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Abstract

In order to function robustly in the world, au-
tonomous agents need to assimilate concepts
for physical entities and relations, grounded in
perception and action. They also need to as-
similate concepts for perceptual properties like
color, shape, and weight, and perhaps even-
tually even for nonphysical objects like uni-
corns. The process of acquiring concepts that
carry meaning in terms of the agent’s own
physiology we call embodiment. Unlike cur-
rent robotic agents, those endowed with em-
bodied concepts will more readily understand
high level instructions. As a consequence,
these robots won’t have to be instructed at a
low level. We have developed an autonomous
agent architecture that facilitates embodiment
of action and perception, and accommodates
embodied concepts for both physical and non-
physical objects, properties, and relations.

1 GLAIR

We present an architecture for intelligent
autonomous agents which we call GLAIR
(Grounded Layered Architecture with Inte-
grated Reasoning). A major motivation for
GLAIR and the focus of our attention in this
paper is the concept of embodiment. what it is,
why it 1s important, and how it can be given
a concrete form in an agent architecture. As
such our definition is both more concrete and
more narrow than the one in [Lak87], for in-
stance. Figure 1 schematically presents our
architecture.

Concept learning provides an important mo-
tivation for embodiment. Winston’s Arch pro-
gram [WinT75h] is an early example of a sys-
tem that learns concepts through examples.
This program relies heavily on feature anal-
ysis. However, the feature concepts and the
concepts of objects learned lack embodiment,
as 1s typical for traditional symbolic Al work.
Most of this work never gets implemented in
actual agents that can physically interact with
their environment (other than via a keyboard
and monitor, which is a rather uninteresting
case), i.e. the symbols never inhabit a body. Tt
is this kind of approach that Brooks criticizes
in papers like [Bro90]. According to Brooks,
symbolic representations should be matched
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Figure 1: Schematic representation of the
GLAIR architecture. Width of control and
data paths suggests the amount of infor-
mation passing through (bandwidth). Sen-
sors include both world-sensors and proprio-
SENSOTS.

to the agent’s sensors and actuators, and this
grounding provides the constraints on symbols
necessary for them to be truly useful. It is this
matching of representations to the agent’s sen-
sors and actuators that we call embodiment,
and how to go about doing this in an archi-
tectural framework like GLAIR, is the focus of
this paper.

The most general motivation behind our
work is the desire to be able to “program” a
robotic autonomous agent by telling it what to
do at a high level and have it “understand”,
rather than telling it hAow to do something in
terms of primitive operations, with little or no
“understanding”.!
tell it to go find a red pen, pick it up, and
bring it to us, and not have to program it at
a low level to do these things.?2 One might say
that we want to communicate with the robot
at the speech act level. To do this, the agent
needs a set of general-purpose (relative to its

For instance, we want to

1There was a similar motivation behind the move
from imperative to logic-based or declarative program-
ming languages, but there are no further similarities.
?Retrieving “canned” parameterized routines is still
a low-level programming style that we want to avoid.

own body) perceptual and motor capabilities
along with an “understanding” of these capa-
bilities. The agent also needs a set of con-
cepts which are similar enough to ours to en-
able easy communication (as [Win75] already
mentioned). The best way to accomplish this,
in our opinion, is to endow the agent with em-
bodied concepts, grounded in perception and
action.

2 EMBODIMENT
DEFINED

We define embodiment as the notion that the
representation and extension of concepts is in
part determined by the physiology (the bod-
ily functions) of an agent, and in part by the
wnteraction of the agent with its environment.
For instance, the extension of color concepts
is in part determined by the physiology of our
color perception mechanism, and in part by
the visual stimuli we look at. The result is
the establishment of a mapping between color
concepts and certain properties of both the
color perception mechanism and objects in the
world. Another example is the extension of
concepts of action: it is partly determined by
the physiology of the agent’s motor mecha-
nisms, and partly by the interaction with ob-
jects in the world. The result is the establish-
ment of a mapping between concepts of ac-
tion and certain properties of both the motor
mechanisms and objects in the world (what we
might call “the shapes of acts”).

