are connected (e.g.,
ConnectedByPort(sid,tid,port,prot)?, where sid and tid are the network
identifiers for these devices. This information is acquired from the query made in step (2)).
If not, return 0.5.

6. Return 0.0.

4 Results

The algorithm was tested on 6 cases, one test for each possible output. All outputs were as expected
given the input files. The reasoner was deemed to be unacceptably slow when running with the
rest of the system on a Windows desktop computer, but ran significantly faster on a Department
of Computer Science and Engineering computer, nickelback, a Sun Sunfire X4200 with 8.0 GB
of main memory and two Dual Core AMD OpteronTM Processor 285s, clocked at 2592 MHz,
running RedHat Enterprise Linux 4 (64-bit).

7

Following are outputs generated by the 6 runs of the system (each “ ixml file contains an
attack track).

1. Enter an alert file to parse: _1.xml
Performing false pos check on:
Alert[source ip: 131.46.41.51

target ip: 192.168.1.200
protocol: tcp
port: 445
signature: NETBIOS SMB-DS IPC$ unicode share access
sid: 2559]

Determining if this host is in the virtual terrain...
False positive: No target host found with specified IP:192.168.1.200

2. Enter an alert file to parse: _2.xml
Performing false pos check on:
Alert[source ip: 100.10.20.4

target ip: 192.168.1.2
protocol: icmp
port: unknown
signature: ICMP L3retriever Ping
sid: 466]

Determining if this host is in the virtual terrain...
Determining if the signature is on any host in the virtual terrain...
False positive: Exposure(ICMP L3retriever Ping) does not reference an
exposure in the knowledge base. No host is known to have it.

3. Enter an alert file to parse: _3.xml
Performing false pos check on:
Alert[source ip: 192.168.1.3

target ip: 192.168.10.2
protocol: tcp
port: 445
signature: MS-SQL xp_showcolv possible buffer overflow
sid: 2466]

Determining if this host is in the virtual terrain...
Determining if the signature is on any host in the virtual terrain...
Determining if the signature corresponds to a vulnerability on this host...
False positive: Exposure(MS-SQL xp_showcolv possible buffer overflow)
does not correspond to a vulnerability on host 192.168.10.2

8

4. Enter an alert file to parse: _4.xml
Performing false pos check on:
Alert[source ip: 100.10.20.9

target ip: 192.168.1.3
protocol: tcp
port: 25
signature: SMTP RCPT TO overflow
sid: 252]

Determining if this host is in the virtual terrain...
Determining if the signature is on any host in the virtual terrain...
Determining if the signature corresponds to a vulnerability on this host...
Determining if SID corresponds to a CVE vulnerability...
False Positive: SID 252 does not correspond to a CVE vulnerability on
192.168.1.3

5. Enter an alert file to parse: _11.xml
Performing false pos check on:
Alert[source ip: 100.10.20.9

target ip: 192.168.1.2
protocol: icmp
port: unknown
signature: WEB-MISC bad HTTP/1.1 request
sid: 1650]

Determining if this host is in the virtual terrain...
Determining if the signature is on any host in the virtual terrain...
Determining if the signature corresponds to a vulnerability on this host...
Determining if SID corresponds to a CVE vulnerability...
Determining if a connection is possible between the source and target,
according to firewall rules...
False positive: 100.10.20.9 and 192.168.1.2 are not connected.

6. Enter an alert file to parse: _6.xml
Performing false pos check on:
Alert[source ip: 100.10.20.9

target ip: 192.168.1.2
protocol: unknown
port: unknown
signature: WEB-MISC bad HTTP/1.1 request
sid: 1650]

Determining if this host is in the virtual terrain...
Determining if the signature is on any host in the virtual terrain...
Determining if the signature corresponds to a vulnerability on this host...
Determining if SID corresponds to a CVE vulnerability...
Determining if a connection is possible between the source and target,
according to firewall rules...
SNePS could not determine a false positive for this attack track.

9

5 Addressing Criticisms

There have been two major criticism levied against the approach discussed above: that SNePS does
not provide a service significantly different from that provided by database systems, expert system
shells, or ontology reasoners; that SNePS is too slow to be useful.

