
Embodiment in GLAIR: A Grounded Layered Architecturewith Integrated Reasoning for Autonomous Agents�Henry HexmoorJohan LammensStuart ShapiroComputer Science Department226 Bell HallState University of New York at Bu�aloBu�alo, NY 14260hexmoor@cs.bu�alo.eduTo appear in proceedings of the Florida AI Research Symposium, Fort Lauderdale, FLFebruary 1993AbstractIn order to function robustly in the world, au-tonomous agents need to assimilate conceptsfor physical entities and relations, grounded inperception and action. They also need to as-similate concepts for perceptual properties likecolor, shape, and weight, and perhaps even-tually even for nonphysical objects like uni-corns. The process of acquiring concepts thatcarry meaning in terms of the agent's ownphysiology we call embodiment. Unlike cur-rent robotic agents, those endowed with em-bodied concepts will more readily understandhigh level instructions. As a consequence,these robots won't have to be instructed at alow level. We have developed an autonomousagent architecture that facilitates embodimentof action and perception, and accommodatesembodied concepts for both physical and non-physical objects, properties, and relations.
1 GLAIRWe present an architecture for intelligentautonomous agents which we call GLAIR(Grounded Layered Architecture with Inte-grated Reasoning). A major motivation forGLAIR and the focus of our attention in thispaper is the concept of embodiment: what it is,why it is important, and how it can be givena concrete form in an agent architecture. Assuch our de�nition is both more concrete andmore narrow than the one in [Lak87], for in-stance. Figure 1 schematically presents ourarchitecture.Concept learning provides an importantmo-tivation for embodiment. Winston's Arch pro-gram [Win75] is an early example of a sys-tem that learns concepts through examples.This program relies heavily on feature anal-ysis. However, the feature concepts and theconcepts of objects learned lack embodiment,as is typical for traditional symbolic AI work.Most of this work never gets implemented inactual agents that can physically interact withtheir environment (other than via a keyboardand monitor, which is a rather uninterestingcase), i.e. the symbols never inhabit a body. Itis this kind of approach that Brooks criticizesin papers like [Bro90]. According to Brooks,symbolic representations should be matched



Knowledge

Level

(conscious)

Actuators

K-level

processes &

representations

PM-level

processes &

representations

Sensors

SA-level
processes

Level

Perceptuo-

Motor

(unconscious)

Actuator

Sensori-

Level

(unconscious)

Control flow

Data flow

AlignmentFigure 1: Schematic representation of theGLAIR architecture. Width of control anddata paths suggests the amount of infor-mation passing through (bandwidth). Sen-sors include both world-sensors and proprio-sensors.to the agent's sensors and actuators, and thisgrounding provides the constraints on symbolsnecessary for them to be truly useful. It is thismatching of representations to the agent's sen-sors and actuators that we call embodiment,and how to go about doing this in an archi-tectural framework like GLAIR is the focus ofthis paper.The most general motivation behind ourwork is the desire to be able to \program" arobotic autonomous agent by telling it what todo at a high level and have it \understand",rather than telling it how to do something interms of primitive operations, with little or no\understanding".1 For instance, we want totell it to go �nd a red pen, pick it up, andbring it to us, and not have to program it ata low level to do these things.2 One might saythat we want to communicate with the robotat the speech act level. To do this, the agentneeds a set of general-purpose (relative to its1There was a similar motivation behind the movefrom imperative to logic-based or declarative program-ming languages, but there are no further similarities.2Retrieving \canned"parameterized routines is stilla low-level programming style that we want to avoid.