To be specific, we must introduce a few no-
tions. All concepts that can be represented by
an agent fall into two categories: extensional
and non-extensional. We say an extensional
concept is physical for an agent if the agent is
able to identify an extension (example) of the
concept in the world. Let’s call the agent’s act
of 1dentification demonstration. The demon-
stration thus involves a referent that is exter-
nal to the agent’s body. An example of a phys-
ical object 1s “a cup”. In a room that has at
least one cup, the agent should be able demon-
strate the concept of a cup by identifying one.
Another example of a physical concept is “a
container”. In a room with a cup in it, the
agent should be able to demonstrate the con-
cept of a container by picking out the cup as
a container. Other examples of physical con-



cepts can be found in perceptual phenomena
like color, shape, size, or weight. The agent
should be able to demonstrate objects with
different perceptual properties. For example,
the agent should demonstrate “a red cup” by
picking out a red cup from among cups of dif-
ferent colors. Of course the precise extension
of perceptual properties is dependent on the
agent’s sensors and actuators. If the agent
has to demonstrate a concept by using phys-
ical (bodily) actions that involve only refer-
ents that are integral to the agent’s body, we
say the concept is body centered. Examples
of body centered concepts are “yawning” and
“blinking”. We say a concept is interactive if
demonstrating it involves both body-external
and body-integral referents, i.e. the agent has
to interact with physical objects. All interac-
tive concepts have physical and body centered
components. Examples of interactive concepts
are sitting, drinking, and driving.

We call an extensional concept embodied if
all of the following conditions hold:

e The concept is physical, or body centered,
or interactive.

e The agent can demonstrate the concept in
the world.

Concepts without extensions, e.g., “a uni-
corn” can also be embodied. We say a non-
extensional concept is embodied if it can be
decomposed into embodied concepts and rela-
tions. For example, we will consider the con-
cept of “a unicorn” embodied if the concept
of “a horse” is embodied, the concept of “a
horn” is embodied, and all concepts about “a
horse” having “a horn” on its head are em-
bodied. We roughly follow Harnad’s definition
of elementary grounded versus non-elementary
grounded symbols here [Har90].

In our architecture we strive to model
agents that can learn to extend their abil-
ity to demonstrate extensional concepts. The
embodiment of concepts becomes very useful
when the agent can demonstrate concepts with
variations and in different environments, e.g.,
driving with different cars, or under various
road conditions.

3 AGENTS WITH EM-
BODIED CONCEPTS

At an abstract level, the way to provide an
autonomous agent with embodied concepts is
to intersect the set of human physiological ca-
pabilities with the set of the agent’s potential
physiological capabilities; and endow the agent
with what is in this intersection. Different
agents can use different implementation mech-
anisms, depending on their particular bodies.
To determine an agent’s potential physiologi-
cal capabilities, we consider it to be made up of
a set of primitive actuators and sensors, com-
bined with a general purpose computational
mechanism. The physical limitations of the
sensors, actuators, and computational mech-
anism bound the set of potential capabilities.
For instance with respect to color perception,
if the agent uses a CCD color camera (whose
spectral sensitivity is usually wider than that
of the human eye), combined with a pow-
erful computational mechanism, we consider
its potential capabilities wider than the hu-
man ones, and thus restrict the implemented
capabilities to the human ones. We endow
the agent with a color perception mechanism
whose functional properties reflect the physiol-
ogy of human color perception. That results in
color concepts that are similar to human color
concepts. With respect to the manipulation
of objects, most robot manipulators are infe-
rior to human arms and hands, hence we re-
strict the implemented capabilities to the ones
that are allowed by the robot’s physiology.
The robot’s motor mechanism then reflects the
properties of its own physiology, rather than
those of the human physiology. This results in
a set of motor concepts that is a subset of the
human one. Embodiment also calls for body-
centered and body-measured representations,
relative to the agent’s own physiology.

We have applied the notion of embodi-
ment to an architecture for an autonomous
agent that will be able to communicate at the
speech-act level, using human-like concepts.
We believe that our approach is general and
useful, rather than tailored to any particu-
lar task or domain. We call the architecture
GLAIR, as mentioned above. Recalling that
embodiment is an approach to establishing a
mapping between high level concepts on one
hand, and properties of the agent’s physiology



and its interaction with the world on the other
hand, we distinguish three levels of abstraction
in our architecture. The Knowledge Level is
the most abstract level, and incorporates a tra-
ditional knowledge representation and reason-
ing system. The Perceptuo-Motor Level sits in
the middle, and is the main locus of embod-
iment for perception and action mechanisms.
The Sensori-Actuator Level is the lowest level,
where sensors and actuators are situated, and
interactions with the environment take place.