In the cyber security architecture, SNePS serves as a false positive arbiter on the attack
tracks generated by the network sensors. The two techniques for determining false positives
elicited from the SME did not make use of the expressiveness available in SNePS, which has
a much more expressive language than that which is typical of many database systems, expert
systems, or ontology reasoners (see (Shapiro and The SNePS Implementation Group, 2008) and
(Kandefer and Shapiro, 2008)).

The SNePS reasoner was deemed to be too slow when running as part of the overall system
on a Windows desktop computer. SNePS was considered important enough to assign us the task of
finding some of the reasons for its slowness, and improving it. The success of that task is reported
in (Seyed et al., 2008).

6 Conclusions

SNePS is simultaneously a logic-based, frame-based, and network-based knowledge representa-
tion, reasoning and acting system. Its logic-based aspect supports logical reasoning; its frame-
based aspect supports slot-based reasoning (which wasn’t utilized in this project); and its network-
based aspect supports path-based reasoning. Procedural attachment may be used so that, when
instances of certain predicates are required, they can be retrieved from large external data bases
or files written in XML or other formats. Although implemented in Common Lisp, SNePS has
an API implemented in Java, so that it can can be used in a large system with other software
packages implemented in other languages. SNePS’s ability to interact with programs written in a
variety of languages, its ability to use data contained in a variety of file formats, the expressiveness
of its knowledge format, and the variety of its reasoning methods make it a useful and valuable
component of information fusion systems.

In this project, we used SNePS to represent and reason about network information, attack
tracks, and the information in vulnerability databases to aid in the maintenance of cyber security.
We elicited and implemented reasoning strategies from a Subject Matter Expert regarding vulner-
abilities and firewall settings relevant to the assessment of an abnormality as a network threat or a
false positive, and demonstrated the success of this approach.

10

References

Franz Inc. (2008). jLinker - a dynamic link between Lisp and Java. http://www.franz.
com/support/documentation/8.1/doc/jlinker.htm.

Kandefer, M., Shapiro, S., Stotz, A., and Sudit, M. (2007). Symbolic reasoning in the cyber
security domain. In Proceedings of MSS 2007 National Symposium on Sensor and Data
Fusion.

Kandefer, M. and Shapiro, S. C. (2008). Comparing SNePS with Topbraid/Pellet. SNeRG Techni-
cal Note 42, Department of Computer Science and Engineering, The State University of New
York at Buffalo, Buffalo, NY.

Kumar, D. and Shapiro, S. C. (1994). Acting in service of inference (and vice versa). In Dankel
II, D. D., editor, Proceedings of The Seventh Florida AI Research Symposium (FLAIRS 94),
pages 207–211. The Florida AI Research Society.

Seyed, A. P., Kandefer, M., and Shapiro, S. C. (2008). SNePS efficiency report. SNeRG Technical
Note 43, Department of Computer Science and Engineering, The State University of New
York at Buffalo, Buffalo, NY.

Shapiro, S. C. (1991). Cables, paths and “subconscious” reasoning in propositional semantic
networks. In Sowa, J., editor, Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge, pages 137–156. Morgan Kaufmann, Los Altos, CA.

Shapiro, S. C. (2000). SNePS: A logic for natural language understanding and commonsense
reasoning. In Iwańska, Ł. M. and Shapiro, S. C., editors, Natural Language Processing and
Knowledge Representation: Language for Knowledge and Knowledge for Language, pages
175–195. AAAI Press/The MIT Press, Menlo Park, CA.

Shapiro, S. C. and The SNePS Implementation Group (2008). SNePS 2.7 User’s
Manual. Department of Computer Science and Engineering, University at
Buffalo, The State University of New York, Buffalo, NY. Available as
http://www.cse.buffalo.edu/sneps/Manuals/manual27.pdf.

Sourcefire (2007). Snort: the de facto standard for intrusion detection/prevention. http://www.
snort.org/.

The MITRE Corporation. (2006). CVE - Common Vulnerabilities and Exposures. http://
cve.mitre.org/.

W3C (2004). OWL Web Ontology Language Overview. http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

11