own body) perceptual and motor capabilitiesalong with an \understanding" of these capa-bilities. The agent also needs a set of con-cepts which are similar enough to ours to en-able easy communication (as [Win75] alreadymentioned). The best way to accomplish this,in our opinion, is to endow the agent with em-bodied concepts, grounded in perception andaction.2 EMBODIMENTDEFINEDWe de�ne embodiment as the notion that therepresentation and extension of concepts is inpart determined by the physiology (the bod-ily functions) of an agent, and in part by theinteraction of the agent with its environment.For instance, the extension of color conceptsis in part determined by the physiology of ourcolor perception mechanism, and in part bythe visual stimuli we look at. The result isthe establishment of a mapping between colorconcepts and certain properties of both thecolor perception mechanism and objects in theworld. Another example is the extension ofconcepts of action: it is partly determined bythe physiology of the agent's motor mecha-nisms, and partly by the interaction with ob-jects in the world. The result is the establish-ment of a mapping between concepts of ac-tion and certain properties of both the motormechanisms and objects in the world (what wemight call \the shapes of acts").To be speci�c, we must introduce a few no-tions. All concepts that can be represented byan agent fall into two categories: extensionaland non-extensional. We say an extensionalconcept is physical for an agent if the agent isable to identify an extension (example) of theconcept in the world. Let's call the agent's actof identi�cation demonstration. The demon-stration thus involves a referent that is exter-nal to the agent's body. An example of a phys-ical object is \a cup". In a room that has atleast one cup, the agent should be able demon-strate the concept of a cup by identifying one.Another example of a physical concept is \acontainer". In a room with a cup in it, theagent should be able to demonstrate the con-cept of a container by picking out the cup asa container. Other examples of physical con-2



cepts can be found in perceptual phenomenalike color, shape, size, or weight. The agentshould be able to demonstrate objects withdi�erent perceptual properties. For example,the agent should demonstrate \a red cup" bypicking out a red cup from among cups of dif-ferent colors. Of course the precise extensionof perceptual properties is dependent on theagent's sensors and actuators. If the agenthas to demonstrate a concept by using phys-ical (bodily) actions that involve only refer-ents that are integral to the agent's body, wesay the concept is body centered. Examplesof body centered concepts are \yawning" and\blinking". We say a concept is interactive ifdemonstrating it involves both body-externaland body-integral referents, i.e. the agent hasto interact with physical objects. All interac-tive concepts have physical and body centeredcomponents. Examples of interactive conceptsare sitting, drinking, and driving.We call an extensional concept embodied ifall of the following conditions hold:� The concept is physical, or body centered,or interactive.� The agent can demonstrate the concept inthe world.Concepts without extensions, e.g., \a uni-corn", can also be embodied. We say a non-extensional concept is embodied if it can bedecomposed into embodied concepts and rela-tions. For example, we will consider the con-cept of \a unicorn" embodied if the conceptof \a horse" is embodied, the concept of \ahorn" is embodied, and all concepts about \ahorse" having \a horn" on its head are em-bodied. We roughly follow Harnad's de�nitionof elementary grounded versus non-elementarygrounded symbols here [Har90].In our architecture we strive to modelagents that can learn to extend their abil-ity to demonstrate extensional concepts. Theembodiment of concepts becomes very usefulwhen the agent can demonstrate concepts withvariations and in di�erent environments, e.g.,driving with di�erent cars, or under variousroad conditions.

3 AGENTS WITH EM-BODIED CONCEPTSAt an abstract level, the way to provide anautonomous agent with embodied concepts isto intersect the set of human physiological ca-pabilities with the set of the agent's potentialphysiological capabilities, and endow the agentwith what is in this intersection. Di�erentagents can use di�erent implementationmech-anisms, depending on their particular bodies.To determine an agent's potential physiologi-cal capabilities, we consider it to be made up ofa set of primitive actuators and sensors, com-bined with a general purpose computationalmechanism. The physical limitations of thesensors, actuators, and computational mech-anism bound the set of potential capabilities.For instance with respect to color perception,if the agent uses a CCD color camera (whosespectral sensitivity is usually wider than thatof the human eye), combined with a pow-erful computational mechanism, we considerits potential capabilities wider than the hu-man ones, and thus restrict the implementedcapabilities to the human ones. We endowthe agent with a color perception mechanismwhose functional properties re
ect the physiol-ogy of human color perception. That results incolor concepts that are similar to human colorconcepts. With respect to the manipulationof objects, most robot manipulators are infe-rior to human arms and hands, hence we re-strict the implemented capabilities to the onesthat are allowed by the robot's physiology.The robot's motor mechanism then re
ects theproperties of its own physiology, rather thanthose of the human physiology. This results ina set of motor concepts that is a subset of thehuman one. Embodiment also calls for body-centered and body-measured representations,relative to the agent's own physiology.We have applied the notion of embodi-ment to an architecture for an autonomousagent that will be able to communicate at thespeech-act level, using human-like concepts.We believe that our approach is general anduseful, rather than tailored to any particu-lar task or domain. We call the architectureGLAIR, as mentioned above. Recalling thatembodiment is an approach to establishing amapping between high level concepts on onehand, and properties of the agent's physiology3