Representation, perception, and generation
of behavior are distributed through all three
levels.  We differentiate conscious reason-
ing at the Knowledge Level from uncon-
scious Perceptuo-Motor Level and Sensori-
Actuator Level processing. Concepts repre-
sented at the Knowledge Level are accessible
for conscious reasoning and communication
with other agents, while representations at the
other two levels are not. The levels of our ar-
chitecture are semi-autonomous and processed
in parallel. Conscious reasoning takes place
through explicit knowledge representation and
reasoning, while unconscious behavior makes
use of several different implementation mech-
anisms. Conscious reasoning guides the un-
conscious behavior, but the unconscious lev-
els, which are constantly engaged in percep-
tual and motor processing, can alarm the con-
scious level of important events, taking control
if necessary. Control and generation of behav-
ior are layered, and not exclusively top-down
or bottom-up. There is a correspondence be-
tween terms in the knowledge representation
and reasoning system on one hand, and sen-
sory perceived objects, properties, events, and
states of affairs in the world and motor capa-
bilities on the other hand. We call this corre-
spondence alignment. Behaviors can migrate
between levels, e.g. from the Knowledge Level
to the Perceptuo-Motor Level. The latter 1s a
case of automating explicitly learned behavior.

4 GLAIR AGENTS

We are developing several agents that con-
form to the principles of the GLAIR archi-
tecture. These agents include a robotic au-
tonomous agent, a video-game playing agent,
and a mobile robot agent. Figure 2 schemat-
ically presents the structure of one of these
GLAIR based agents. The robotic agent in-

corporates an embodied model of color per-
ception and color naming, and a set of em-
bodied motor capabilities. The video-game
agent demonstrates real time behaviors and
the inter-level alignment mechanism. The mo-
bile robot agent also incorporates an embodied
model of color perception and color naming,
and demonstrates emergent behaviors, e.g.,
pushing a block around. This kind of be-
havior is often hand-coded in other architec-
tures, e.g. subsumption [Bro90]. The mobile
robot agent has first order or “innate” embod-
ied sensations like contact between its body
and some other object, and second order or
emergent sensations such as moving forward
or backward. It also has first order embodied
actions like turning its wheels, and second or-
der embodied actions like moving forward or
backward (in most cases, actions and sensa-
tions come in tightly coupled pairs, and can
be considered duals of each other).

All three agents display a variety of inte-
grated behaviors. We distinguish between de-
liberative, reactive, and reflexive behaviors.
Embodied representations at the Perceptuo-
Motor Level facilitate this integration. As we
move down the levels, computational and rep-
resentational power 1s traded off for better re-
sponse time and simplicity of control. The
agent learns from its interactions with the en-
vironment. It has a capacity for engaged and
disengaged reasoning. The former occurs when
behavior 1s generated directly while reasoning,
in a lock-step fashion. The latter occurs when
reasoning is done in a hypothetical mode, not
directly generating behavior. Our alignment
mechanism allows us to elegantly model both
modes of reasoning.

This paper can serve only as an overview
for GLAIR and GLAIR-based agents. Details
of our implementations and comparisons with
competing architectures are given in our tech-

nical reports [HN92, HLS92, HCBS93].

5 CONCLUSION

We have defined and motivated embodied con-
cepts for autonomous agents. We have also
presented an architecture which facilitates
the acquiring of embodied concepts by au-
tonomous agents. Our architecture distin-
guishes itself mainly through its three layers,
their different representation mechanisms, and
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Figure 2: Schematic representation of the

structure of a prototypical GLAIR-agent, an
agent conforming to the GLAIR architecture.

the mechanisms for aligning the levels. Other
significant features are the distinction between
conscious and unconscious levels and its im-
plications for the generation of behavior and
for communication with the agent. In future
work we intend to show how GLAIR as an
abstract architecture can be made to model
various agents in different domains, all using
representations grounded in action and per-
ception.
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