and its interaction with the world on the otherhand, we distinguish three levels of abstractionin our architecture. The Knowledge Level isthe most abstract level, and incorporates a tra-ditional knowledge representation and reason-ing system. The Perceptuo-Motor Level sits inthe middle, and is the main locus of embod-iment for perception and action mechanisms.The Sensori-Actuator Level is the lowest level,where sensors and actuators are situated, andinteractions with the environment take place.Representation, perception, and generationof behavior are distributed through all threelevels. We di�erentiate conscious reason-ing at the Knowledge Level from uncon-scious Perceptuo-Motor Level and Sensori-Actuator Level processing. Concepts repre-sented at the Knowledge Level are accessiblefor conscious reasoning and communicationwith other agents, while representations at theother two levels are not. The levels of our ar-chitecture are semi-autonomous and processedin parallel. Conscious reasoning takes placethrough explicit knowledge representation andreasoning, while unconscious behavior makesuse of several di�erent implementation mech-anisms. Conscious reasoning guides the un-conscious behavior, but the unconscious lev-els, which are constantly engaged in percep-tual and motor processing, can alarm the con-scious level of important events, taking controlif necessary. Control and generation of behav-ior are layered, and not exclusively top-downor bottom-up. There is a correspondence be-tween terms in the knowledge representationand reasoning system on one hand, and sen-sory perceived objects, properties, events, andstates of a�airs in the world and motor capa-bilities on the other hand. We call this corre-spondence alignment. Behaviors can migratebetween levels, e.g. from the Knowledge Levelto the Perceptuo-Motor Level. The latter is acase of automating explicitly learned behavior.4 GLAIR AGENTSWe are developing several agents that con-form to the principles of the GLAIR archi-tecture. These agents include a robotic au-tonomous agent, a video-game playing agent,and a mobile robot agent. Figure 2 schemat-ically presents the structure of one of theseGLAIR based agents. The robotic agent in-

corporates an embodied model of color per-ception and color naming, and a set of em-bodied motor capabilities. The video-gameagent demonstrates real time behaviors andthe inter-level alignment mechanism. The mo-bile robot agent also incorporates an embodiedmodel of color perception and color naming,and demonstrates emergent behaviors, e.g.,pushing a block around. This kind of be-havior is often hand-coded in other architec-tures, e.g. subsumption [Bro90]. The mobilerobot agent has �rst order or \innate" embod-ied sensations like contact between its bodyand some other object, and second order oremergent sensations such as moving forwardor backward. It also has �rst order embodiedactions like turning its wheels, and second or-der embodied actions like moving forward orbackward (in most cases, actions and sensa-tions come in tightly coupled pairs, and canbe considered duals of each other).All three agents display a variety of inte-grated behaviors. We distinguish between de-liberative, reactive, and re
exive behaviors.Embodied representations at the Perceptuo-Motor Level facilitate this integration. As wemove down the levels, computational and rep-resentational power is traded o� for better re-sponse time and simplicity of control. Theagent learns from its interactions with the en-vironment. It has a capacity for engaged anddisengaged reasoning. The former occurs whenbehavior is generated directly while reasoning,in a lock-step fashion. The latter occurs whenreasoning is done in a hypothetical mode, notdirectly generating behavior. Our alignmentmechanism allows us to elegantly model bothmodes of reasoning.This paper can serve only as an overviewfor GLAIR and GLAIR-based agents. Detailsof our implementations and comparisons withcompeting architectures are given in our tech-nical reports [HN92, HLS92, HCBS93].5 CONCLUSIONWe have de�ned and motivated embodied con-cepts for autonomous agents. We have alsopresented an architecture which facilitatesthe acquiring of embodied concepts by au-tonomous agents. Our architecture distin-guishes itself mainly through its three layers,their di�erent representation mechanisms, and4
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